Lift Forces in External Flows

Total Page:16

File Type:pdf, Size:1020Kb

Lift Forces in External Flows • DECEMBER 2019 Lift Forces in External Flows Real External Flows – Lesson 3 Lift • We covered the drag component of the fluid force acting on an object, and now we will discuss its counterpart, lift. • Lift is produced by generating a difference in the pressure distribution on the “top” and “bottom” surfaces of the object. • The lift acts in the direction normal to the free-stream fluid motion. • The lift on an object is influenced primarily by its shape, including orientation of this shape with respect to the freestream flow direction. • Secondary influences include Reynolds number, Mach number, the Froude number (if free surface present, e.g., hydrofoil) and the surface roughness. • The pressure imbalance (between the top and bottom surfaces of the object) and lift can increase by changing the angle of attack (AoA) of the object such as an airfoil or by having a non-symmetric shape. Example of Unsteady Lift Around a Baseball • Rotation of the baseball produces a nonuniform pressure distribution across the ball ‐ clockwise rotation causes a floater. Flow ‐ counterclockwise rotation produces a sinker. • In soccer, you can introduce spin to induce the banana kick. Baseball Pitcher Throwing the Ball Soccer Player Kicking the Ball Importance of Lift • Like drag, the lift force can be either a benefit Slats or a hindrance depending on objectives of a Flaps fluid dynamics application. ‐ Lift on a wing of an airplane is essential for the airplane to fly. • Flaps and slats are added to a wing design to maintain lift when airplane reduces speed on its landing approach. ‐ Lift on a fast-driven car is undesirable as it Spoiler reduces wheel traction with the pavement and makes handling of the car more difficult and less safe. • Race cars are equipped with spoilers to counter (“spoil”) unfavorable uplift force. Lift-Generating Devices • Lift-generating devices are specifically designed for efficient and stable generation of lift force at a range of angles of attack . ‐ Angle of attack (AOA) is defined as the angle between the direction of upstream flow and the reference line of the body (usually cord of an airfoil). Flow direction • The most common lifting device is an aircraft wing. positive AoA • Airfoils are 2D sections of a wing which are commonly 푉∞ used for analyzing lift and drag in two dimensions. • Note that many shapes other than specially designed wings can create lift. Flow Separation ‐ A flat plate under a positive AOA will create lift, but it will be a poor choice for an aircraft wing because of highly unsteady flow due to separation at the leading edge even at modest AOAs, which will pose a challenge to controlling the hypothetical airplane. Symmetric vs. Cambered Airfoils and Wings • A symmetric airfoil cannot produce lift at AOA = 0 deg because pressure forces on both sides balance. A symmetric airfoil must be at positive AOA to generate lift. • A carefully designed non-symmetric airfoil can generate lift at AOA = 0 deg. The asymmetry, or Symmetric Airfoil camber, between the two surfaces of the airfoil leads to unequal pressure distribution resulting in non-zero lift force. • A wing is complexly designed to optimize lift and minimize drag, and different sections can have different airfoil profiles. Cambered Airfoil ‐ The stream of air is split into two by the airfoil’s leading edge. More air is deflected downwards under the airfoil thus increasing upward force, and less air flow over the top airfoil’s shape resulting in decrease of the downward force. The net effect is the upward lift force on an airfoil. Example of Cambered Airfoils — NACA Series • NACA airfoils are probably one of the most studied family of airfoils. • Originally developed by the National Advisory Committee for Aeronautics (NACA) in the 1930s, NACA airfoils since then have been a subject of numerous experimental and numerical studies, and a wealth of data exists for validations of computational predictive methodologies. • The shape of NACA four-digit