Glider Handbook, Chapter 2: Components and Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Albatross Can Soar at Sea for Days and Even Weeks at a Time
Executive Summary April 28, 2021 Sean Berger • Ryan Casterline • Jonathan Detwiler • Joshua Forrest Zackary Long • JR Sciple • Daniel Szallai • Xinpeng Zhao Introduction Out in the remote costal cliffs of the North Pacific Ocean, the Great Albatross can soar at sea for days and even weeks at a time. With a wingspan of more than 10 feet, this magnificent bird can stay aloft for free by utilizing dynamic soaring. Its maneuverability and flight longevity allow it to be unrivaled by any other sea bird. Inspired by this bird, the aerospace engineering undergraduate team from Penn State University designed the UQ-9 Albatross: an autonomous medical supply delivery VTOL aircraft in response to the 2020- 2021 VFS Student Design Competition sponsored by Boeing. Albatross is a hybrid 4-bladed quad rotor VTOL aircraft with folding wing capabilities, designed to deliver packages at high speed to local delivery centers and logistics sites. Its variable geometry and autonomous, compact package unloading system makes it an effective delivery vehicle. It was also designed to be multiply redundant to maximize safety. These features allow Albatross to operate in environments that are void of conventional runwayswith the advantagesof a fixed wing aircraft. Vehicle Overview The Albatross is a cargo aircraft that is capable of vertical takeoff and landing during the Fall semester. Our group decided upon a vehicle that changes the configuration of its wings between vertical and horizontal flight. The folding wing concept is a design that attempts to trade‐off the advantages and disadvantages of a conventional vertical take‐off and landing vehicle with a conventional fixed‐wing aircraft configuration. -
The Effects of Design, Manufacturing Processes, and Operations Management on the Assembly of Aircraft Composite Structure by Robert Mark Coleman
The Effects of Design, Manufacturing Processes, and Operations Management on the Assembly of Aircraft Composite Structure by Robert Mark Coleman B.S. Civil Engineering Duke University, 1984 Submitted to the Sloan School of Management and the Department of Aeronautics and Astronautics in Partial Fulfillment of the Requirements for the Degrees of Master of Science in Management and Master of Science in Aeronautics and Astronautics in conjuction with the LEADERS FOR MANUFACTURING PROGRAM at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1991 © 1991, MASSACHUSETTS INSTITUTE OF TECHNOLOGY ALL RIGHTS RESERVED Signature of Author_ .• May, 1991 Certified by Stephen C. Graves Professor of Management Science Certified by A/roJ , Paul A. Lagace Profes s Aeron icand Astronautics Accepted by Jeffrey A. Barks Associate Dean aster's and Bachelor's Programs I.. Jloan School of Management Accepted by - No U Professor Harold Y. Wachman Chairman, Department Graduate Committee Aero Department of Aeronautics and Astronautics MASSACHiUSEITS INSTITUTE OFN Fr1 1'9n.nry JUJN 12: 1991 1 UiBRARIES The Effects of Design, Manufacturing Processes, and Operations Management on the Assembly of Aircraft Composite Structure by Robert Mark Coleman Submitted to the Sloan School of Management and the Department of Aeronautics and Astronautics in Partial Fulfillment of the Requirements for the Degrees of Master of Science in Management and Master of Science in Aeronautics and Astronautics June 1991 ABSTRACT Composite materials have many characteristics well-suited for aerospace applications. Advanced graphite/epoxy composites are especially favored due to their high stiffness, strength-to-weight ratios, and resistance to fatigue and corrosion. Research emphasis to date has been on the design and fabrication of composite detail parts, with considerably less attention given to the cost and quality issues in their subsequent assembly. -
PC-6/B2-H4 Airplane Flight Manual Doc. No. 1820 at Revision 8
