1 Recognising Glacial Features. Examine the Illustrations of Glacial Landforms That Are Shown on This Page and on the Next Page

Total Page:16

File Type:pdf, Size:1020Kb

1 Recognising Glacial Features. Examine the Illustrations of Glacial Landforms That Are Shown on This Page and on the Next Page 1 Recognising glacial features. Examine the illustrations of glacial landforms that are shown on this C page and on the next page. In Column 1 of the grid provided write the names of the glacial D features that are labelled A–L. In Column 2 indicate whether B each feature is formed by glacial erosion of by glacial deposition. A In Column 3 indicate whether G each feature is more likely to be found in an upland or in a lowland area. E F 1 H K J 2 I 24 Chapter 6 L direction of boulder clay ice flow 3 Column 1 Column 2 Column 3 A Arête Erosion Upland B Tarn (cirque with tarn) Erosion Upland C Pyramidal peak Erosion Upland D Cirque Erosion Upland E Ribbon lake Erosion Upland F Glaciated valley Erosion Upland G Hanging valley Erosion Upland H Lateral moraine Deposition Lowland (upland also accepted) I Frontal moraine Deposition Lowland (upland also accepted) J Medial moraine Deposition Lowland (upland also accepted) K Fjord Erosion Upland L Drumlin Deposition Lowland 2 In the boxes provided, match each letter in Column X with the number of its pair in Column Y. One pair has been completed for you. COLUMN X COLUMN Y A Corrie 1 Narrow ridge between two corries A 4 B Arête 2 Glaciated valley overhanging main valley B 1 C Fjord 3 Hollow on valley floor scooped out by ice C 5 D Hanging valley 4 Steep-sided hollow sometimes containing a lake D 2 E Ribbon lake 5 Glaciated valley drowned by rising sea levels E 3 25 New Complete Geography Skills Book 3 (a) Landform of glacial erosion Name one feature of glacial erosion and with the aid of a diagram explain how it was formed. (10) __________________________________________________________________________________[See for example glaciated Valleys on p. 49 or Ribbon Lakes on p. 50 __________________________________________________________________________________of textbook] __________________________________________________________________________________ __________________________________________________________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Diagram (b) Landform of glacial deposition Name one feature of glacial deposition and with the aid of a diagram explain how it was formed. (10) __________________________________________________________________________________[See for example Moraines (p. 53) or Drumlins (p. 54) of textbook] __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Diagram 26 Chapter 6 (c) Glaciation and people (i) Name and briefly explain one way in which people Junior Cert Higher Level Marking Scheme for question 3 benefit from the results of glaciation. (5) (a) Landform of glacial erosion ____________________________________________[See page 56 of textbook] Name feature: 2 marks Explain how formed: two ____________________________________________ explanations at 3 marks each to be ____________________________________________ allocated as follows: l Statement: 2m ____________________________________________ l One development: 1m ____________________________________________ Diagram: 2 marks (1m for diagram and 1m for at least one named ____________________________________________ label) ____________________________________________ (b) Landform of glacial deposition ____________________________________________ (Same marking scheme as for (a) above) ____________________________________________ (c) Glaciation and people (ii) Name and briefly explain one disadvantage of the Benefit results of glaciation. (5) Name one benefit: 2 marks Explain benefit: 3 marks allocated [See page 56 of textbook] ____________________________________________ as follows: l ____________________________________________ Statement: 2m l One development 1m ____________________________________________ Disadvantage ____________________________________________ (Same marking scheme as for benefit above) ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ 4 Which of the following are all features of glacial erosion? Tick (3) the correct box. (a) Fjord, moraine, pyramidal peak (b) Arête, cirque, U-shaped valley 3 (c) Boulder clay, cirque, hanging valley (d) Arête, cirque, drumlin 27.