series is described by four numbers MPXX ‐ 1st digit (M) – maximum camber as percentage of the cords. ‐ 2nd digit (P) – distance of maximum camber from the leading edge in tens of percents of the cord. ‐ 3rd and 4th digits (XX) – airfoil thickness as percentage of the cords. • M = P = 0 corresponds to a symmetric foil NACA 2412 M XX camber line P Lift Coefficient vs. Angle of Attack • For thin airfoils, lift is proportional to the AOA for small angles within ~10 degrees of AOA. • As the AOA reaches a critical value, there is a sudden drop 2 in lift, called wing stall. NACA 0012 ‐ Stall is caused by the flow separation which changes flow dynamics on the suction side of the wing. 1.5 ‐ Stall also is characterized by an increase in drag due to sudden Wing Stall onset of a large wake (refer to wake-induced drag in the L 1 previous lesson). C ‐ Predictions of stall are different because of highly unsteady separated flow, and normally either experimental techniques or high-fidelity CFD methods are used to analyze wing behavior in 0.5 near-stall conditions. • Drag also increases with the increase in AOA, primarily due 0 to the increase on the wing frontal area and thickening of 0 5 10 15 20 25 the boundary layer on the suction side. Angle of Attack α Lift Coefficient vs. Angle of Attack AoA – 0o o AoA – 4 • Increasing the angle of attack causes the flow to separate from the top surface of the airfoil. The separation occurs for angles of attack greater than 5° or 6°. • Increasing the frontal area of the airfoil increases the drag AoA – 8o AoA – 12o coefficient. • Increasing the angle of attack eventually causes total separation and the airfoil is essentially a blunt object. Lift-to-Drag Ratio 0.03 • The lift-to-drag ratio is the lift created by an NACA 0012 object divided by its drag. This is an indication of 0.025 the aerodynamic efficiency of an airplane. 0.02 • One of major objectives of aircraft design is higher lift-to-drag ratios. 푫 0.015 푪 0.01 • Note that high-performance wings generate lift which is on the order of two orders of magnitude higher than their drag. 0.005 0 −2 −1 0 1 2 푪푳 Inviscid Methods for Lift Predictions • Unlike drag, which cannot be accounted for unless fluid viscosity is included in the analysis, lift can actually be predicted with a certain degree of accuracy using the inviscid flow assumption. • The original methodology was proposed independently by German mathematician Maritn Kutta and Russian scientist Nikolay Joukowski, and subsequently received the name Kutta-Joukowski theorem. Kutta-Joukowski Theorem • Assuming viscous effects are of minor importance in generating lift, the lift force acting on a thin airfoil is: 퐹푙푖푓푡 = න 푝푏 − 푝푡 푑푥 • Applying Bernoulli’s theorem, and assuming velocities on top and bottom sides are nearly equal to freestream, the force becomes: 휌 푝푏 1 2 푝푡 1 2 Ԧ + 푢 = + 푢 퐹 = න 푢푡 + 푢푏 푢푡 − 푢푏 푑푥 ≈ 휌푉∞ න 푢푡 − 푢푏 푑푥 = −휌푉∞ ර 푢 ∙ 푑푙 휌 2 푏 휌 2 푡 2 ≈ 2푉∞ circulation Γ • Kutta-Joukowski Theorem: Any 2D body in relative motion to the ambient fluid with velocity 푉∞ has a lift force, normal to 푉∞, of magnitude 퐹 = −휌푉∞Γ Lattice Vortex Method • This theorization gave rise to a family of vortex methods for estimating lift. In these methods a lifting surface is approximated by a series of vortex panels, and each vortex panel is represented by local circulation Γ푗. • Then velocity at a point, expressed in terms of the velocity potential, is: 푁 where coefficient 퐴푖푗 represent the induced ∇휑푖 = ෍ 퐴푖푗 Γ푗 flow on panel 푖 by the vortex on panel 푗. 