The B-1B Bomber and Options for Hancements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Clipped Wing: an Assessment of the Effectiveness of the B-21
University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 1-1-2016 A Clipped Wing: An Assessment of the Effectiveness of the B-21 Aidan Thomas Hughes University of Denver Follow this and additional works at: https://digitalcommons.du.edu/etd Part of the International Relations Commons Recommended Citation Hughes, Aidan Thomas, "A Clipped Wing: An Assessment of the Effectiveness of the B-21" (2016). Electronic Theses and Dissertations. 1124. https://digitalcommons.du.edu/etd/1124 This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ DU. For more information, please contact [email protected],[email protected]. A Clipped Wing: An Assessment of the Effectiveness of the B-21 _________________________ A Thesis Presented to the Faculty of the Josef Korbel School of International Studies University of Denver _________________________ In Partial Fulfilment of the Requirements for the Degree Master of Arts _________________________ by Aidan Thomas Hughes June 2016 Advisor: Professor T. Farer Author: Aidan Thomas Hughes Title: A Clipped Wing: An Assessment of the Effectiveness of the B-21 Advisor: Professor T. Farer Degree Date: June 2016 Abstract This thesis examines the effectiveness of the Northrop Grumman B-21 long range strike bomber in advancing the ability of U.S. policy makers to achieve national security objectives. The operational value of the B-21 is assessed through analysing its probable role in four hypothetical combat scenarios, and the relative effectiveness of the B-21 is measured alongside the potential performance of alternative systems. -
Conceptual Design Study of a Hydrogen Powered Ultra Large Cargo Aircraft
Conceptual Design Study of a Hydrogen Powered Ultra Large Cargo Aircraft R.A.J. Jansen University of Technology Technology of University Delft Delft Conceptual Design Study of a Hydrogen Powered Ultra Large Cargo Aircraft Towards a competitive and sustainable alternative of maritime transport by R.A.J. Jansen to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Tuesday January 10, 2017 at 9:00 AM. Student number: 4036093 Thesis registration: 109#17#MT#FPP Project duration: January 11, 2016 – January 10, 2017 Thesis committee: Dr. ir. G. La Rocca, TU Delft, supervisor Dr. A. Gangoli Rao, TU Delft Dr. ir. H. G. Visser, TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Acknowledgements This report presents the research performed to complete the master track Flight Performance and Propulsion at the Technical University of Delft. I am really grateful to the people who supported me both during the master thesis as well as during the rest of my student life. First of all, I would like to thank my supervisor, Gianfranco La Rocca. He supported and motivated me during the entire graduation project and provided valuable feedback during all the status meeting we had. I would also like to thank the exam committee, Arvind Gangoli Rao and Dries Visser, for their flexibility and time to assess my work. Moreover, I would like to thank Ali Elham for his advice throughout the project as well as during the green light meeting. Next to these people, I owe also thanks to the fellow students in room 2.44 for both their advice, as well as the enjoyable chats during the lunch and coffee breaks. -
Airframe Integration
Aerodynamic Design of the Hybrid Wing Body Propulsion- Airframe Integration May-Fun Liou1, Hyoungjin Kim2, ByungJoon Lee3, and Meng-Sing Liou4 NASA Glenn Research Center, Cleveland, Ohio, 44135 Abstract A hybrid wingbody (HWB) concept is being considered by NASA as a potential subsonic transport aircraft that meets aerodynamic, fuel, emission, and noise goals in the time frame of the 2030s. While the concept promises advantages over conventional wing-and-tube aircraft, it poses unknowns and risks, thus requiring in-depth and broad assessments. Specifically, the configuration entails a tight integration of the airframe