Recommended publications
  • EVIDENCE of POSSIBLE GLACIAL FEATURES on TITAN. L. E. Robshaw1, J
    Lunar and Planetary Science XXXIX (2008) 2087.pdf EVIDENCE OF POSSIBLE GLACIAL FEATURES ON TITAN. L. E. Robshaw1, J. S. Kargel2, R. M. C. Lopes3, K. L. Mitchell3, L. Wilson1 and the Cassini RADAR team, 1Lancaster University, Environmental Sci. Dept., Lancaster, UK, 2Dept. of Hydrology and Water Resources, University of Arizona, 3Jet Propulsion Laboratory, Pasa- dena, CA 91109. Introduction: It has been suggested previously Figure 1 shows coastline that has at least superficial [e.g. 1] that solid hydrocarbons might condense in Ti- similarities with the coast of Norway and other fjord tan’s atmosphere, snow down onto the surface and areas. There are many, roughly parallel, steep-sided form glacier-like features, but no strong evidence has valleys, often with rounded heads. Most are approxi- been obtained. The high northern latitudes imaged in mately the same size as the valleys on the Norwegian the SAR swath obtained during Cassini’s T25 fly-by off-shore islands. (figure 1, top), however, exhibit morphological simi- There also appears to be some similarity between larities with glacial landscapes on the Earth, particu- the areas that arrows b & c point to (fig. 1, area shown larly the coast of Norway (figure 1, bottom). Several also in close-up in fig. 2, top) and the islands of the areas exhibit fjord-like valleys, with possible terminal Outer Lands (Fig. 2, bottom), a terminal moraine ar- moraine archipelagos, and further inland are dry val- chipelagic region off the southern coast of New Eng- leys, reminiscent of glacial scouring. Other noted fea- land. tures may be a ribbon lake and an Arête, both the result of glacial erosion.
    [Show full text]
  • Trip F the PINNACLE HILLS and the MENDON KAME AREA: CONTRASTING MORAINAL DEPOSITS by Robert A
    F-1 Trip F THE PINNACLE HILLS AND THE MENDON KAME AREA: CONTRASTING MORAINAL DEPOSITS by Robert A. Sanders Department of Geosciences Monroe Community College INTRODUCTION The Pinnacle Hills, fortunately, were voluminously described with many excellent photographs by Fairchild, (1923). In 1973 the Range still stands as a conspicuous east-west ridge extending from the town of Brighton, at about Hillside Avenue, four miles to the Genesee River at the University of Rochester campus, referred to as Oak Hill. But, for over thirty years the Range was butchered for sand and gravel, which was both a crime and blessing from the geological point of view (plates I-VI). First, it destroyed the original land form shapes which were subsequently covered with man-made structures drawing the shade on its original beauty. Secondly, it allowed study of its structure by a man with a brilliantly analytical mind, Herman L. Fair­ child. It is an excellent example of morainal deposition at an ice front in a state of dynamic equilibrium, except for minor fluctuations. The Mendon Kame area on the other hand, represents the result of a block of stagnant ice, probably detached and draped over drumlins and drumloidal hills, melting away with tunnels, crevasses, and per­ foration deposits spilling or squirting their included debris over a more or less square area leaving topographically high kames and esker F-2 segments with many kettles and a large central area of impounded drainage. There appears to be several wave-cut levels at around the + 700 1 Lake Dana level, (Fairchild, 1923). The author in no way pretends to be a Pleistocene expert, but an attempt is made to give a few possible interpretations of the many diverse forms found in the Mendon Kames area.
    [Show full text]
  • Crag-And-Tail Features on the Amundsen Sea Continental Shelf, West Antarctica
    Downloaded from http://mem.lyellcollection.org/ by guest on November 30, 2016 Crag-and-tail features on the Amundsen Sea continental shelf, West Antarctica F. O. NITSCHE1*, R. D. LARTER2, K. GOHL3, A. G. C. GRAHAM4 & G. KUHN3 1Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA 2British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK 3Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, D-27568 Bremerhaven, Germany 4College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter EX4 4RJ, UK *Corresponding author (e-mail: [email protected]) On parts of glaciated continental margins, especially the inner leads to its characteristic tapering and allows formation of the sec- shelves around Antarctica, grounded ice has removed pre-existing ondary features. Multiple, elongated ridges in the tail could be sedimentary cover, leaving subglacial bedforms on eroded sub- related to the unevenness of the top of the ‘crags’. Secondary, strates (Anderson et al. 2001; Wellner et al. 2001). While the smaller crag-and-tail features might reflect variations in the under- dominant subglacial bedforms often follow a distinct, relatively lying substrate or ice-flow dynamics. uniform pattern that can be related to overall trends in palaeo- While the length-to-width ratio of crag-and-tail features in this ice flow and substrate geology (Wellner et al. 2006), others are case is much lower than for drumlins or elongate lineations, the more randomly distributed and may reflect local substrate varia- boundary between feature classes is indistinct.