PILOT’S INFORMATION MANUAL PC-6/B2-H4 applicable from AC S/N 825 PILOT’S INFORMATION MANUAL PC-6/B2-H4 applicable from AC S/N 825 WARNING •This PC-6 Pilot’s Information Manual is published for general and familiarization purposes only. •This Pilot’s Information Manual does NOT meet FAA, FOCA or any other civil aviation authority regulations for operation of ANY Aircraft. •This Pilot’s Information Manual is a reproduction of a PC-6 Airplane Flight Manual, however, it is NOT revised or updated. •This Pilot’s Information Manual does NOT reflect the configuration or operating parameters of any actual aircraft. •Only the Approved Airplane Flight Manual issued for a specific serial number aircraft may be used for actual operation of that serial number aircraft. Pilatus Aircraft Ltd P.O. Box 992 6371 Stans, Switzerland Phone +41 41 619 67 00 Fax +41 41 619 92 00 [email protected] www.pilatus-aircraft.com AIRPLANE FLIGHT MANUAL PC-6/B2-H4 ONLY REPORT NO. 1820 PURPOSES REGISTRATION ._____ __. SERIAL NO . APPLICABLE FROM A/C SIN 825 FAMILIARIZATION THIS AIRPLANDANE IS TO BE OPERAT ED IN COMPLIANCE WITH INFORMATION AND LIMI TATIONS CONTAINED HEREIN THIS FLIGHT MANUAL IS TO BE KEPT GENERAL IN THE AIRCRAFT AT ALL TIMES FOR Approved by: SWISS FEDERAL OFF FOR CIVIL AVIATION · �L Nov 20, JS�S" Date of Approval : ____·- ______ PILATUS AIRCRAFT LTD STANS/SWITZERLAND ONLY PURPOSES FAMILIARIZATION AND GENERAL FOR © Pilatus Aircraft Ltd. This document contains proprietary information that is protected by copyright. All rights are reserved, No part of this document may be copied, reproduced or translated to other languages without the prior written consent of Pilatus Aircraft Ltd. -
Final Report RL 2017:10E
Final report RL 2017:10e Serious incident after take-off from Gothenburg/Landvetter Airport on 7 November 2016 involving SE-DSV an aeroplane of the model AVRO-RJ 100, operated by Braathens Regional Aviation AB. File no. L-112/16 7 December 2017 RL 2017:10e SHK investigates accidents and incidents from a safety perspective. Its investigations are aimed at preventing a similar event from occurring in the future, or limiting the effects of such an event. The investigations do not deal with issues of guilt, blame or liability for damages. The report is also available on SHK´s web site: www.havkom.se ISSN 1400-5719 This document is a translation of the original Swedish report. In case of discrepancies between this translation and the Swedish original text, the Swedish text shall prevail in the interpretation of the report. Photos and graphics in this report are protected by copyright. Unless other- wise noted, SHK is the owner of the intellectual property rights. With the exception of the SHK logo, and photos and graphics to which a third party holds copyright, this publication is licensed under a Creative Commons Attribution 2.5 Sweden license. This means that it is allowed to copy, distribute and adapt this publication provided that you attribute the work. The SHK preference is that you attribute this publication using the following wording: “Source: Swedish Accident Investigation Authority”. Where it is noted in the report that a third party holds copyright to photos, graphics or other material, that party’s consent is needed for reuse of the material. -
Evaluation and Flight Assessment of a Scale Glider
Dissertations and Theses 8-2014 Evaluation and Flight Assessment of a Scale Glider Alvydas Anthony Civinskas Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons Scholarly Commons Citation Civinskas, Alvydas Anthony, "Evaluation and Flight Assessment of a Scale Glider" (2014). Dissertations and Theses. 41. https://commons.erau.edu/edt/41 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Evaluation and Flight Assessment of a Scale Glider by Alvydas Anthony Civinskas A Thesis Submitted to the College of Engineering Department of Aerospace Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering Embry-Riddle Aeronautical University Daytona Beach, Florida August 2014 Acknowledgements The first person I would like to thank is my committee chair Dr. William Engblom for all the help, guidance, energy, and time he put into helping me. I would also like to thank Dr. Hever Moncayo for giving up his time, patience, and knowledge about flight dynamics and testing. Without them, this project would not have materialized nor survived the many bumps in the road. Secondly, I would like to thank the RC pilot Daniel Harrison for his time and effort in taking up the risky and stressful work of piloting. Individuals like Jordan Beckwith and Travis Billette cannot be forgotten for their numerous contributions in getting the motor test stand made and helping in creating the air data boom pod so that test data. -