and propulsion geometries; the aerodynamic impact has to be carefully evaluated. With the propulsion nacelle installed on the (upper) body, the lift and drag are affected by the mutual interference effects between the airframe and nacelle. The static margin for longitudinal stability is also adversely changed. We develop a design approach in which the integrated geometry of airframe (HWB) and propulsion is accounted for simultaneously in a simple algebraic manner, via parameterization of the planform and airfoils at control sections of the wingbody. In this paper, we present the design of a 300-passenger transport that employs distributed electric fans for propulsion. The trim for stability is achieved through the use of the wingtip twist angle. The geometric shape variables are determined through the adjoint optimization method by minimizing the drag while subject to lift, pitch moment, and geometry constraints. The design results clearly show the influence on the aerodynamic characteristics of the installed nacelle and trimming for stability. A drag minimization with the trim constraint yields a reduction of 10 counts in the drag coefficient. -
Aircraft, Defense & Space Domain Business Plan
Aircraft, Defense & Space Domain Business Plan Keisuke Hisakazu Naohiko HIROSE MIZUTANI ABE Senior Vice President, President, Senior Vice President, Head of Commercial Aviation Mitsubishi Aircraft Corporation Head of Integrated Defense Systems & Space Systems June 12, 2017 © 2017 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. Contents 1. Business Overview 2. Commercial Aviation Systems Segment 2-1. Overview 2-2. FY2016 Summary & FY2017 Outlook 2-3. FY2017 Business Strategy 3. MRJ Business 3-1. Overview 3-2. Development Activities 3-3. Implementation of Development Schedule 4. Integrated Defense & Space Systems Segment 4-1. Overview 4-2. FY2016 Summary & FY2017 Outlook 4-3. FY2017 Business Strategy © 2017 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 1 1-1. Overview (Domain Reorganization) The Aircraft, Defense & Space domain was created as a result of MHI’s domain reorganization, carried out 2017年4月の全社ドメイン再編・事業再配置により、航空・防衛・宇宙ドメインを発足。 in April 2017.直轄による育成基盤の早期形成と収益安定を図る。 Under the CEO’s direct oversight, the new domain is pursuing prompt formation of a strong developmentCEO foundation and stable earnings. [Until March 2017] [From April 2017] Energy & Environment Power Systems Business Group company Mitsubishi Aircraft MRJ Thermal Power Nuclear Power Thermal Power Compressors Corporation Renewable Energy Chemical Plants Aero Engines Nuclear Power Commercial Aviation & Renewable Energy Transportation Systems Commercial / Cruise Land Transportation Ships Systems Industry & Infrastructure Material Handling Commercial Aircraft -
The Evolution & Impact of US Aircraft In
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Honors Theses, University of Nebraska-Lincoln Honors Program Fall 10-2019 Take Off to Superiority: The Evolution & Impact of U.S. Aircraft in War Lane Weidner University of Nebraska - Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/honorstheses Part of the Aviation Commons, and the Military History Commons Weidner, Lane, "Take Off to Superiority: The Evolution & Impact of U.S. Aircraft in War" (2019). Honors Theses, University of Nebraska-Lincoln. 184. https://digitalcommons.unl.edu/honorstheses/184 This Thesis is brought to you for free and open access by the Honors Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Honors Theses, University of Nebraska-Lincoln by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. TAKE OFF TO SUPERIORITY: THE EVOLUTION & IMPACT OF U.S. AIRCRAFT IN WAR An Undergraduate Honors Thesis Submitted in Partial fulfillment of University Honors Program Requirements University of Nebraska-Lincoln by Lane M. Weidner, Bachelor of Science Major: Mathematics Minor: Aerospace Studies College of Arts & Sciences Oct 24, 2019 Faculty Mentor: USAF Captain Nicole Beebe B.S. Social Psychology M.Ed. Human Resources, E-Learning ii Abstract Military aviation has become a staple in the way wars are fought, and ultimately, won. This research paper takes a look at the ways that aviation has evolved and impacted wars across the U.S. history timeline. With a brief introduction of early flight and the modern concept of an aircraft, this article then delves into World Wars I and II, along with the Cold, Korean, Vietnam, and Gulf Wars. -