푗=1 • Applying zero-normal-velocity on each panel results in a system of liner equations for unknown Γ푗 푁 푁 ෍ 퐴푖푗 Γ푗 푉∞ + ෍ 퐴푖푗 Γ푗 ∙ 푛 = 0 푗=1 푗=1 • Local force for individual panels are found using Kutta-Joukowski theorem, and they summed up to provide the total force: 푁 Ԧ 퐹푖 = 휌Γ푗(푉∞ + 푢푖) × 푙푖 퐹 = ෍ 퐹푖 푗=1 Inviscid Methods for Lift Predictions • Vortex methods are quick and relatively accurate in predicting lift, and they are widely used as low-fidelity methods for preliminary conceptual designs of lifting bodies. NACA 4412 3 2 1 퐿 퐶 −20 −10 10 20 −1 Vortex Method −2 Wind Tunnel Angle of attack High Lift Devices: Slats & Flaps • Slats are fitted to the leading edge of an aircraft wing to delay flow separation ‐ This allows aircraft to operate at higher AoAs. ‐ The flow between the slat and wing reduces the adverse pressure Slats gradient preventing flow separation at higher angles of attack Flaps compared to the airfoil case. ‐ The flow eventually separates at larger angles of attack. • Flaps are aerodynamics structures fitted towards the trailing edge of the wing. ‐ Flaps can be controlled independently to increase the camber of the wing. This leads to the generation of larger lift force at the same angle of attack. High Lift Devices: Slats & Flaps • Large commercial aircraft can have more than one flap on their wings. These are called multielement trailing edge flaps. AoA – 20.18 degrees • Deploying the slats and flaps of an aircraft not only increases Re = 3.52E6 the generated lift force but also adversely increases the fluid Mach Number – 0.197 drag. Large commercial aircraft use this increase in drag force to their advantage to land large commercial aircraft. • Depending on the flight phase, we can have three different configurations of slats and flaps. ‐ Take-off configuration ‐ Cruise configuration ‐ Landing configuration Flight Phases: Take-off, Cruise, and Landing • Take-off: Slat and flaps are partially deployed to increase the lift force on the aircraft.
Recommended publications
  • Chapter 4: Immersed Body Flow [Pp
    MECH 3492 Fluid Mechanics and Applications Univ. of Manitoba Fall Term, 2017 Chapter 4: Immersed Body Flow [pp. 445-459 (8e), or 374-386 (9e)] Dr. Bing-Chen Wang Dept. of Mechanical Engineering Univ. of Manitoba, Winnipeg, MB, R3T 5V6 When a viscous fluid flow passes a solid body (fully-immersed in the fluid), the body experiences a net force, F, which can be decomposed into two components: a drag force F , which is parallel to the flow direction, and • D a lift force F , which is perpendicular to the flow direction. • L The drag coefficient CD and lift coefficient CL are defined as follows: FD FL CD = 1 2 and CL = 1 2 , (112) 2 ρU A 2 ρU Ap respectively. Here, U is the free-stream velocity, A is the “wetted area” (total surface area in contact with fluid), and Ap is the “planform area” (maximum projected area of an object such as a wing). In the remainder of this section, we focus our attention on the drag forces. As discussed previously, there are two types of drag forces acting on a solid body immersed in a viscous flow: friction drag (also called “viscous drag”), due to the wall friction shear stress exerted on the • surface of a solid body; pressure drag (also called “form drag”), due to the difference in the pressure exerted on the front • and rear surfaces of a solid body. The friction drag and pressure drag on a finite immersed body are defined as FD,vis = τwdA and FD, pres = pdA , (113) ZA ZA Streamwise component respectively.
    [Show full text]
  • Enhancing General Aviation Aircraft Safety with Supplemental Angle of Attack Systems
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2015 Enhancing General Aviation Aircraft aS fety With Supplemental Angle Of Attack Systems David E. Kugler Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Kugler, David E., "Enhancing General Aviation Aircraft aS fety With Supplemental Angle Of Attack Systems" (2015). Theses and Dissertations. 1793. https://commons.und.edu/theses/1793 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. ENHANCING GENERAL AVIATION AIRCRAFT SAFETY WITH SUPPLEMENTAL ANGLE OF ATTACK SYSTEMS by David E. Kugler Bachelor of Science, United States Air Force Academy, 1983 Master of Arts, University of North Dakota, 1991 Master of Science, University of North Dakota, 2011 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota May 2015 Copyright 2015 David E. Kugler ii PERMISSION Title Enhancing General Aviation Aircraft Safety With Supplemental Angle of Attack Systems Department Aviation Degree Doctor of Philosophy In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies.