Electrically Heated Composite Leading Edges for Aircraft Anti-Icing Applications”
UNIVERSITY OF NAPLES “FEDERICO II” PhD course in Aerospace, Naval and Quality Engineering PhD Thesis in Aerospace Engineering “ELECTRICALLY HEATED COMPOSITE LEADING EDGES FOR AIRCRAFT ANTI-ICING APPLICATIONS” by Francesco De Rosa 2010 To my girlfriend Tiziana for her patience and understanding precious and rare human virtues University of Naples Federico II Department of Aerospace Engineering DIAS PhD Thesis in Aerospace Engineering Author: F. De Rosa Tutor: Prof. G.P. Russo PhD course in Aerospace, Naval and Quality Engineering XXIII PhD course in Aerospace Engineering, 2008-2010 PhD course coordinator: Prof. A. Moccia ___________________________________________________________________________ Francesco De Rosa - Electrically Heated Composite Leading Edges for Aircraft Anti-Icing Applications 2 Abstract An investigation was conducted in the Aerospace Engineering Department (DIAS) at Federico II University of Naples aiming to evaluate the feasibility and the performance of an electrically heated composite leading edge for anti-icing and de-icing applications. A 283 [mm] chord NACA0012 airfoil prototype was designed, manufactured and equipped with an High Temperature composite leading edge with embedded Ni-Cr heating element. The heating element was fed by a DC power supply unit and the average power densities supplied to the leading edge were ranging 1.0 to 30.0 [kW m-2]. The present investigation focused on thermal tests experimentally performed under fixed icing conditions with zero AOA, Mach=0.2, total temperature of -20 [°C], liquid water content LWC=0.6 [g m-3] and average mean volume droplet diameter MVD=35 [µm]. These fixed conditions represented the top icing performance of the Icing Flow Facility (IFF) available at DIAS and therefore it has represented the “sizing design case” for the tested prototype. -
Ai2019-2 Aircraft Serious Incident Investigation Report
AI2019-2 AIRCRAFT SERIOUS INCIDENT INVESTIGATION REPORT ACADEMIC CORPORATE BODY JAPAN AVIATION ACADEMY J A 2 4 5 1 March 28, 2019 The objective of the investigation conducted by the Japan Transport Safety Board in accordance with the Act for Establishment of the Japan Transport Safety Board and with Annex 13 to the Convention on International Civil Aviation is to prevent future accidents and incidents. It is not the purpose of the investigation to apportion blame or liability. Kazuhiro Nakahashi Chairman Japan Transport Safety Board Note: This report is a translation of the Japanese original investigation report. The text in Japanese shall prevail in the interpretation of the report. AIRCRAFT SERIOUS INCIDENT INVESTIGATION REPORT INABILITY TO OPERATE DUE TO DAMAGE TO LANDING GEAR DURING FORCED LANDING ON A GRASSY FIELD ABOUT 3 KM SOUTHWEST OF NOTO AIRPORT, JAPAN AT ABOUT 15:00 JST, SEPTEMBER 26, 2018 ACADEMIC CORPORATE BODY JAPAN AVIATION ACADEMY VALENTIN TAIFUN 17EII (MOTOR GLIDER: TWO SEATER), JA2451 February 22, 2019 Adopted by the Japan Transport Safety Board Chairman Kazuhiro Nakahashi Member Toru Miyashita Member Toshiyuki Ishikawa Member Yuichi Marui Member Keiji Tanaka Member Miwa Nakanishi 1. PROCESS AND PROGRESS OF THE INVESTIGATION 1.1 Summary of On Wednesday, September 26, 2018, a Valentin Taifun 17EII (motor the Serious glider), registered JA2451, owned by Japan Aviation Academy, took off from Incident Noto Airport in order to make a test flight before the airworthiness inspection. During the flight, as causing trouble in its electric system, the aircraft tried to return to Noto Airport by gliding, but made a forced landing on a grassy field about 3 km short of Noto Airport, and sustained damage to the landing gear, therefore, the operation of the aircraft could not be continued. -
AMA FPG-9 Glider OBJECTIVES – Students Will Learn About the Basics of How Flight Works by Creating a Simple Foam Glider