    [Show full text]
  • Hiking Trails
    0a3 trail 0d4 trail 0d5 trail 0rdtr1 trail 14 mile connector trail 1906 trail 1a1 trail 1a2 trail 1a3 trail 1b1 trail 1c1 trail 1c2 trail 1c4 trail 1c5 trail 1f1 trail 1f2 trail 1g2 trail 1g3 trail 1g4 trail 1g5 trail 1r1 trail 1r2 trail 1r3 trail 1y1 trail 1y2 trail 1y4 trail 1y5 trail 1y7 trail 1y8 trail 1y9 trail 20 odd peak trail 201 alternate trail 25 mile creek trail 2b1 trail 2c1 trail 2c3 trail 2h1 trail 2h2 trail 2h4 trail 2h5 trail 2h6 trail 2h7 trail 2h8 trail 2h9 trail 2s1 trail 2s2 trail 2s3 trail 2s4 trail 2s6 trail 3c2 trail 3c3 trail 3c4 trail 3f1 trail 3f2 trail 3l1 trail 3l2 trail 3l3 trail 3l4 trail 3l6 trail 3l7 trail 3l9 trail 3m1 trail 3m2 trail 3m4 trail 3m5 trail 3m6 trail 3m7 trail 3p1 trail 3p2 trail 3p3 trail 3p4 trail 3p5 trail 3t1 trail 3t2 trail 3t3 trail 3u1 trail 3u2 trail 3u3 trail 3u4 trail 46 creek trail 4b4 trail 4c1 trail 4d1 trail 4d2 trail 4d3 trail 4e1 trail 4e2 trail 4e3 trail 4e4 trail 4f1 trail 4g2 trail 4g3 trail 4g4 trail 4g5 trail 4g6 trail 4m2 trail 4p1 trail 4r1 trail 4w1 trail 4w2 trail 4w3 trail 5b1 trail 5b2 trail 5e1 trail 5e3 trail 5e4 trail 5e6 trail 5e7 trail 5e8 trail 5e9 trail 5l2 trail 6a2 trail 6a3 trail 6a4 trail 6b1 trail 6b2 trail 6b4 trail 6c1 trail 6c2 trail 6c3 trail 6d1 trail 6d3 trail 6d5 trail 6d6 trail 6d7 trail 6d8 trail 6m3 trail 6m4 trail 6m7 trail 6y2 trail 6y4 trail 6y5 trail 6y6 trail 7g1 trail 7g2 trail 8b1 trail 8b2 trail 8b3 trail 8b4 trail 8b5 trail 8c1 trail 8c2 trail 8c4 trail 8c5 trail 8c6 trail 8c9 trail 8d2 trail 8g1 trail 8h1 trail 8h2 trail 8h3 trail
    [Show full text]
  • Glacial Processes and Landforms-Transport and Deposition
    Glacial Processes and Landforms—Transport and Deposition☆ John Menziesa and Martin Rossb, aDepartment of Earth Sciences, Brock University, St. Catharines, ON, Canada; bDepartment of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada © 2020 Elsevier Inc. All rights reserved. 1 Introduction 2 2 Towards deposition—Sediment transport 4 3 Sediment deposition 5 3.1 Landforms/bedforms directly attributable to active/passive ice activity 6 3.1.1 Drumlins 6 3.1.2 Flutes moraines and mega scale glacial lineations (MSGLs) 8 3.1.3 Ribbed (Rogen) moraines 10 3.1.4 Marginal moraines 11 3.2 Landforms/bedforms indirectly attributable to active/passive ice activity 12 3.2.1 Esker systems and meltwater corridors 12 3.2.2 Kames and kame terraces 15 3.2.3 Outwash fans and deltas 15 3.2.4 Till deltas/tongues and grounding lines 15 Future perspectives 16 References 16 Glossary De Geer moraine Named after Swedish geologist G.J. De Geer (1858–1943), these moraines are low amplitude ridges that developed subaqueously by a combination of sediment deposition and squeezing and pushing of sediment along the grounding-line of a water-terminating ice margin. They typically occur as a series of closely-spaced ridges presumably recording annual retreat-push cycles under limited sediment supply. Equifinality A term used to convey the fact that many landforms or bedforms, although of different origins and with differing sediment contents, may end up looking remarkably similar in the final form. Equilibrium line It is the altitude on an ice mass that marks the point below which all previous year’s snow has melted.
