09 Stability and Control
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Robust Fly-By-Wire Under Horizontal Tail Damage
Robust Fly-by-Wire under Horizontal Tail Damage by Zinhle Dlamini Thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Electronic Engineering in the Faculty of Engineering at Stellenbosch University Department of Electrical and Electronic Engineering, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa. Supervisor: Prof T Jones December 2016 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: . Copyright © 2016 Stellenbosch University All rights reserved. i Stellenbosch University https://scholar.sun.ac.za Abstract Aircraft damage modelling was conducted on a Boeing 747 to examine the effects of asymmetric horizontal stabiliser loss on the flight dynamics of a commercial fly-by-Wire (FBW) aircraft. Change in static stability was investigated by analysing how the static margin is reduced as a function of percentage tail loss. It is proven that contrary to intuition, the aircraft is longitudinally stable with 40% horizontal tail removed. The short period mode is significantly changed and to a lesser extent the Dutch roll mode is affected through lateral coupling. Longitudinal and lateral trimmability of the damaged aircraft are analysed by comparing the tail-loss-induced roll, pitch, and yaw moments to available actuator force from control surfaces. -
How Planes Fly ! Marymoor R/C Club, Redmond, WA! AMA Charter 1610!
How Planes Fly ! Marymoor R/C Club, Redmond, WA! AMA Charter 1610! Version 2.0 – Nov 2018! Page 1! Controls, Aerodynamics, and Stability • Elevator, Rudder, Aileron! • Wing planform! • Lift and Wing Design! • Wing section (airfoil)! • Tail group (empennage)! • Center of lift, center of gravity! • Characteristics of a “speed stable” airplane! Page 2! Ailerons, Elevators, and Rudder! Control Roll, Pitch, and Yaw! Ailerons! • Roll, left and right! Elevators! • Pitch, up and down) ! Rudder! • Yaw, left and right! Page 3! Radio Controls! Elevator! Power! (Pitch)! Rudder! Ailerons! (yaw)! (roll)! Trim Controls! Page 4! Wing Planform! • Rectangular (best for trainers)! • Tapered! • Elliptical! • Swept! • Delta! Page 5! Lift! Lift! Lift comes from:! • Angle of Attack! Drag! • Wing Area! Direction of flight! • Airfoil Shape ! • Airspeed! Weight! In level flight, Lift = Weight! Page 6! Lift is greatly reduced when the Wing Stalls! • Stall can occur when:! • Too slow! • Pulling too much up elevator! • Steep bank angle! • Any combination of these three! • Occurs at critical angle of attack, about 15 degrees ! • Trainers have gentle stall characteristics. The warbird you want to fly someday might not.! • One wing can stall before the other, resulting in a sharp roll, and if it continues, a spin. A good trainer won’t do this.! Page 7! Airfoil Shapes! Flat bottom airfoil! “Semi-symmetrical” airfoil! • much camber (mid-line is curved)! • has some camber ! • Often used on trainers and Cubs! • sometimes used on trainers! • Good at low speeds! • Good all-around -
The Effects of Design, Manufacturing Processes, and Operations Management on the Assembly of Aircraft Composite Structure by Robert Mark Coleman
The Effects of Design, Manufacturing Processes, and Operations Management on the Assembly of Aircraft Composite Structure by Robert Mark Coleman B.S. Civil Engineering Duke University, 1984 Submitted to the Sloan School of Management and the Department of Aeronautics and Astronautics in Partial Fulfillment of the Requirements for the Degrees of Master of Science in Management and Master of Science in Aeronautics and Astronautics in conjuction with the LEADERS FOR MANUFACTURING PROGRAM at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1991 © 1991, MASSACHUSETTS INSTITUTE OF TECHNOLOGY ALL RIGHTS RESERVED Signature of Author_ .• May, 1991 Certified by Stephen C. Graves Professor of Management Science Certified by A/roJ , Paul A. Lagace Profes s Aeron icand Astronautics Accepted by Jeffrey A. Barks Associate Dean aster's and Bachelor's Programs I.. Jloan School of Management Accepted by - No U Professor Harold Y. Wachman Chairman, Department Graduate Committee Aero Department of Aeronautics and Astronautics MASSACHiUSEITS INSTITUTE OFN Fr1 1'9n.nry JUJN 12: 1991 1 UiBRARIES The Effects of Design, Manufacturing Processes, and Operations Management on the Assembly of Aircraft Composite Structure by Robert Mark Coleman Submitted to the Sloan School of Management and the Department of Aeronautics and Astronautics in Partial Fulfillment of the Requirements for the Degrees of Master of Science in Management and Master of Science in Aeronautics and Astronautics June 1991 ABSTRACT Composite materials have many characteristics well-suited for aerospace applications. Advanced graphite/epoxy composites are especially favored due to their high stiffness, strength-to-weight ratios, and resistance to fatigue and corrosion. Research emphasis to date has been on the design and fabrication of composite detail parts, with considerably less attention given to the cost and quality issues in their subsequent assembly. -
Fly-By-Wire - Wikipedia, the Free Encyclopedia 11-8-20 下午5:33 Fly-By-Wire from Wikipedia, the Free Encyclopedia