B-52, the “Stratofortress”
B-52, The “StratoFortress” Aerodynamics and Performance Build-up Service • Crew – Upper Deck • 2 Pilots • Electronic Warfare Officer • Latest Model – Lower Deck – B-52H • Bombardier – Last B-52H delivered in 1962 • Radar Navigator • Transonic Bomber – Nuclear Payload capable • Deployment – 20 Cruise Missiles – 102 B-52H’s • AGM-86C – 192 B-52G’s • AGM-12 Have Nap • AGM-84 Harpoon – All in Service of USAF as – Up to 50,000 lb ordnance far as we can tell payload – $53.4 million each [1998$] – 51 bombs of 750-lb class Additional Payload • In addition to attack ordnance, B-52H carries: – Norden APQ-156 Multi-mode targeting radar – Terrain Avoidance Radar – Electro-Optical Viewing System (EVS) • Infra-red and low light display used in conjunction with terrain avoidance sensors to navigate in bad weather at low altitudes, or with the nuclear windscreen shielding in place – ECM • ALT-28 jammer • ALQ-117, -115, -172 deception jammers – Optional Stinger Air to Air missiles in aft gun-turret Weight Breakdown • Max TOGW – 505,000 lb • Fuel Weight – 299,434 lb internal – 9,114 lb on non-jettisonable under- wing pylons • Ordnance Weight – 50,000 lb • Airframe operational empty – 146452 lb Basic Geometry • Length: 160.9 ft • Tail Plane • Wing – Horizontal Tail Span: – Span: 185 ft 55.625 ft – Horizontal Tail Plan Area: – Area: 4000 ft^2 ~1004 ft^2 – Root Chord: ~34.5 ft – Mean Chord: 21.62 ft – Vertical Tail Height: – Taper Ratio: 0.37 24.339 ft – Leading Edge Sweep: – Vertical Tail Plan Area: 35° ~451 ft^2 – AR: 8.56 Wing Geometry • Wing Root: 14% -
Design Study of a Supersonic Business Jet with Variable Sweep Wings
27TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES DESIGN STUDY OF A SUPERSONIC BUSINESS JET WITH VARIABLE SWEEP WINGS E.Jesse, J.Dijkstra ADSE b.v. Keywords: swing wing, supersonic, business jet, variable sweepback Abstract A design study for a supersonic business jet with variable sweep wings is presented. A comparison with a fixed wing design with the same technology level shows the fundamental differences. It is concluded that a variable sweep design will show worthwhile advantages over fixed wing solutions. 1 General Introduction Fig. 1 Artist impression variable sweep design AD1104 In the EU 6th framework project HISAC (High Speed AirCraft) technologies have been studied to enable the design and development of an 2 The HISAC project environmentally acceptable Small Supersonic The HISAC project is a 6th framework project Business Jet (SSBJ). In this context a for the European Union to investigate the conceptual design with a variable sweep wing technical feasibility of an environmentally has been developed by ADSE, with support acceptable small size supersonic transport from Sukhoi, Dassault Aviation, TsAGI, NLR aircraft. With a budget of 27.5 M€ and 37 and DLR. The objective of this was to assess the partners in 13 countries this 4 year effort value of such a configuration for a possible combined much of the European industry and future SSBJ programme, and to identify critical knowledge centres. design and certification areas should such a configuration prove to be advantageous. To provide a framework for the different studies and investigations foreseen in the HISAC This paper presents the resulting design project a number of aircraft concept designs including the relevant considerations which were defined, which would all meet at least the determined the selected configuration. -
Five Priorities for the Air Force's Future Combat Air
