Myfg News Dec 2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mycological Society of San Francisco • Jan. 2016, Vol. 67:05
The Mycological Society of San Francisco • Jan. 2016, vol. 67:05 Table of Contents JANUARY 19 General Meeting Speaker Mushroom of the Month by K. Litchfield 1 President Post by B. Wenck-Reilly 2 Robert Dale Rogers Schizophyllum by D. Arora & W. So 4 Culinary Corner by H. Lunan 5 Hospitality by E. Multhaup 5 Holiday Dinner 2015 Report by E. Multhaup 6 Bizarre World of Fungi: 1965 by B. Sommer 7 Academic Quadrant by J. Shay 8 Announcements / Events 9 2015 Fungus Fair by J. Shay 10 David Arora’s talk by D. Tighe 11 Cultivation Quarters by K. Litchfield 12 Fungus Fair Species list by D. Nolan 13 Calendar 15 Mushroom of the Month: Chanterelle by Ken Litchfield Twenty-One Myths of Medicinal Mushrooms: Information on the use of medicinal mushrooms for This month’s profiled mushroom is the delectable Chan- preventive and therapeutic modalities has increased terelle, one of the most distinctive and easily recognized mush- on the internet in the past decade. Some is based on rooms in all its many colors and meaty forms. These golden, yellow, science and most on marketing. This talk will look white, rosy, scarlet, purple, blue, and black cornucopias of succu- at 21 common misconceptions, helping separate fact lent brawn belong to the genera Cantharellus, Craterellus, Gomphus, from fiction. Turbinellus, and Polyozellus. Rather than popping up quickly from quiescent primordial buttons that only need enough rain to expand About the speaker: the preformed babies, Robert Dale Rogers has been an herbalist for over forty these mushrooms re- years. He has a Bachelor of Science from the Univer- quire an extended period sity of Alberta, where he is an assistant clinical profes- of slower growth and sor in Family Medicine. -
Structural Characterization and Biological Activity of Lactarius Scrobiculatus
Structural characterization and biological activity of Lactarius scrobiculatus Ivana Tomic Thesis for the Master´ degree in Pharmacy 45 study points Department of Pharmaceutical Chemistry School of Pharmacy Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO November/2018 II Structural characterization and biological activity of Lactarius scrobiculatus Thesis for Master´ degree in Pharmacy Department for Pharmaceutical chemistry School of Pharmacy Faculty of Mathematics and Natural Sciences University in Oslo Ivana Tomic November 2018 Supervisor: Anne Berit Samuelsen III © Author 2018 Structural characterization and biological activity of Lactarius scrobiculatus Ivana Tomic http://www.duo.uio.no/ Print: Reprosentralen, Universitetet i Oslo IV Acknowledgments The present thesis was carried out at the Departement of Pharmaceutical Chemistry, University of Oslo (UiO), for the Master´s degree in Pharmacy at the University of Oslo. The other institute include Norwegian Centre of Molecular Medicine, where I have performed activity assay. First and foremost, I would like to thank to my supervisor Anne Berit Samuelsen for hers support and guidance throughout my work and useful comments during the writing. Further, I also want to thank Hoai Thi Nguyen and Cristian Winther Wold for help with carrying out GC and GC-MS analysis. Also, I am very thankful to Karl Malterud for help with NMR analysis. Special thanks to Suthajini Yogarajah for her patience and lab support. I would also like to thank to Kari Inngjerdingen for good and helpful Forskningforberedende kurs. My gratitude goes also to Prebens Morth group at NMCC, special to Julia Weikum and Bojana Sredic, who were always kind and helpful. Finally, I would like to express my fabulous thanks to my wonderful parents, my husband and my four sons for their great patience, sacrifice, moral support and encouragement during my master thesis. -
Pt Reyes Species As of 12-1-2017 Abortiporus Biennis Agaricus