Fly-by-wire - Wikipedia, the free encyclopedia 11-8-20 下午5:33 Fly-by-wire From Wikipedia, the free encyclopedia Fly-by-wire (FBW) is a system that replaces the Fly-by-wire conventional manual flight controls of an aircraft with an electronic interface. The movements of flight controls are converted to electronic signals transmitted by wires (hence the fly-by-wire term), and flight control computers determine how to move the actuators at each control surface to provide the ordered response. The fly-by-wire system also allows automatic signals sent by the aircraft's computers to perform functions without the pilot's input, as in systems that automatically help stabilize the aircraft.[1] Contents Green colored flight control wiring of a test aircraft 1 Development 1.1 Basic operation 1.1.1 Command 1.1.2 Automatic Stability Systems 1.2 Safety and redundancy 1.3 Weight saving 1.4 History 2 Analog systems 3 Digital systems 3.1 Applications 3.2 Legislation 3.3 Redundancy 3.4 Airbus/Boeing 4 Engine digital control 5 Further developments 5.1 Fly-by-optics 5.2 Power-by-wire 5.3 Fly-by-wireless 5.4 Intelligent Flight Control System 6 See also 7 References 8 External links Development http://en.wikipedia.org/wiki/Fly-by-wire Page 1 of 9 Fly-by-wire - Wikipedia, the free encyclopedia 11-8-20 下午5:33 Mechanical and hydro-mechanical flight control systems are relatively heavy and require careful routing of flight control cables through the aircraft by systems of pulleys, cranks, tension cables and hydraulic pipes. -
Glider Handbook, Chapter 2: Components and Systems
Chapter 2 Components and Systems Introduction Although gliders come in an array of shapes and sizes, the basic design features of most gliders are fundamentally the same. All gliders conform to the aerodynamic principles that make flight possible. When air flows over the wings of a glider, the wings produce a force called lift that allows the aircraft to stay aloft. Glider wings are designed to produce maximum lift with minimum drag. 2-1 Glider Design With each generation of new materials and development and improvements in aerodynamics, the performance of gliders The earlier gliders were made mainly of wood with metal has increased. One measure of performance is glide ratio. A fastenings, stays, and control cables. Subsequent designs glide ratio of 30:1 means that in smooth air a glider can travel led to a fuselage made of fabric-covered steel tubing forward 30 feet while only losing 1 foot of altitude. Glide glued to wood and fabric wings for lightness and strength. ratio is discussed further in Chapter 5, Glider Performance. New materials, such as carbon fiber, fiberglass, glass reinforced plastic (GRP), and Kevlar® are now being used Due to the critical role that aerodynamic efficiency plays in to developed stronger and lighter gliders. Modern gliders the performance of a glider, gliders often have aerodynamic are usually designed by computer-aided software to increase features seldom found in other aircraft. The wings of a modern performance. The first glider to use fiberglass extensively racing glider have a specially designed low-drag laminar flow was the Akaflieg Stuttgart FS-24 Phönix, which first flew airfoil. -
Aerosport Modeling Rudder Trim
AEROSPORT MODELING RUDDER TRIM Segment: MOBILITY PARTS PROVIDERS | Engineering companies Application vertical: MOBILITY AND TRANSPORTATION | AircraFt Application type: FINAL PART: Short runs THE CUSTOMER FINAL PART: SHORT RUNS AEROSPORT MODELING RUDDER TRIM COMPANY DESCRIPTION APPLICATION TRADITIONAL MANUFACTURING Some planes are equipped with small tabs on the control surfaces (e.g., rudder trim Assembly of 26 different machined and standard parts Aerosport Modeling & Design was established in tabs, aileron tabs, elevator tabs) so the pilot can make minute adjustments to pitch, September 1996, and since then, they have worked to yaw, and roll to keep the airplane flying a true, clean line through the air. This produce the highest-possible quality prototypes, improves speed by reducing drag from the larger, constant movements of the full appearance models, working models, and machined rudder, aileron, and elevator. parts, and to meet or exceed client expectations. The company strives to be seen as a partner to their Many airplanes also have rudder and/or aileron trim systems. On some, the rudder clients and an extension of their design and trim tab is rigid but adjustable on the ground by bending: It is angled slightly to the development team, not just a supplier of prototyping left (when viewed from behind) to lessen the need for the pilot to push the rudder services. pedal constantly in order to overcome the left-turning tendencies of many prop- driven aircraft. Some aircraft have hinged rudder trim tabs that the pilot can adjust Aerosport Products spun off from sister company in flight. Aerosport Modeling & Design in 2009 to develop products for experimental aircraft, the first of which When a servo tab is employed, it is moved into the slipstream opposite of the was the RV-10 Carbon Fiber Instrument Panel. -
Anti-Servo/Trim Tab Drive Pin Replacement