FIVE PRIORITIES FOR THE AIR FORCE’S FUTURE COMBAT AIR FORCE MARK GUNZINGER CARL REHBERG LUKAS AUTENRIED FIVE PRIORITIES FOR THE AIR FORCE’S FUTURE COMBAT AIR FORCE MARK GUNZINGER CARL REHBERG LUKAS AUTENRIED 2020 ABOUT THE CENTER FOR STRATEGIC AND BUDGETARY ASSESSMENTS (CSBA) The Center for Strategic and Budgetary Assessments is an independent, nonpartisan policy research institute established to promote innovative thinking and debate about national security strategy and investment options. CSBA’s analysis focuses on key questions related to existing and emerging threats to U.S. national security, and its goal is to enable policymakers to make informed decisions on matters of strategy, security policy, and resource allocation. ©2020 Center for Strategic and Budgetary Assessments. All rights reserved. ABOUT THE AUTHORS Mark Gunzinger is a Non-resident Senior Fellow at the Center for Strategic and Budgetary Assessments. Mr. Gunzinger has served as the Deputy Assistant Secretary of Defense for Forces, Transformation and Resources. A retired Air Force Colonel and Command Pilot, he joined the Office of the Secretary of Defense in 2004. Mark was appointed to the Senior Executive Service and served as Principal Director of the Department’s central staff for the 2006 Quadrennial Defense Review (QDR). Following the QDR, he served as Director for Defense Transformation, Force Planning and Resources on the National Security Council staff. Mr. Gunzinger holds an M.S. in National Security Strategy from the National War College, a Master of Airpower Art and Science degree from the School of Advanced Air and Space Studies, an M.P.A. from Central Michigan University, and a B.S. -
Analytical Fuselage and Wing Weight Estimation of Transport Aircraft
NASA Technical Memorandum 110392 Analytical Fuselage and Wing Weight Estimation of Transport Aircraft Mark D. Ardema, Mark C. Chambers, Anthony P. Patron, Andrew S. Hahn, Hirokazu Miura, and Mark D. Moore May 1996 National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035-1000 NASA Technical Memorandum 110392 Analytical Fuselage and Wing Weight Estimation of Transport Aircraft Mark D. Ardema, Mark C. Chambers, and Anthony P. Patron, Santa Clara University, Santa Clara, California Andrew S. Hahn, Hirokazu Miura, and Mark D. Moore, Ames Research Center, Moffett Field, California May 1996 National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035-1000 2 Nomenclature KF1 frame stiffness coefficient, IAFF/ A fuselage cross-sectional area Kmg shell minimum gage factor AB fuselage surface area KP shell geometry factor for hoop stress AF frame cross-sectional area KS constant for shear stress in wing (AR) aspect ratio of wing Kth sandwich thickness parameter b wingspan; intercept of regression line lB fuselage length bs stiffener spacing lLE length from leading edge to structural box at theoretical root chord bS wing structural semispan, measured along quarter chord from fuselage lMG length from nose to fuselage mounted main gear bw stiffener depth lNG length from nose to nose gear CF Shanley’s constant lTE length from trailing edge to structural box at CP center of pressure theoretical root chord C root chord of wing at fuselage intersection R l1 length of nose -
CFD Investigation of 2D and 3D Dynamic Stall
CFD Investigation of 2D and 3D Dynamic Stall A. Spentzos1, G. Barakos1;2, K. Badcock1, B. Richards1 P. Wernert3, S. Schreck4 & M. Raffel5 Contact Information: 1 CFD Laboratory, University of Glasgow, Department of Aerospace Engineering, Glasgow G12 8QQ, United Kingdom, www.aero.gla.ac.uk/Research/CFD 2 Corresponding author, email: [email protected] 3 French-German Research Institute of Saint-Louis (ISL) 5, rue du General Cassagnou, 68300 Saint-Louis. 