Pt Reyes Species as of 12-1-2017 Abortiporus biennis Agaricus augustus Agaricus bernardii Agaricus californicus Agaricus campestris Agaricus cupreobrunneus Agaricus diminutivus Agaricus hondensis Agaricus lilaceps Agaricus praeclaresquamosus Agaricus rutilescens Agaricus silvicola Agaricus subrutilescens Agaricus xanthodermus Agrocybe pediades Agrocybe praecox Alboleptonia sericella Aleuria aurantia Alnicola sp. Amanita aprica Amanita augusta Amanita breckonii Amanita calyptratoides Amanita constricta Amanita gemmata Amanita gemmata var. exannulata Amanita calyptraderma Amanita calyptraderma (white form) Amanita magniverrucata Amanita muscaria Amanita novinupta Amanita ocreata Amanita pachycolea Amanita pantherina Amanita phalloides Amanita porphyria Amanita protecta Amanita velosa Amanita smithiana Amaurodon sp. nova Amphinema byssoides gr. Annulohypoxylon thouarsianum Anthrocobia melaloma Antrodia heteromorpha Aphanobasidium pseudotsugae Armillaria gallica Armillaria mellea Armillaria nabsnona Arrhenia epichysium Pt Reyes Species as of 12-1-2017 Arrhenia retiruga Ascobolus sp. Ascocoryne sarcoides Astraeus hygrometricus Auricularia auricula Auriscalpium vulgare Baeospora myosura Balsamia cf. magnata Bisporella citrina Bjerkandera adusta Boidinia propinqua Bolbitius vitellinus Suillellus (Boletus) amygdalinus Rubroboleus (Boletus) eastwoodiae Boletus edulis Boletus fibrillosus Botryobasidium longisporum Botryobasidium sp. Botryobasidium vagum Bovista dermoxantha Bovista pila Bovista plumbea Bulgaria inquinans Byssocorticium californicum -
Taxons BW Fin 2013
Liste des 1863 taxons en Brabant Wallon au 31/12/2013 (1298 basidios, 436 ascos, 108 myxos et 21 autres) [1757 taxons au 31/12/2012, donc 106 nouveaux taxons] Remarque : Le nombre derrière le nom du taxon correspond au nombre de récoltes. Ascomycètes Acanthophiobolus helicosporus : 1 Cheilymenia granulata : 2 Acrospermum compressum : 4 Cheilymenia oligotricha : 6 Albotricha acutipila : 2 Cheilymenia raripila : 1 Aleuria aurantia : 31 Cheilymenia rubra : 1 Aleuria bicucullata : 1 Cheilymenia theleboloides : 2 Aleuria cestrica : 1 Chlorociboria aeruginascens : 3 Allantoporthe decedens : 2 Chlorosplenium viridulum : 4 Amphiporthe leiphaemia : 1 Choiromyces meandriformis : 1 Anthostomella rubicola : 2 Ciboria amentacea : 9 Anthostomella tomicoides : 2 Ciboria batschiana : 8 Anthracobia humillima : 1 Ciboria caucus : 15 Anthracobia macrocystis : 3 Ciboria coryli : 2 Anthracobia maurilabra : 1 Ciboria rufofusca : 1 Anthracobia melaloma : 3 Cistella grevillei : 1 Anthracobia nitida : 1 Cladobotryum dendroides : 1 Apiognomonia errabunda : 1 Claussenomyces atrovirens : 1 Apiognomonia hystrix : 4 Claviceps microcephala : 1 Aporhytisma urticae : 1 Claviceps purpurea : 2 Arachnopeziza aurata : 1 Clavidisculum caricis : 1 Arachnopeziza aurelia : 1 Coleroa robertiani : 1 Arthrinium sporophleum : 1 Colletotrichum dematium : 1 Arthrobotrys oligospora : 3 Colletotrichum trichellum : 2 Ascobolus albidus : 16 Colpoma quercinum : 1 Ascobolus brassicae : 4 Coniochaeta ligniaria : 1 Ascobolus carbonarius : 5 Coprotus disculus : 1 Ascobolus crenulatus : 11 -
Description and Identification of Ostryopsis Davidiana Ectomycorrhizae in Inner Mongolia Mountain Forest of China
Österr. Z. Pilzk. 26 (2017) – Austrian J. Mycol. 26 (2017) 17 Description and identification of Ostryopsis davidiana ectomycorrhizae in Inner Mongolia mountain forest of China QING-ZHI YAO1 WEI YAN2 HUI-YING ZHAO1 JIE WEI2 1 Life Science College 2 Forestry College Inner Mongolia Agriculture University Huhhot, 010018, P. R. China Email: [email protected] Accepted 27. March 2017. © Austrian Mycological Society, published online 23. August 2017 YAO, Q.-Z., YAN, W., ZHAO, H.-Y., WEI, J., 2017: Description and identification of Ostryopsis davidi- ana ectomycorrhizae in Inner Mongolia mountain forest of China. – Austrian J. Mycol. 