Aerodynamic Characteristics of Naca 0012 Airfoil Section at Different Angles of Attack
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enhancing General Aviation Aircraft Safety with Supplemental Angle of Attack Systems
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2015 Enhancing General Aviation Aircraft aS fety With Supplemental Angle Of Attack Systems David E. Kugler Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Kugler, David E., "Enhancing General Aviation Aircraft aS fety With Supplemental Angle Of Attack Systems" (2015). Theses and Dissertations. 1793. https://commons.und.edu/theses/1793 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. ENHANCING GENERAL AVIATION AIRCRAFT SAFETY WITH SUPPLEMENTAL ANGLE OF ATTACK SYSTEMS by David E. Kugler Bachelor of Science, United States Air Force Academy, 1983 Master of Arts, University of North Dakota, 1991 Master of Science, University of North Dakota, 2011 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota May 2015 Copyright 2015 David E. Kugler ii PERMISSION Title Enhancing General Aviation Aircraft Safety With Supplemental Angle of Attack Systems Department Aviation Degree Doctor of Philosophy In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies. -
Sailing for Performance
SD2706 Sailing for Performance Objective: Learn to calculate the performance of sailing boats Today: Sailplan aerodynamics Recap User input: Rig dimensions ‣ P,E,J,I,LPG,BAD Hull offset file Lines Processing Program, LPP: ‣ Example.bri LPP_for_VPP.m rigdata Hydrostatic calculations Loading condition ‣ GZdata,V,LOA,BMAX,KG,LCB, hulldata ‣ WK,LCG LCF,AWP,BWL,TC,CM,D,CP,LW, T,LCBfpp,LCFfpp Keel geometry ‣ TK,C Solve equilibrium State variables: Environmental variables: solve_Netwon.m iterative ‣ VS,HEEL ‣ TWS,TWA ‣ 2-dim Netwon-Raphson iterative method Hydrodynamics Aerodynamics calc_hydro.m calc_aero.m VS,HEEL dF,dM Canoe body viscous drag Lift ‣ RFC ‣ CL Residuals Viscous drag Residuary drag calc_residuals_Newton.m ‣ RR + dRRH ‣ CD ‣ dF = FAX + FHX (FORCE) Keel fin drag ‣ dM = MH + MR (MOMENT) Induced drag ‣ RF ‣ CDi Centre of effort Centre of effort ‣ CEH ‣ CEA FH,CEH FA,CEA The rig As we see it Sail plan ≈ Mainsail + Jib (or genoa) + Spinnaker The sail plan is defined by: IMSYC-66 P Mainsail hoist [m] P E Boom leech length [m] BAD Boom above deck [m] I I Height of fore triangle [m] J Base of fore triangle [m] LPG Perpendicular of jib [m] CEA CEA Centre of effort [m] R Reef factor [-] J E LPG BAD D Sailplan modelling What is the purpose of the sails on our yacht? To maximize boat speed on a given course in a given wind strength ‣ Max driving force, within our available righting moment Since: We seek: Fx (Thrust vs Resistance) ‣ Driving force, FAx Fy (Side forces, Sails vs. Keel) ‣ Heeling force, FAy (Mx (Heeling-righting moment)) ‣ Heeling arm, CAE Aerodynamics of sails A sail is: ‣ a foil with very small thickness and large camber, ‣ with flexible geometry, ‣ usually operating together with another sail ‣ and operating at a large variety of angles of attack ‣ Environment L D V Each vertical section is a differently cambered thin foil Aerodynamics of sails TWIST due to e.g. -
Aerodynamics of High-Performance Wing Sails
Aerodynamics of High-Performance Wing Sails J. otto Scherer^ Some of tfie primary requirements for tiie design of wing sails are discussed. In particular, ttie requirements for maximizing thrust when sailing to windward and tacking downwind are presented. The results of water channel tests on six sail section shapes are also presented. These test results Include the data for the double-slotted flapped wing sail designed by David Hubbard for A. F. Dl Mauro's lYRU "C" class catamaran Patient Lady II. Introduction The propulsion system is probably the single most neglect ed area of yacht design. The conventional triangular "soft" sails, while simple, practical, and traditional, are a long way from being aerodynamically desirable. The aerodynamic driving force of the sails is, of course, just as large and just as important as the hydrodynamic resistance of the hull. Yet, designers will go to great lengths to fair hull lines and tank test hull shapes, while simply drawing a triangle on the plans to define the sails. There is no question in my mind that the application of the wealth of available airfoil technology will yield enormous gains in yacht performance when applied to sail design. Re cent years have seen the application of some of this technolo gy in the form of wing sails on the lYRU "C" class catamar ans. In this paper, I will review some of the aerodynamic re quirements of yacht sails which have led to the development of the wing sails. For purposes of discussion, we can divide sail require ments into three points of sailing: • Upwind and close reaching. -