    [Show full text]
  • Sailing for Performance
    SD2706 Sailing for Performance Objective: Learn to calculate the performance of sailing boats Today: Sailplan aerodynamics Recap User input: Rig dimensions ‣ P,E,J,I,LPG,BAD Hull offset file Lines Processing Program, LPP: ‣ Example.bri LPP_for_VPP.m rigdata Hydrostatic calculations Loading condition ‣ GZdata,V,LOA,BMAX,KG,LCB, hulldata ‣ WK,LCG LCF,AWP,BWL,TC,CM,D,CP,LW, T,LCBfpp,LCFfpp Keel geometry ‣ TK,C Solve equilibrium State variables: Environmental variables: solve_Netwon.m iterative ‣ VS,HEEL ‣ TWS,TWA ‣ 2-dim Netwon-Raphson iterative method Hydrodynamics Aerodynamics calc_hydro.m calc_aero.m VS,HEEL dF,dM Canoe body viscous drag Lift ‣ RFC ‣ CL Residuals Viscous drag Residuary drag calc_residuals_Newton.m ‣ RR + dRRH ‣ CD ‣ dF = FAX + FHX (FORCE) Keel fin drag ‣ dM = MH + MR (MOMENT) Induced drag ‣ RF ‣ CDi Centre of effort Centre of effort ‣ CEH ‣ CEA FH,CEH FA,CEA The rig As we see it Sail plan ≈ Mainsail + Jib (or genoa) + Spinnaker The sail plan is defined by: IMSYC-66 P Mainsail hoist [m] P E Boom leech length [m] BAD Boom above deck [m] I I Height of fore triangle [m] J Base of fore triangle [m] LPG Perpendicular of jib [m] CEA CEA Centre of effort [m] R Reef factor [-] J E LPG BAD D Sailplan modelling What is the purpose of the sails on our yacht? To maximize boat speed on a given course in a given wind strength ‣ Max driving force, within our available righting moment Since: We seek: Fx (Thrust vs Resistance) ‣ Driving force, FAx Fy (Side forces, Sails vs. Keel) ‣ Heeling force, FAy (Mx (Heeling-righting moment)) ‣ Heeling arm, CAE Aerodynamics of sails A sail is: ‣ a foil with very small thickness and large camber, ‣ with flexible geometry, ‣ usually operating together with another sail ‣ and operating at a large variety of angles of attack ‣ Environment L D V Each vertical section is a differently cambered thin foil Aerodynamics of sails TWIST due to e.g.
    [Show full text]
  • Aerodynamic Characteristics of Naca 0012 Airfoil Section at Different Angles of Attack
    AERODYNAMIC CHARACTERISTICS OF NACA 0012 AIRFOIL SECTION AT DIFFERENT ANGLES OF ATTACK SUPREETH NARASIMHAMURTHY GRADUATE STUDENT 1327291 Table of Contents 1) Introduction………………………………………………………………………………………………………………………………………...1 2) Methodology……………………………………………………………………………………………………………………………………….3 3) Results……………………………………………………………………………………………………………………………………………......5 4) Conclusion …………………………………………………………………………………………………………………………………………..9 5) References…………………………………………………………………………………………………………………………………………10 List of Figures Figure 1: Basic nomenclature of an airfoil………………………………………………………………………………………………...1 Figure 2: Computational domain………………………………………………………………………………………………………………4 Figure 3: Static Pressure Contours for different angles of attack……………………………………………………………..5 Figure 4: Velocity Magnitude Contours for different angles of attack………………………………………………………………………7 Fig 5: Variation of Cl and Cd with alpha……………………………………………………………………………………………………8 Figure 6: Lift Coefficient and Drag Coefficient Ratio for Re = 50000…………………………………………………………8 List of Tables Table 1: Lift and Drag coefficients as calculated from lift and drag forces from formulae given above……7 Introduction It is a fact of common experience that a body in motion through a fluid experience a resultant force which, in most cases is mainly a resistance to the motion. A class of body exists, However for which the component of the resultant force normal to the direction to the motion is many time greater than the component resisting the motion, and the possibility of the flight of an airplane depends on the use of the body of this class for wing structure. Airfoil is such an aerodynamic shape that when it moves through air, the air is split and passes above and below the wing. The wing’s upper surface is shaped so the air rushing over the top speeds up and stretches out. This decreases the air pressure above the wing. The air flowing below the wing moves in a comparatively straighter line, so its speed and air pressure remain the same.