26: 17–25. Key words: ECM, Mountain forest, Ostryopsis davidiana, morpho-anatomical features. Abstract: The ectomycorrhizal (ECM) fungal composition and anatomical structures of root samples of the shrub Ostryopsis davidiana were examined. The root samples were collected from two plots in the Daqing Mountain and Han Mountain around Hohhot, Inner Mongolia of China. Basing on mor- pho-anatomical features of the samples, we have got totally 12 ECM morphotypes. Twelve fungal taxa were identified via sequencing of the internal transcribed spacer region of their nuclear rDNA. Nine species are Basidiomycotina, incl. Thelephoraceae (Tomentella), Cortinariaceae (Inocybe and Cortinarius), Tremellaceae (Sebacina), Russulaceae (Lactarius), and Tricholomataceae (Tricholoma), three Ascomycotina, incl. Elaphomycetaceae (Cenococcum), Tuberaceae (Tuber), and Pyronema- taceae (Wilcoxina). Cenococcum geophilum was the dominant species in O. davidiana. The three To- mentella and the two Inocybe ECMF of O. davidiana are very common in Inner Mongolia. Zusammenfassung: Die Pilzdiversität der Ektomykorrhiza (ECM) und deren anatomische Strukturen von Wurzelproben des Strauches Ostryopsis davidiana wurden untersucht. Die Wurzelproben wurden aus zwei Untersuchungsflächen im Daqing Berg und Han Berg nahe Hohhot, Innere Mongolei, China, gesammelt. -
Mushrooms Commonly Found in Northwest Washington
MUSHROOMS COMMONLY FOUND IN NORTHWEST WASHINGTON GILLED MUSHROOMS SPORES WHITE Amanita constricta Amanita franchettii (A. aspera) Amanita gemmata Amanita muscaria Amanita pachycolea Amanita pantherina Amanita porphyria Amanita silvicola Amanita smithiana Amanita vaginata Armillaria nabsnona (A. mellea) Armillaria ostoyae (A. mellea) Armillaria sinapina (A. mellea) Calocybe carnea Clitocybe avellaneoalba Clitocybe clavipes Clitocybe dealbata Clitocybe deceptiva Clitocybe dilatata Clitocybe flaccida Clitocybe fragrans Clitocybe gigantean Clitocybe ligula Clitocybe nebularis Clitocybe odora Hygrophoropsis (Clitocybe) aurantiaca Lepista (Clitocybe) inversa Lepista (Clitocybe) irina Lepista (Clitocybe) nuda Gymnopus (Collybia) acervatus Gymnopus (Collybia) confluens Gymnopus (Collybia) dryophila Gymnopus (Collybia) fuscopurpureus Gymnopus (Collybia) peronata Rhodocollybia (Collybia) butyracea Rhodocollybia (Collybia) maculata Strobilurus (Collybia) trullisatus Cystoderma cinnabarinum Cystoderma amianthinum Cystoderma fallax Cystoderma granulosum Flammulina velutipes Hygrocybe (Hygrophorus) conica Hygrocybe (Hygrophorus) minuiatus Hygrophorus bakerensis Hygrophorus camarophyllus Hygrophorus piceae Laccaria amethysteo-occidentalis Laccaria bicolor Laccaria laccata Lactarius alnicola Lactarius deliciousus Lactarius fallax Lactarius kaufmanii Lactarius luculentus Lactarius obscuratus Lactarius occidentalis Lactarius pallescens Lactarius parvis Lactarius pseudomucidus Lactarius pubescens Lactarius repraesentaneus Lactarius rubrilacteus Lactarius -
Bioluminescence in Mushroom and Its Application Potentials
Nigerian Journal of Science and Environment, Vol. 14 (1) (2016) BIOLUMINESCENCE IN MUSHROOM AND ITS APPLICATION POTENTIALS Ilondu, E. M.* and Okiti, A. A. Department of Botany, Faculty of Science, Delta State University, Abraka, Nigeria. *Corresponding author. E-mail: [email protected]. Tel: 2348036758249. ABSTRACT Bioluminescence is a biological process through which light is produced and emitted by a living organism resulting from a chemical reaction within the body of the organism. The mechanism behind this phenomenon is an oxygen-dependent reaction involving substrates generally termed luciferin, which is catalyzed by one or more of an assortment of unrelated enzyme called luciferases. The history of bioluminescence in fungi can be traced far back to 382 B.C. when it was first noted by Aristotle in his early writings. It is the nature of bioluminescent mushrooms to emit a greenish light at certain stages in their life cycle and this light has a maximum wavelength range of 520-530 nm. Luminescence in mushroom has been hypothesized to attract invertebrates that aids in spore dispersal and testing for pollutants (ions of mercury) in water supply. The metabolites from luminescent mushrooms are effectively bioactive in anti-moulds, anti-bacteria, anti-virus, especially in inhibiting the growth of cancer cell and very useful in areas of biology, biotechnology and medicine as luminescent markers for developing new luminescent microanalysis methods. Luminescent mushroom is a novel area of research in the world which is beneficial to mankind especially with regards to environmental pollution monitoring and biomedical applications. Bioluminescence in fungi is a beautiful phenomenon to observe which should be of interest to Scientists of all endeavors. -