Wing Load and Angle of Attack Identification by Integrating Optical
applied sciences Article Wing Load and Angle of Attack Identification by Integrating Optical Fiber Sensing and Neural Network Approach in Wind Tunnel Test Daichi Wada * and Masato Tamayama Aeronautical Technology Directorate, Japan Aerospace Exploration Agency, 6-13-1 Osawa, Mitaka-shi, Tokyo 181-0015, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-50-3362-5566 Received: 18 March 2019; Accepted: 2 April 2019; Published: 8 April 2019 Abstract: The load and angle of attack (AoA) for wing structures are critical parameters to be monitored for efficient operation of an aircraft. This study presents wing load and AoA identification techniques by integrating an optical fiber sensing technique and a neural network approach. We developed a 3.6-m semi-spanned wing model with eight flaps and bonded two optical fibers with 30 fiber Bragg gratings (FBGs) each along the main and aft spars. Using this model in a wind tunnel test, we demonstrate load and AoA identification through a neural network approach. We input the FBG data and the eight flap angles to a neural network and output estimated load distributions on the eight wing segments. Thereafter, we identify the AoA by using the estimated load distributions and the flap angles through another neural network. This multi-neural-network process requires only the FBG and flap angle data to be measured. We successfully identified the load distributions with an error range of −1.5–1.4 N and a standard deviation of 0.57 N. The AoA was also successfully identified with error ranges of −1.03–0.46◦ and a standard deviation of 0.38◦. -
Upwind Sail Aerodynamics : a RANS Numerical Investigation Validated with Wind Tunnel Pressure Measurements I.M Viola, Patrick Bot, M
Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements I.M Viola, Patrick Bot, M. Riotte To cite this version: I.M Viola, Patrick Bot, M. Riotte. Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements. International Journal of Heat and Fluid Flow, Elsevier, 2012, 39, pp.90-101. 10.1016/j.ijheatfluidflow.2012.10.004. hal-01071323 HAL Id: hal-01071323 https://hal.archives-ouvertes.fr/hal-01071323 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. I.M. Viola, P. Bot, M. Riotte Upwind Sail Aerodynamics: a RANS numerical investigation validated with wind tunnel pressure measurements International Journal of Heat and Fluid Flow 39 (2013) 90–101 http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.10.004 Keywords: sail aerodynamics, CFD, RANS, yacht, laminar separation bubble, viscous drag. Abstract The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using Computational Fluid Dynamics. A Reynolds-averaged Navier- Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where the pressure distributions on the sails were measured. -
Evaluation of Drag and Lift in the Internal Flow Field of a Dual Rotor Spinning Unit Via CFD
MATEC Web of Conferences 104, 02005 (2017) DOI: 10.1051/ matecconf/201710402005 IC4M & ICDES 2017 Evaluation of drag and lift in the internal flow field of a dual rotor spinning unit via CFD Nicholus Tayari Akankwasa1, Huiting Lin and Jun Wang1,2,a 1College of Textile, Donghua University, Shanghai, 201620, China 2The Key Lab of Textile Science and Technology, Ministry of Education, Shanghai 201620, China Abstract. In the present study, we evaluate the drag and lift magnitude in the new dual-feed rotor spinning unit using computational fluid dynamics technique. We adopt theoretical and numerical approach based on FLUENT to investigate the influence of new design on the drag and lift in the rotor interior. Results reveal that the drag and lift inside the rotor of the proposed model are reduced by 60-80% and 50-66% respectively as compared to the conventional unit. The velocity and pressure profiles become evenly distributed in the dual- feed rotor interior as opposed to the conventional rotor spinning unit and this modification is anticipated to improve fiber configurations. This phenomenon can be utilized to further optimize the rotor spinning unit and other wall-bounded engineering problems. 1 Introduction In the fluid dynamics concept, previous studies have focused more on the turbulent viscosity, flocculation, eddies and vortices among other flow properties. Growing interest in drag reduction in flows has increased in the recent years. Principally, the drag and lift phenomenon has been widely applied in solving aerodynamics and aeronautics problems. For wall-bounded flows, it is important to note that drag and lift has a significant impact on the processing of fibers and polymers. -