    [Show full text]
  • Aerodynamics of High-Performance Wing Sails
    Aerodynamics of High-Performance Wing Sails J. otto Scherer^ Some of tfie primary requirements for tiie design of wing sails are discussed. In particular, ttie requirements for maximizing thrust when sailing to windward and tacking downwind are presented. The results of water channel tests on six sail section shapes are also presented. These test results Include the data for the double-slotted flapped wing sail designed by David Hubbard for A. F. Dl Mauro's lYRU "C" class catamaran Patient Lady II. Introduction The propulsion system is probably the single most neglect­ ed area of yacht design. The conventional triangular "soft" sails, while simple, practical, and traditional, are a long way from being aerodynamically desirable. The aerodynamic driving force of the sails is, of course, just as large and just as important as the hydrodynamic resistance of the hull. Yet, designers will go to great lengths to fair hull lines and tank test hull shapes, while simply drawing a triangle on the plans to define the sails. There is no question in my mind that the application of the wealth of available airfoil technology will yield enormous gains in yacht performance when applied to sail design. Re­ cent years have seen the application of some of this technolo­ gy in the form of wing sails on the lYRU "C" class catamar­ ans. In this paper, I will review some of the aerodynamic re­ quirements of yacht sails which have led to the development of the wing sails. For purposes of discussion, we can divide sail require­ ments into three points of sailing: • Upwind and close reaching.
    [Show full text]
  • Wing Load and Angle of Attack Identification by Integrating Optical
    applied sciences Article Wing Load and Angle of Attack Identification by Integrating Optical Fiber Sensing and Neural Network Approach in Wind Tunnel Test Daichi Wada * and Masato Tamayama Aeronautical Technology Directorate, Japan Aerospace Exploration Agency, 6-13-1 Osawa, Mitaka-shi, Tokyo 181-0015, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-50-3362-5566 Received: 18 March 2019; Accepted: 2 April 2019; Published: 8 April 2019 Abstract: The load and angle of attack (AoA) for wing structures are critical parameters to be monitored for efficient operation of an aircraft. This study presents wing load and AoA identification techniques by integrating an optical fiber sensing technique and a neural network approach. We developed a 3.6-m semi-spanned wing model with eight flaps and bonded two optical fibers with 30 fiber Bragg gratings (FBGs) each along the main and aft spars. Using this model in a wind tunnel test, we demonstrate load and AoA identification through a neural network approach. We input the FBG data and the eight flap angles to a neural network and output estimated load distributions on the eight wing segments. Thereafter, we identify the AoA by using the estimated load distributions and the flap angles through another neural network. This multi-neural-network process requires only the FBG and flap angle data to be measured. We successfully identified the load distributions with an error range of −1.5–1.4 N and a standard deviation of 0.57 N. The AoA was also successfully identified with error ranges of −1.03–0.46◦ and a standard deviation of 0.38◦.
    [Show full text]
  • Chapter 4: Immersed Body Flow [Pp
    MECH 3492 Fluid Mechanics and Applications Univ. of Manitoba Fall Term, 2017 Chapter 4: Immersed Body Flow [pp. 445-459 (8e), or 374-386 (9e)] Dr. Bing-Chen Wang Dept. of Mechanical Engineering Univ. of Manitoba, Winnipeg, MB, R3T 5V6 When a viscous fluid flow passes a solid body (fully-immersed in the fluid), the body experiences a net force, F, which can be decomposed into two components: a drag force F , which is parallel to the flow direction, and • D a lift force F , which is perpendicular to the flow direction. • L The drag coefficient CD and lift coefficient CL are defined as follows: FD FL CD = 1 2 and CL = 1 2 , (112) 2 ρU A 2 ρU Ap respectively. Here, U is the free-stream velocity, A is the “wetted area” (total surface area in contact with fluid), and Ap is the “planform area” (maximum projected area of an object such as a wing). In the remainder of this section, we focus our attention on the drag forces. As discussed previously, there are two types of drag forces acting on a solid body immersed in a viscous flow: friction drag (also called “viscous drag”), due to the wall friction shear stress exerted on the • surface of a solid body; pressure drag (also called “form drag”), due to the difference in the pressure exerted on the front • and rear surfaces of a solid body. The friction drag and pressure drag on a finite immersed body are defined as FD,vis = τwdA and FD, pres = pdA , (113) ZA ZA Streamwise component respectively.