The Genus Crepidotus (Fr.) Staude in Europe
PERSOON I A Published by Rijksherbarium / Honus 8 01anicus. Leiden Volume 16. Part I. pp. 1-80 ( 1995) THE GENUS CREPIDOTUS (FR.) STAUDE IN EUROPE BEATRICE SENN-IRLET Systematisch-Gcobotanischcs lnsti1u1 dcr Univcrsit!lt Bern. C H-3013 Dern. Switzerland The gcnu~ Crepidotus in Europe is considered. After an examination of 550 collce1ions seven1ccn species and eigh1 varie1ies ore recognized. Two keys ore supplied; all taxa accept ed ore typified. Morphological. ecological and chorological chamc1ers arc cri1ically cvalua1cd. De crip· tivc stotis1ies arc used for basidiospore size. An infrageneric classifica1ion is proposed based on phcnctic rela1ionships using differcn1 cluster methods. The new combinations C. calo lepi.r var. sq11amulos1,s and C. cesatii var. subsplwerosporus arc inlroduced. The spore oma memouon as seen in the scanning electron microscope provides 1hc best character for species dclimilntion and classification. INTRODUCTION Fries ( 1821 : 272) established Agaricus eries De rm illus tribus Crepido111s for more or less pleurotoid species with ferruginous or pale argillaceous spores and an ephemeral. fibrillose veil (!). His fourteen species include such taxa as Paxillus arrorome111osus, Le11ti11el/11s v11/pi11us. Panel/us violaceo-fulvus and £1110/oma deplue11s which nowadays are placed in quite different genera and families. Only three of Fries' species belong to the genu Crepidotus as conceived now. T his demonstrates the importance of microscopic characters, neglected by Fries, for the circumscription of species and genera. Staude ( 1857) raised the tribus Crepidorus to generic rank with C. mollis as the sole species. Hesler & Smith ( 1965) dealt with the history of th e genus Crepido111s in more detail. In recent years several regional floras have been published, e.g. -
Karnataka), India
American-Eurasian J. Agric. & Environ. Sci., 12 (6): 750-759, 2012 ISSN 1818-6769 © IDOSI Publications, 2012 DOI: 10.5829/idosi.aejaes.2012.12.06.56401 Biodiversity of Mushrooms in and Around Bangalore (Karnataka), India 12H. Pushpa and K.B. Purushothama 1Department of Microbiology, M.S.Ramaiah College of Arts, Science and Commerce, Bangalore, India 2Department of Botany, St. Joseph’s Post Graduate and Research Centre, Bangalore, India Abstract: Bangalore (Bengaluru) is also called as a Garden city of India, positioned at 12°58' and 12°97' N lat and 77°34' and 77°56’ E longitudes with a wide range of ecosystem. The floristic composition of this region has been studied earlier by several workers, but the fungus which forms an important component of the ecosystem has been largely neglected in a biodiversity studies. The present investigation is an attempt to give a broad picture of biodiversity of mushrooms belonging to the class Basidiomycetes in Bangalore. The survey were conducted from June 2007 to November 2010 in 8 different places which included scrub jungles and urban places in a around Bangalore. A total number of 90 species in 48 genera belonging to 19 families in 05 orders were recorded, 28 species were found to be recorded for the first time in India. Among the collected species Coprinus disseminates followed by Coprinus fibrillosis and Schizophyllum communae was found to be abundant in their occurrence. The Simpson and Sannon diversity biodiversity index was found to be 0.8 and 1.24 respectively. The detailed report of the study has been presented here. -
Fungi on Lundy 2003