Lift Forces in External Flows
• DECEMBER 2019 Lift Forces in External Flows Real External Flows – Lesson 3 Lift • We covered the drag component of the fluid force acting on an object, and now we will discuss its counterpart, lift. • Lift is produced by generating a difference in the pressure distribution on the “top” and “bottom” surfaces of the object. • The lift acts in the direction normal to the free-stream fluid motion. • The lift on an object is influenced primarily by its shape, including orientation of this shape with respect to the freestream flow direction. • Secondary influences include Reynolds number, Mach number, the Froude number (if free surface present, e.g., hydrofoil) and the surface roughness. • The pressure imbalance (between the top and bottom surfaces of the object) and lift can increase by changing the angle of attack (AoA) of the object such as an airfoil or by having a non-symmetric shape. Example of Unsteady Lift Around a Baseball • Rotation of the baseball produces a nonuniform pressure distribution across the ball ‐ clockwise rotation causes a floater. Flow ‐ counterclockwise rotation produces a sinker. • In soccer, you can introduce spin to induce the banana kick. Baseball Pitcher Throwing the Ball Soccer Player Kicking the Ball Importance of Lift • Like drag, the lift force can be either a benefit Slats or a hindrance depending on objectives of a Flaps fluid dynamics application. ‐ Lift on a wing of an airplane is essential for the airplane to fly. • Flaps and slats are added to a wing design to maintain lift when airplane reduces speed on its landing approach. ‐ Lift on a fast-driven car is undesirable as it Spoiler reduces wheel traction with the pavement and makes handling of the car more difficult and less safe. -
New Satellite Drag Modeling Capabilities
44th AIAA Aerospace Sciences Meeting and Exhibit AIAA 2006-470 9 - 12 January 2006, Reno, Nevada New Satellite Drag M odeling Capabilities Frank A. Marcos * Air Force Research Laboratory , Hanscom AFB, MA 01731 -3010 This paper reviews the operational impacts of satellite drag, the historical and current capabilities, and requirements to deal with evo lving higher accuracy requirements. Modeling of satellite drag variations showed little improvement from the 1960’s to the late 1990’s. After three decades of essentially no quantitative progress, the problem is being vigorously and fruitfully attacked on several fronts. This century has already shown significant advances in measurements, models, solar and geomagnetic proxies and the application of data assimilation techniques to operational applications. While thermospheric measurements have been historica lly extremely sparse, new data sets are now available from intense ground -based radar tracking of satellite orbital decay and from satellite -borne accelerometers and remote sensors. These data provide global coverage over a wide range of thermospheric alti tudes. Operational assimilative empirical models, utilizing the orbital drag data, have reduced model errors by almost a factor of two. Together with evolving new solar and geomagnetic inputs, the satellite -borne sensors support development of advanced ope rational assimilative first principles forecast models. We look forward to the time when satellite drag is no longer the largest error source in determining or bits of low altitude satellites. I. Introduction Aerodynamic drag continues to be the larg est uncertainty in precision orbit determin ation for satellites operating below about 600 km. Drag errors impact many aerospace missions including satellite orbit location and prediction, collision avoidance warnings, reentry prediction, lifetime estimates and attitude dynamics. -
SM11188 Standard Modification Page : 1 of 6 Issue 1 Compiled : S Brown Approved : F Donaldson