    [Show full text]
  • Upwind Sail Aerodynamics : a RANS Numerical Investigation Validated with Wind Tunnel Pressure Measurements I.M Viola, Patrick Bot, M
    Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements I.M Viola, Patrick Bot, M. Riotte To cite this version: I.M Viola, Patrick Bot, M. Riotte. Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements. International Journal of Heat and Fluid Flow, Elsevier, 2012, 39, pp.90-101. 10.1016/j.ijheatfluidflow.2012.10.004. hal-01071323 HAL Id: hal-01071323 https://hal.archives-ouvertes.fr/hal-01071323 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. I.M. Viola, P. Bot, M. Riotte Upwind Sail Aerodynamics: a RANS numerical investigation validated with wind tunnel pressure measurements International Journal of Heat and Fluid Flow 39 (2013) 90–101 http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.10.004 Keywords: sail aerodynamics, CFD, RANS, yacht, laminar separation bubble, viscous drag. Abstract The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using Computational Fluid Dynamics. A Reynolds-averaged Navier- Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where the pressure distributions on the sails were measured.
    [Show full text]
  • Airfoil Boundary Layer Separation Prediction [Pdf]
    Airfoil Boundary Layer Separation Prediction A project present to The Faculty of the Department of Aerospace Engineering San Jose State University in partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering By Kartavya Patel May 2014 approved by Dr. Nikos Mourtos Faculty Advisor ABSTRACT Airfoil Boundary Layer Separation Prediction by Kartavya Patel This project features a MatLab complied program that predicts airfoil boundary layer separation. The Airfoil Boundary Layer Separation program uses NACA 4 series, 5 series and custom coordinates to generate the airfoil geometry. It then uses Hess-Smith Panel Method to generate the pressure distribution. It will use the pressure distribution profile to display the boundary layer separation point based on Falkner-Skan Solution, Stratford’s Criterion for Laminar Boundary Layer and Stratford’s Criterion for Turbulent Boundary Layer. From comparison to Xfoil, it can be determined that for low angle of attacks the laminar flow separation point can be predicted from Stratford’s LBL criterion and the turbulent flow separation point can be predicted from Stratford’s TBL criterion. For high angle of attacks, the flow separation point can be predicted from Falkner-Skan Solution. The program requires MatLab Compiler Runtime version 8.1 (MCR) which can be downloaded free at http://www.mathworks.com/products/compiler/mcr/ . ACKNOWLEDGEMENTS I would like to thank Dr. Nikos Mourtos for his support and guidance throughout this project. I would also like to thank Hai Le, Tommy Blackwell and Ian Dupzyk for their contribution in previous project “Determination of Flow Separation Point on NACA Airfoils at Different Angles of Attack by Coupling the Solution of Panel Method with Three Different Separation Criteria”.
    [Show full text]
  • Turbulent Boundary Layer Separation (Nick Laws)
    NICK LAWS TURBULENT BOUNDARY LAYER SEPARATION TURBULENT BOUNDARY LAYER SEPARATION OUTLINE ▸ What we know about Boundary Layers from the physics ▸ What the physics tell us about separation ▸ Characteristics of turbulent separation ▸ Characteristics of turbulent reattachment TURBULENT BOUNDARY LAYER SEPARATION TURBULENT VS. LAMINAR BOUNDARY LAYERS ▸ Greater momentum transport creates a greater du/dy near the wall and therefore greater wall stress for turbulent B.L.s ▸ Turbulent B.L.s less sensitive to adverse pressure gradients because more momentum is near the wall ▸ Blunt bodies have lower pressure drag with separated turbulent B.L. vs. separated laminar TURBULENT BOUNDARY LAYER SEPARATION TURBULENT VS. LAMINAR BOUNDARY LAYERS Kundu fig 9.16 Kundu fig 9.21 laminar separation bubbles: natural ‘trip wire’ TURBULENT BOUNDARY LAYER SEPARATION BOUNDARY LAYER ASSUMPTIONS ▸ Simplify the Navier Stokes equations ▸ 2D, steady, fully developed, Re -> infinity, plus assumptions ▸ Parabolic - only depend on upstream history TURBULENT BOUNDARY LAYER SEPARATION BOUNDARY LAYER ASSUMPTIONS TURBULENT BOUNDARY LAYER SEPARATION PHYSICAL PRINCIPLES OF FLOW SEPARATION ▸ What we can infer from the physics TURBULENT BOUNDARY LAYER SEPARATION BOUNDARY LAYER ASSUMPTIONS ▸ Eliminate the pressure gradient TURBULENT BOUNDARY LAYER SEPARATION WHERE THE BOUNDARY LAYER EQUATIONS GET US ▸ Boundary conditions necessary to solve: ▸ Inlet velocity profile u0(y) ▸ u=v=0 @ y = 0 ▸ Ue(x) or Pe(x) ▸ Turbulent addition: relationship for turbulent stress ▸ Note: BL equ.s break down