    [Show full text]
  • Glacier Mass Balance This Summary Follows the Terminology Proposed by Cogley Et Al
    Summer school in Glaciology, McCarthy 5-15 June 2018 Regine Hock Geophysical Institute, University of Alaska, Fairbanks Glacier Mass Balance This summary follows the terminology proposed by Cogley et al. (2011) 1. Introduction: Definitions and processes Definition: Mass balance is the change in the mass of a glacier, or part of the glacier, over a stated span of time: t . ΔM = ∫ Mdt t1 The term mass budget is a synonym. The span of time is often a year or a season. A seasonal mass balance is nearly always either a winter balance or a summer balance, although other kinds of seasons are appropriate in some climates, such as those of the tropics. The definition of “year” depends on the measurement method€ (see Chap. 4). The mass balance, b, is the sum of accumulation, c, and ablation, a (the ablation is defined here as negative). The symbol, b (for point balances) and B (for glacier-wide balances) has traditionally been used in studies of surface mass balance of valley glaciers. t . b = c + a = ∫ (c+ a)dt t1 Mass balance is often treated as a rate, b dot or B dot. Accumulation Definition: € 1. All processes that add to the mass of the glacier. 2. The mass gained by the operation of any of the processes of sense 1, expressed as a positive number. Components: • Snow fall (usually the most important). • Deposition of hoar (a layer of ice crystals, usually cup-shaped and facetted, formed by vapour transfer (sublimation followed by deposition) within dry snow beneath the snow surface), freezing rain, solid precipitation in forms other than snow (re-sublimation composes 5-10% of the accumulation on Ross Ice Shelf, Antarctica).
    [Show full text]
  • GLACIERS and GLACIATION in GLACIER NATIONAL PARK by J Mines Ii
    Glaciers and Glacial ion in Glacier National Park Price 25 Cents PUBLISHED BY THE GLACIER NATURAL HISTORY ASSOCIATION IN COOPERATION WITH THE NATIONAL PARK SERVICE Cover Surveying Sperry Glacier — - Arthur Johnson of U. S. G. S. N. P. S. Photo by J. W. Corson REPRINTED 1962 7.5 M PRINTED IN U. S. A. THE O'NEIL PRINTERS ^i/TsffKpc, KALISPELL, MONTANA GLACIERS AND GLACIATTON In GLACIER NATIONAL PARK By James L. Dyson MT. OBERLIN CIRQUE AND BIRD WOMAN FALLS SPECIAL BULLETIN NO. 2 GLACIER NATURAL HISTORY ASSOCIATION. INC. GLACIERS AND GLACIATION IN GLACIER NATIONAL PARK By J Mines Ii. Dyson Head, Department of Geology and Geography Lafayette College Member, Research Committee on Glaciers American Geophysical Union* The glaciers of Glacier National Park are only a few of many thousands which occur in mountain ranges scattered throughout the world. Glaciers occur in all latitudes and on every continent except Australia. They are present along the Equator on high volcanic peaks of Africa and in the rugged Andes of South America. Even in New Guinea, which many think of as a steaming, tropical jungle island, a few small glaciers occur on the highest mountains. Almost everyone who has made a trip to a high mountain range has heard the term, "snowline," and many persons have used the word with­ out knowing its real meaning. The true snowline, or "regional snowline" as the geologists call it, is the level above which more snow falls in winter than can he melted or evaporated during the summer. On mountains which rise above the snowline glaciers usually occur.