Anti-servo/trim tab drive pin replacement Classification - Mandatory Applicability All Europa aircraft (stage1 kits supplied prior to 1st December 2000) Compliance Inspection - before the next flight Incorporation - Within the next 15 flying hours Parts pro vided 1 x TP16P tab drive pin, 1 x TP16S tab drive pin In tro duc tion An incident occurred to the company demonstrator aircraft G-GBXS where one of the TP16 anti-servo/ trim tab drive pins became detached due to the plate it was welded to fracturing. The aircraft was on the ground when the failure occurred, probably during engine starting, and the resulting behaviour of the aircraft in flight was to pitch nose up. The pitch up force was containable by the pilot and a circuit and landing was successfully flown. The fracture was established to have been caused by fatigue due to repeated bending of TP16’s plate. The bending that this plate had been subjected to was likely to have been in excess of normal due to vibrations caused by an engine starting problem. The aircraft had completed 426 hours of flight which included 895 take-off and landings. It is important that the cause of unusual vibrations, for example engine starting problems or an unbalanced propeller, are resolved at the earliest opportunity. Samples of the TP16 component were taken from six aircraft which had flight times up to approximately 600 hours, and analysis revealed no cracking. However, since there has been a failure of part of the aircraft control system, it is necessary that the tab pin drive plates are replaced by a stronger design than the original. -
Static and Dynamic Performance of a Morphing Trailing Edge Concept with High-Damping Elastomeric Skin
aerospace Article Static and Dynamic Performance of a Morphing Trailing Edge Concept with High-Damping Elastomeric Skin Maurizio Arena 1,*, Christof Nagel 2, Rosario Pecora 1,* , Oliver Schorsch 2 , Antonio Concilio 3 and Ignazio Dimino 3 1 Department of Industrial Engineering—Aerospace Division, University of Naples “Federico II”, Via Claudio, 21, 80125 Napoli (NA), Italy 2 Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Wiener Straße 12, D-28359 Bremen, Germany; [email protected] (C.N.); [email protected] (O.S.) 3 Smart Structures Division Via Maiorise, The Italian Aerospace Research Centre, CIRA, 81043 Capua (CE), Italy; [email protected] (A.C.); [email protected] (I.D.) * Correspondence: [email protected] (M.A.); [email protected] (R.P.); Tel.: +39-081-768-3573 (M.A. & R.P.) Received: 18 November 2018; Accepted: 14 February 2019; Published: 19 February 2019 Abstract: Nature has many striking examples of adaptive structures: the emulation of birds’ flight is the true challenge of a morphing wing. The integration of increasingly innovative technologies, such as reliable kinematic mechanisms, embedded servo-actuation and smart materials systems, enables us to realize new structural systems fully compatible with the more and more stringent airworthiness requirements. In this paper, the authors describe the characterization of an adaptive structure, representative of a wing trailing edge, consisting of a finger-like rib mechanism with a highly deformable skin, which comprises both soft and stiff parts. The morphing skin is able to follow the trailing edge movement under repeated cycles, while being stiff enough to preserve its shape under aerodynamic loads and adequately pliable to minimize the actuation power required for morphing. -
Actuator Saturation Analysis of a Fly-By-Wire Control System for a Delta-Canard Aircraft
DEGREE PROJECT IN VEHICLE ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Actuator Saturation Analysis of a Fly-By-Wire Control System for a Delta-Canard Aircraft ERIK LJUDÉN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Author Erik Ljudén <[email protected]> School of Engineering Sciences KTH Royal Institute of Technology Place Linköping, Sweden Saab Examiner Ulf Ringertz Stockholm KTH Royal Institute of Technology Supervisor Peter Jason Linköping Saab Abstract Actuator saturation is a well studied subject regarding control theory. However, little research exist regarding aircraft behavior during actuator saturation. This paper aims to identify flight mechanical parameters that can be useful when analyzing actuator saturation. The studied aircraft is an unstable delta-canard aircraft. By varying the aircraft’s center-of- gravity and applying a square wave input in pitch, saturated actuators have been found and investigated closer using moment coefficients as well as other flight mechanical parameters. The studied flight mechanical parameters has proven to be highly relevant when analyzing actuator saturation, and a simple connection between saturated actuators and moment coefficients has been found. One can for example look for sudden changes in the moment coefficients during saturated actuators in order to find potentially dangerous flight cases. In addition, the studied parameters can be used for robustness analysis, but needs to be further investigated. Lastly, the studied pitch square wave input shows no risk of aircraft departure with saturated elevons during flight, provided non-saturated canards, and that the free-stream velocity is high enough to be flyable. i Sammanfattning Styrdonsmättning är ett välstuderat ämne inom kontrollteorin. -