    [Show full text]
  • Computational and Experimental Study on Performance of Sails of a Yacht
    Available online at www.sciencedirect.com SCIENCE DIRECT" EIMQINEERING ELSEVIER Ocean Engineering 33 (2006) 1322-1342 www.elsevier.com/locate/oceaneng Computational and experimental study on performance of sails of a yacht Jaehoon Yoo Hyoung Tae Kim Marine Transportation Systems Researcli Division, Korea Ocean Research and Development Institute, 171 Jang-dong, Yuseong-gu, Daejeon 305-343, South Korea ^ Department of Naval Architecture and Ocean Engineering, Chungnam National Un iversity, 220 Gung-doiig, Yuseong-gu, Daejeon 305-764, South Korea Received 1 February 2005; accepted 4 August 2005 Available online 10 November 2005 Abstract It is important to understand fiow characteristics and performances of sails for both sailors and designers who want to have efhcient thrust of yacht. In this paper the viscous fiows around sail-Hke rigid wings, which are similar to main and jib sails of a 30 feet sloop, are calculated using a CFD tool. Lift, drag and thrust forces are estimated for various conditions of gap distance between the two sails and the center of effort ofthe sail system are obtaiaed. Wind tunnel experiments are also caiTied out to measure aerodynamic forces acting on the sail system and to validate the computation. It is found that the combination of two sails produces the hft force larger than the sum of that produced separately by each sail and the gap distance between the two sails is an important factor to determine total hft and thrust. © 2005 Elsevier Ltd. AU rights reserved. Keywords: Sailing yacht; Interaction; Gap distance; CFD; RANS; Wind tunnel 1. Introduction The saihng performance of a yacht depends on the balance of hydro- and aero-dynamic forces acting on the huU and on the sails.
    [Show full text]
  • Studies of Mast Section Aerodynamics by Arvel Gentry
    Studies of Mast Section Aerodynamics By Arvel Gentry Proceedings of the 7th AIAA Symposium on the Aero/Hydronautics of Sailing January 31, 1976 Long Beach, California Abstract This paper summarizes the studies that were conducted with the objective of obtaining a mast-section shape with improved aerodynamic flow properties for use on the 12-Meter Courageous. TheDecember project 1999 consisted of a theoretical study defining the basic aerodynamics of the mast-mainsail combination followed by both analytical and experimental studies of various mast-section shapes. A new 12-Meter mast-section shape evolved from these studies that demonstrated significantly improved airflow patterns around the mast and mainsail when compared directly with the conventional 12-Meter elliptical section. This new mast shape was used in constructing the mast for Courageous used in the successful 1974 defense of the America's cup against the Australian challenger Southern Cross. 1. Introduction The mast has always been thought of as being an Bill Ficker, who skippered Intrepid in the 1970 defense, was undesirable but necessary appendage on a sailboat. It slated to be the skipper of the new aluminum Courageous. holds the sails up but contributes considerable drag and Ficker and David Pedrick (S&S project engineer on disturbs the airflow over the mainsail so that its efficiency Courageous) wondered if a new mast-section shape might is greatly reduced. This popular belief has led to a number lead to improved boat performance. This paper describes of different approaches in improving the overall efficiency the work done in attempting to answer that question. of a sailing rig.
    [Show full text]