Rep. Lundy Field Soc. 53 FUNGI ON LUNDY 2003 By JOHN N . H EDGER 1 AND J. D AVID GEORGE2 'School of Biosciences,University of Westminster, 115 New Cavendish Street, London, WlM 8JS 2Natural History Museum, Cromwell Road, London, SW7 5BD Dedication: The authors wish to dedicate this paper to Professor John Webst er of the University of Exeter on the occasion of his 80'" birthday, in recognition of his contribution to the Mycology of Southwest Britain. ABSTRACT The results of a preliminary field survey of fungi can·ied out on Lundy between 11-18 October 2003 are reported and compared with previous records. One hundred and eight taxa were identified of which seventy five appear to be new records for the island, in spite of the very dry conditions during the survey. Habitat and resource preferences of the fungi are discussed, and suggesti ons made for further studies on Lundy. Keywords: Lundy, fungi, ecology, biodiversity. INTRODUCTION Although detailed studies of the lichen fl ora of Lundy have been published (Noon & Hawksworth, 1972; lames et al., 1995, 1996), the fungi of Lundy have remained little studied. Mcist existing data consisted of a series of lists published in the Annual Report s of the Lundy Field Society, beginning in 1970. We could onl y trace three earli er records of fungi on Lundy, from 1965 and 1967, by visiting members of the British Mycological Society. The obj ect of the present study was to start a more systematic in ventory of the diversity of fungi on Lundy, and the habitats they occupy on the island, and to begin a database of Lundy fungi for entry in the British Mycological Society U.K. -
Chemical Elements in Ascomycetes and Basidiomycetes
Chemical elements in Ascomycetes and Basidiomycetes The reference mushrooms as instruments for investigating bioindication and biodiversity Roberto Cenci, Luigi Cocchi, Orlando Petrini, Fabrizio Sena, Carmine Siniscalco, Luciano Vescovi Editors: R. M. Cenci and F. Sena EUR 24415 EN 2011 1 The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Via E.Fermi, 2749 I-21027 Ispra (VA) Italy Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC Catalogue number: LB-NA-24415-EN-C Editors: R. M. Cenci and F. Sena JRC65050 EUR 24415 EN ISBN 978-92-79-20395-4 ISSN 1018-5593 doi:10.2788/22228 Luxembourg: Publications Office of the European Union Translation: Dr. Luca Umidi © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy 2 Attached to this document is a CD containing: • A PDF copy of this document • Information regarding the soil and mushroom sampling site locations • Analytical data (ca, 300,000) on total samples of soils and mushrooms analysed (ca, 10,000) • The descriptive statistics for all genera and species analysed • Maps showing the distribution of concentrations of inorganic elements in mushrooms • Maps showing the distribution of concentrations of inorganic elements in soils 3 Contact information: Address: Roberto M. -
Toxic Fungi of Western North America
Toxic Fungi of Western North America by Thomas J. Duffy, MD Published by MykoWeb (www.mykoweb.com) March, 2008 (Web) August, 2008 (PDF) 2 Toxic Fungi of Western North America Copyright © 2008 by Thomas J. Duffy & Michael G. Wood Toxic Fungi of Western North America 3 Contents Introductory Material ........................................................................................... 7 Dedication ............................................................................................................... 7 Preface .................................................................................................................... 7 Acknowledgements ................................................................................................. 7 An Introduction to Mushrooms & Mushroom Poisoning .............................. 9 Introduction and collection of specimens .............................................................. 9 General overview of mushroom poisonings ......................................................... 10 Ecology and general anatomy of fungi ................................................................ 11 Description and habitat of Amanita phalloides and Amanita ocreata .............. 14 History of Amanita ocreata and Amanita phalloides in the West ..................... 18 The classical history of Amanita phalloides and related species ....................... 20 Mushroom poisoning case registry ...................................................................... 21 “Look-Alike” mushrooms .....................................................................................