A. Maan, A. P. James, Voltage Controlled Memristor Threshold Logic Gates, 2016 IEEE APCCAS, Jeju, Korea, October 25-28, 2016 Voltage Controlled Memristor Threshold Logic Gates Akshay Kumar Maan Alex Pappachen James Queensland Microelectronic Facility School of Engineering, Nazabayev University Griffith University Astana, Kazakhastan Queensland 4111, Australia Web: www.biomicrosystems.info/alex Email:
[email protected] Email:
[email protected] Abstract—In this paper, we present a resistive switching weights to the inputs, while the CMOS inverter behaves as memristor cell for implementing universal logic gates. The cell a threshold logic device. The weights are programmed via has a weighted control input whose resistance is set based on a the resistive switching phenomenon of the memristor device. control signal that generalizes the operational regime from NAND We show that resistive switching makes it possible to use the to NOR functionality. We further show how threshold logic in same cell architecture to work in the NAND, NOR or XOR the voltage-controlled resistive cell can be used to implement a configuration, and can be implemented in a programmable XOR logic. Building on the same principle we implement a half adder and a 4-bit CLA (Carry Look-ahead Adder) and show array architecture. We hypothesise that if such circuits are that in comparison with CMOS-only logic, the proposed system developed in silicon that can be programmed and reused to shows significant improvements in terms of device area, power generate different logic gate functionalities, we will be able to dissipation and leakage power. move a step closer towards the development of low power and large scale threshold logic applications.