Mod No. SM11188 Standard Modification Page : 1 of 6 Issue 1 Compiled : S Brown Approved : F Donaldson TITLE : Main Wing Trailing Edge Flow Straighteners AIRCRAFT TYPE : Vari-Eze Mod Type: Retro-fit 1. Introduction The Rutan Aircraft Factory approved the (later to be mandatory) installation of leading edge vortilons on all Vari-Ezes in the October 1984 edition of the Canard Pusher ( CP 42 pages 5/6) to improve the swept main wing stall margins, increase visibility over the nose on final approach and enable reduced approach speeds without the risk of low speed wing rock or deep stall. The vortilons generate vortices over the main wing at high angles of attack that reduce lift-losing span-wise flow. There is negligible speed or drag penalty Flow straighteners positioned on the trailing edge of the swept main wing further reduce span wise flow at high angles of attack. It has been demonstrated that the addition of trailing edge flow straighteners enable the wing to produce more lift at a given angle of attack enabling lower approach speeds with no loss of view over the nose. The result is a reduced sink rate for a given airspeed and an increased margin between main wing and canard stall speeds. 2. Parts List Qty Part No. Description Source 2 SM11188-1 Outboard Fence Manufacture 2 SM11188-2 Middle Fence Manufacture 2 SM11188-3 Inboard Fence Manufacture White RTV Silicone Hardware store Flocked Cotton / BID / Aircraft Spruce Epoxy Resin List of related drawings / photos Drawing No. Title / Description Issue SM11188-D1 Drawing of Flow Straighteners dimensions SM11188-D2 Drawing of installation on main wing and fitting detail SM11188-D3 Photograph of Gary Hertzler’s fences installation on N99VE 3. -
Review of Research on Angle-Of-Attack Indicator Effectiveness
NASA/TM–2014-218514 Review of Research on Angle-of-Attack Indicator Effectiveness Lisa R. Le Vie Langley Research Center, Hampton, Virginia August 2014 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and NASA scientific and technical information (STI) technical conferences, symposia, seminars, program plays a key part in helping NASA maintain or other meetings sponsored or co- this important role. sponsored by NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information Officer. technical, or historical information from It collects, organizes, provides for archiving, and NASA programs, projects, and missions, disseminates NASA’s STI. The NASA STI often concerned with subjects having program provides access to the NASA Aeronautics substantial public interest. and Space Database and its public interface, the NASA Technical Report Server, thus providing one • TECHNICAL TRANSLATION. of the largest collections of aeronautical and space English-language translations of foreign science STI in the world. Results are published in scientific and technical material pertinent to both non-NASA channels and by NASA in the NASA’s mission. NASA STI Report Series, which includes the following report types: Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, • TECHNICAL PUBLICATION. Reports of providing information desk and personal search completed research or a major significant phase support, and enabling data exchange services. of research that present the results of NASA Programs and include extensive data or For more information about the NASA STI theoretical analysis. -
MATH 240: HOMEWORK #4 1. the Drag Equation Suppose That An
MATH 240: HOMEWORK #4 DUE IN FLORA'S MAILBOX BY NOON ON NOV. 25. 1. The drag equation Suppose that an object of mass m is falling toward the earth, and that it has height h(t) above the surface at time t. Newton's law says that (1.1) Force = mass × acceleration: Two kinds of forces act on the object: A. A downward force of gravity having magnitude mg, where g is the gravitation constant. B. The drag force FD due to wind resistance. This acts in the opposite direction to the velocity h0(t), and its magnitude is 0 2 (1.2) jFDj = cA(t)h (t) where c > 0 is constant and A(t) is the cross sectional area of the object at time t. Notice that if A(t) is constant, the drag force goes up as the square of the velocity. This is due to the fact that the energy imparted by each molecule of air hit during the fall is proportion to velocity, and the number of molecules hit per second is also proportional to velocity. 1. Show that if we assume h(t) is decreasing with time (corresponding to falling toward the earth), (1.1) becomes (1.3) −mg + cA(t)h0(t)2 = mh00(t) In particular, explain the signs of the terms on the left. 2. Suppose now that the object is a parachutist with a circular parachute. They open the parachute so that it's radius is b=pjh0(t)j at time t for some constant b > 0. Are they making the parachute larger or smaller as the velocity decreases in magnitude? What is A(t) in this case, and what differental equation does (1.3) become? Note: Be careful to make sure that the signs of terms in the differential equation agree with the fact that the drag force acts in the opposite direction to the velocity of the parachutist. -
Information to Users
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zed) Road, Ann Aitx>r MI 48106-1346 USA 313/761-4700 800/521-0600 A NONLINEAR AIRCRAFT SIMULATION OF ICE CONTAMINATED TAILPLANE STALL DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Dale W.