The «Active Aeroelasticity» Concept – the Main Stages and Prospects of Development
THE «ACTIVE AEROELASTICITY» CONCEPT – THE MAIN STAGES AND PROSPECTS OF DEVELOPMENT 1 G.A. Amiryants, 2 A.V. Grigorev, 3 Y.A. Nayko, 4 S.E. Paryshev, 1 Main scientific researcher, 2 Junior Scientific researcher, 3 Scientific researcher, 4 Head of department Central Aero-hydrodynamic Institute – TsAGI, Russia Keywords: active aeroelasticity, multidisciplinary investigations, elastically scaled model From the very beginning of static aeroelasticity supervision by A.Z. Rekstin and research it’s important part was searching for V.G. Mikeladze. However, the common rational ways of providing airplanes’ safety drawback of these control surfaces too was from aileron reversal and divergence as well as negative influence of structural elasticity on providing weight efficiency and high these surfaces’ effectiveness. aerodynamic performance of airplanes. The studies by Ja.M.. Parchomovsky, G.A. Amiryants, D.D. Evseev, S.Ja. Sirota, One of the most promising directions of aircraft V.A. Tranovich, L.A. Tshai, Ju.F. Jaremchuk design worldwide today is related to the term of performed in 1950-1960 in TsAGI “exploitation of structural elasticity” or the systematically demonstrated the possibilities to “active aerolasticity” concept. The early 1960s increase control surfaces effectiveness (and faced the urgent need to increase stiffness of solving other static aeroelasticity problems) thin low-aspect-ratio wings of supersonic M-50 using “traditional” approaches: rational increase and R-020 airplanes to diminish negative of wing stiffness (by changing wing skin influence of structural elastic deformations on thickness distribution, airfoil thickness, roll control. As it turned out, even with the choosing the position of stiffness axis, wing optimal increase of structural stiffness to solve spar stiffness), variation of position and shape severe aileron reversal problem the increase of of conventional ailerons and rudders, the airframe weight was unacceptable. -
Stabilizer PLUS 7-Channel Receiver Essential Instructions
Lemon RX Stabilizer PLUS Receiver – Essential Instructions v1.1 Lemon RX Stabilizer PLUS 7-Channel Receiver Essential Instructions Contents Introducing the Lemon StabPLUS ............................................................................................................ 2 Functions ........................................................................................................................................................ 2 Transmitter Requirements .............................................................................................................................. 2 Servos and Power Sources .............................................................................................................................. 3 Setting up the StabPLUS ......................................................................................................................... 4 Installation ...................................................................................................................................................... 4 Binding ............................................................................................................................................................ 5 Setting Failsafe ................................................................................................................................................ 5 Test Flying .............................................................................................................................................. 6 Preparing -
Glider Accidents and Prevention
Glider Accidents – Statistics & Prevention Larry Suter / John Scott Northern California Soaring Association & Air Sailing Gliderport Glider Accident Summary Data from 2008 – 2013 172 accidents reported to NTSB SSF categorized into three Types 70% 60% 50% 40% Fatal 30% Non Fatal 20% 10% 0% Takeoff Free Flight Landing What fact is painfully obvious? Takeoff 70% 60% 50% 40% Fatal 30% Non Fatal 20% 10% 0% Takeoff Free Flight Landing Approximately 20% of all accidents occur during the takeoff phase Video of a canopy coming open on takeoff. According to the SSF opening canopies and deploying spoilers are more likely to cause a takeoff accident than a rope break or any other type PT3 event. (PT3 = Premature Termination of the Tow) Canopy and spoiler accidents are preventable! They occur because the pilot failed to properly complete their Pre-Takeoff checklist. Low altitude emergency training tends to focus on rope breaks. In reality rope breaks are a small fraction of Takeoff accidents. Deployed Spoilers There is no reason that deployed spoilers should cause an accident. Just close them! Rudder Waggle --- A potentially dangerous signal Two Landmark accidents; same scenario (2006 NV, 2011 MD) Pilots reacted too quickly w/o thinking and pulled release. (Panic? Misinterpretation?) Had insufficient altitude to return to airport. (120’, 200’) ASG Tow Pilot Manual discourages this signal below 1000’ AGL; Rudder deflections and AD coupling. Opening Canopy There is no reason that an opening canopy should cause an accident! Effects of an Opening