AEX MARC_Layout 1 1/10/13 3:03 PM Page 18 activity two AMA FPG-9 Glider OBJECTIVES – Students will learn about the basics of how flight works by creating a simple foam glider. – Students will be introduced to concepts about air pressure, drag and how aircraft use control surfaces to climb, turn, and maintain stable flight. Activity Credit: Credit and permission to reprint – The Academy of Model Aeronautics (AMA) and Mr. Jack Reynolds, a volunteer at the National Model Aviation Museum, has graciously given the Civil Air Patrol permission to reprint the FPG-9 model plan and instructions here. More activities and suggestions for classroom use of model aircraft can be found by contacting the Academy of Model Aeronautics Education Committee at their website, buildandfly.com. MATERIALS • FPG-9 pattern • 9” foam plate • Scissors • Clear tape • Ink pen • Penny 18 AEX MARC_Layout 1 1/10/13 3:03 PM Page 19 BACKGROUND Control surfaces on an airplane help determine the movement of the airplane. The FPG-9 glider demonstrates how the elevons and the rudder work. Elevons are aircraft control surfaces that combine the functions of the elevator (used for pitch control) and the aileron (used for roll control). Thus, elevons at the wing trailing edge are used for pitch and roll control. They are frequently used on tailless aircraft such as flying wings. The rudder is the small moving section at the rear of the vertical stabilizer that is attached to the fixed sections by hinges. Because the rudder moves, it varies the amount of force generated by the tail surface and is used to generate and control the yawing (left and right) motion of the aircraft. -
Federal Aviation Administration, DOT § 61.45
Federal Aviation Administration, DOT Pt. 61 Vmcl Minimum Control Speed—Landing. 61.35 Knowledge test: Prerequisites and Vmu The speed at which the last main passing grades. landing gear leaves the ground. 61.37 Knowledge tests: Cheating or other VR Rotate Speed. unauthorized conduct. VS Stall Speed or minimum speed in the 61.39 Prerequisites for practical tests. stall. 61.41 Flight training received from flight WAT Weight, Altitude, Temperature. instructors not certificated by the FAA. 61.43 Practical tests: General procedures. END QPS REQUIREMENTS 61.45 Practical tests: Required aircraft and equipment. [Doc. No. FAA–2002–12461, 73 FR 26490, May 9, 61.47 Status of an examiner who is author- 2008] ized by the Administrator to conduct practical tests. PART 61—CERTIFICATION: PILOTS, 61.49 Retesting after failure. FLIGHT INSTRUCTORS, AND 61.51 Pilot logbooks. 61.52 Use of aeronautical experience ob- GROUND INSTRUCTORS tained in ultralight vehicles. 61.53 Prohibition on operations during med- SPECIAL FEDERAL AVIATION REGULATION NO. ical deficiency. 73 61.55 Second-in-command qualifications. SPECIAL FEDERAL AVIATION REGULATION NO. 61.56 Flight review. 100–2 61.57 Recent flight experience: Pilot in com- SPECIAL FEDERAL AVIATION REGULATION NO. mand. 118–2 61.58 Pilot-in-command proficiency check: Operation of an aircraft that requires Subpart A—General more than one pilot flight crewmember or is turbojet-powered. Sec. 61.59 Falsification, reproduction, or alter- 61.1 Applicability and definitions. ation of applications, certificates, 61.2 Exercise of Privilege. logbooks, reports, or records. 61.3 Requirement for certificates, ratings, 61.60 Change of address. -
November 2020
November 2020 e- Water Landing, Lake Tahoe, 2020 Presidents Message Editorial Safety Lessons from 2020 PASCO OGN Project Update 2020 PASCO Scholarship Update 2020 PASCO Flight Awards 2020 1 Statement of Purpose The purpose of this Corporation shall be to initiate, sponsor, promote, and carry out plans, policies, and activities that will further the growth and development of the soaring movement in Region 11 of the Soaring Society of America. Activities will be targeted at increasing the number of soaring pilots in the region in addition to the development of soaring pilots to promote safety of flight, training in the physiology of flight, cross country and high altitude soaring and the development of competition pilots and contest personnel at the