4 National Renewable Energy Laboratory, 1617 Cole Blvd Golden, CO 80401, USA. 5 DLR - Institute for Aerodynamics and Flow Technology, Bunsenstrasse 10, D-37073 Gottingen, Germany. Abstract The results of numerical simulation for 2D and 3D dynamic stall case are presented. Square wings of NACA 0012 and NACA 0015 sections were used and comparisons are made against experimental data from Wernert et al.for the 2D and Schreck and Helin for the 3D cases. The well-known 2D dynamic stall configuration is present on the symmetry plane of the 3D cases. Sim- ilarities between the 2D and 3D cases, however, are restricted upto the midspan and the flowfield is markedly different as the wing-tip is approached. Visualisation of the 3D simulation results revealed the same omega-shaped dynamic stall vortex which was observed in the experiments by Freymuth, Horner et al.and Schreck and Helin. Detailed comparison between experiments and simulation for the surface pressure distributions is also presented along with the time histories of the integrated loads. To our knowledge this is the first detailed study -
0706Bombers.Pdf
A Tale of Two Bombers Photos Carlson Ted by After a long review process, the Rea- gan Administration in 1981 decided there was room in the inventory for both the B-1B (shown here) and the B-2A stealth bomber (at right). The two bombers formed the centerpiece of the strategic arms buildup of the 1980s. 72 AIR FORCE Magazine / July 2006 Many thought Ronald Reagan had to choose between the B-1 and the B-2. They were wrong. A Tale of Two Bombers By Walter J. Boyne hen President Reagan took work on a new low-altitude penetrat- proached, the B-1’s critics stepped office in early 1981, he came ing bomber, which was given the name up their complaints, turning it into a Wface to face with a huge bomber ques- Advanced Manned Strategic Aircraft, subject of major political debate. The tion. Should he resurrect the long-dor- or AMSA. North American Rockwell Brookings Institution in early 1976, for mant B-1 to quickly boost US striking won the contract. instance, published Modernizing the power? Or should he bypass the B-1 Things moved slowly, however. Sec- Strategic Bomber Force: Why and How. and invest those billions of dollars in retary of Defense Robert S. McNamara, In this critical book, authors Alton H. the revolutionary but far more distant no friend of the manned penetrating Quanbeck and Archie L. Wood urged the B-2 stealth bomber? bomber, decided in 1966 to delay AMSA Pentagon to scrap the penetrating B-1 It was a major dilemma, and Reagan development, declaring that “a new and save up to $15 billion by building solved it in a classic, Reaganesque way: advanced strategic aircraft does not at a different kind of standoff, cruise-mis- He bought both. -
The Radar Game Understanding Stealth and Aircraft Survivability
A MITCHELL INSTITUTE STUDY The Radar Game Understanding Stealth and Aircraft Survivability By Rebecca Grant September 2010 A mitchell inStitute Study 1 Brig. Gen. Billy Mitchell On September 12, 1918 at St. Mihiel in France, Col. Wil- liam Mitchell became the first person ever to command a major force of allied aircraft in a combined-arms opera- tion. This battle was the debut of the US Army fighting under a single American commander on European soil. Under Mitchell’s control, more than 1,100 allied aircraft worked in unison with ground forces in a broad offen- sive—one encompassing not only the advance of ground troops but also direct air attacks on enemy strategic tar- gets, aircraft, communications, logistics, and forces beyond the front lines. Mitchell was promoted to Brigadier General by order of Gen. John J. Pershing, commander of the American Expeditionary Force, in recognition of his com- mand accomplishments during the St. Mihiel offensive and the subsequent Meuse-Argonne offensive. After World War I, General Mitchell served in Washington and then became Commander, First Provisional Air Brigade, in 1921. That summer, he led joint Army and Navy demonstration attacks as bombs delivered from aircraft sank several captured German vessels, including the SS Ostfriesland. His determination to speak the truth about airpower and its importance to America led to a court-martial trial in 1925. Mitchell was convicted, and re- signed from the service in February 1926. Mitchell, through personal example and through his writing, inspired and en- couraged a cadre of younger airmen. These included future General of the Air Force Henry H.