local, regional, national and international level. Current dues are $25 annually from the month after receipt of payment. PASCO is a 501c(3) not for profit corporation and contributions are tax deductible. Consider PASCO in your charitable giving plans this year! WORLD WIDE WEB ADDRESSES - REGION 11 Soaring Society of America http://www.ssa.org Pacific Soaring Council http://www.pacificsoaring.org Air Sailing Inc. http://www.airsailing.org Bay Area Soaring Associates http://www.flybasa.org Central California Soaring Club http://www.soaravenal.com Las Vegas Valley Soaring Association http://www.lvvsa.org Minden Soaring Club http://www.mindensoaringclub.com/int2/ Northern California Soaring Assoc. http://www.norcalsoaring.org/ Silverado Soaring, Inc. http://www.silveradosoaring.org/ Hollister Soaring Center https://hollistersoaringcenter.com/ SoaringNV http://www.soaringnv.com/ Williams Soaring Center http://www.williamssoaring.com/ Valley Soaring Association http://www.valleysoaring.net/ Presidents Message It has been a challenging year for everyone for many reasons and, due to the ongoing health concerns, I am sorry to report that there will not be a PASCO safety seminar / awards banquet this winter. -
State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications
Dissertations and Theses Fall 2011 State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications Lori Anne Costello Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons Scholarly Commons Citation Costello, Lori Anne, "State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications" (2011). Dissertations and Theses. 37. https://commons.erau.edu/edt/37 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. STATE OF THE ART OF PILOTED ELECTRIC AIRPLANES, NASA’S CENTENNIAL CHALLENGE DATA AND FUNDAMENTAL DESIGN IMPLICATIONS by Lori Anne Costello A Thesis Submitted to the Graduate Studies Office in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering Embry-Riddle Aeronautical University Daytona Beach, Florida Fall 2011 1 Copyright by Lori Anne Costello 2011 All Rights Reserved 2 ACKNOWLEDGEMENTS This thesis is the culmination of two years of work on the Green Flight Challenge Eco-Eagle. The Eco- Eagle and this thesis would not have been possible without countless help and inspiration from friends and family. I would like to thank Dr. Anderson for giving me the opportunity to participate in Embry-Riddle’s Green Flight Challenge Team and for supporting me and the Eco-Eagle project. Without his guidance I would not have this paper and understood as much as I now do about electric airplanes. -
Slingsby T61F Venture T MK2 Motor Glider, G-BUGV
Slingsby T61F Venture T MK2 motor glider, G-BUGV AAIB Bulletin No: 2/99 Ref: EW/G98/11/10 Category: 1.3 Aircraft Type and Registration: Slingsby T61F Venture T MK2 motor glider, G-BUGV No & Type of Engines: 1 Rollason RS MK 2 piston engine Year of Manufacture: 1978 Date & Time (UTC): 21 November 1998 at 1035 hrs Location: Enstone Airport, Oxon Type of Flight: Private (Training) Persons on Board: Crew - 2 - Passengers - None Injuries: Crew - None - Passengers - N/A Nature of Damage: Damage to the aircraft's propeller Commander's Licence: Basic Commercial Pilot's Licence with Instrument Rating Commander's Age: 27 years Commander's Flying Experience: 604 hours (of which 102 were on type) Last 90 days - 124 hours Last 28 days - 36 hours Information Source: Aircraft Accident Report Form submitted by the pilot Before permitting a recently qualified member of the flying club to fly solo in crosswind conditions, the aircraft's commander decided to fly several circuits with him until he was satisfied with his ability to cope with the conditions. As the conditions were conducive to the formation of carburettor icing, with a temperature of +5°C and a dew point of +1.6°C, particular attention was paid to the use of carburettor heat during the run-up and immediately prior to take off. The engine reportedly performed normally and carburettor heat was used during the pre-landing downwind checks and again on base leg, with its selection maintained until after the glide approach and landing, in accordance with the normal operating procedure for this aircraft.