    [Show full text]
  • Brief Communication: Collapse of 4 Mm3 of Ice from a Cirque Glacier in the Central Andes of Argentina
    The Cryosphere, 13, 997–1004, 2019 https://doi.org/10.5194/tc-13-997-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Brief communication: Collapse of 4 Mm3 of ice from a cirque glacier in the Central Andes of Argentina Daniel Falaschi1,2, Andreas Kääb3, Frank Paul4, Takeo Tadono5, Juan Antonio Rivera2, and Luis Eduardo Lenzano1,2 1Departamento de Geografía, Facultad de Filosofía y Letras, Universidad Nacional de Cuyo, Mendoza, 5500, Argentina 2Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Mendoza, 5500, Argentina 3Department of Geosciences, University of Oslo, Oslo, 0371, Norway 4Department of Geography, University of Zürich, Zürich, 8057, Switzerland 5Earth Observation research Center, Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba, Ibaraki 305-8505, Japan Correspondence: Daniel Falaschi ([email protected]) Received: 14 September 2018 – Discussion started: 4 October 2018 Revised: 15 February 2019 – Accepted: 11 March 2019 – Published: 26 March 2019 Abstract. Among glacier instabilities, collapses of large der of up to several 105 m3, with extraordinary event vol- parts of low-angle glaciers are a striking, exceptional phe- umes of up to several 106 m3. Yet the detachment of large nomenon. So far, merely the 2002 collapse of Kolka Glacier portions of low-angle glaciers is a much less frequent pro- in the Caucasus Mountains and the 2016 twin detachments of cess and has so far only been documented in detail for the the Aru glaciers in western Tibet have been well documented. 130 × 106 m3 avalanche released from the Kolka Glacier in Here we report on the previously unnoticed collapse of an the Russian Caucasus in 2002 (Evans et al., 2009), and the unnamed cirque glacier in the Central Andes of Argentina recent 68±2×106 and 83±2×106 m3 collapses of two ad- in March 2007.
    [Show full text]
  • Cirques Have Growth Spurts During Deglacial and Interglacial Periods: Evidence from 10Be and 26Al Nuclide Inventories in the Central and Eastern Pyrenees Y
    Cirques have growth spurts during deglacial and interglacial periods: Evidence from 10Be and 26Al nuclide inventories in the central and eastern Pyrenees Y. Crest, M Delmas, Regis Braucher, Y. Gunnell, M Calvet, A.S.T.E.R. Team To cite this version: Y. Crest, M Delmas, Regis Braucher, Y. Gunnell, M Calvet, et al.. Cirques have growth spurts during deglacial and interglacial periods: Evidence from 10Be and 26Al nuclide inventories in the central and eastern Pyrenees. Geomorphology, Elsevier, 2017, 278, pp.60 - 77. 10.1016/j.geomorph.2016.10.035. hal-01420871 HAL Id: hal-01420871 https://hal-amu.archives-ouvertes.fr/hal-01420871 Submitted on 21 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geomorphology 278 (2017) 60–77 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Cirques have growth spurts during deglacial and interglacial periods: Evidence from 10Be and 26Al nuclide inventories in the central and eastern Pyrenees Y. Crest a,⁎,M.Delmasa,R.Braucherb, Y. Gunnell c,M.Calveta, ASTER Team b,1: a Univ Perpignan Via-Domitia, UMR 7194 CNRS Histoire Naturelle de l'Homme Préhistorique, 66860 Perpignan Cedex, France b Aix-Marseille Université, CNRS–IRD–Collège de France, UMR 34 CEREGE, Technopôle de l'Environnement Arbois–Méditerranée, BP80, 13545 Aix-en-Provence, France c Univ Lyon Lumière, Department of Geography, UMR 5600 CNRS Environnement Ville Société, 5 avenue Pierre Mendès-France, F-69676 Bron, France article info abstract Article history: Cirques are emblematic landforms of alpine landscapes.
    [Show full text]
  • Cirques As Glacier Locations William L
    University of South Carolina Scholar Commons Faculty Publications Geography, Department of 1976 Cirques as Glacier Locations William L. Graf [email protected] Follow this and additional works at: https://scholarcommons.sc.edu/geog_facpub Part of the Geography Commons Publication Info Arctic and Alpine Research, Volume 8, Issue 1, 1976, pages 79-90. This Article is brought to you by the Geography, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Arctic and Alpine Research, Vol. 8, No.1, 1976, pp. 79-90 Copyrighted 1976. All rights reserved. CIRQUES AS GLACIER LOCATIONS WILLIAM L. GRAF Department of Geography University of Iowa Iowa City, Iowa 52242 ABSTRACT A comparison between the 319 cirques that width greater than length, high steep walls, a contain glaciers and a sample of 240 empty pass located to the windward, and a peak to the cirques in the Rocky Mountains shows that in the southwest. Glaciers survive in the present cli­ present climatic situation, landforms are strong matic conditions because of a geomorphic feed­ factors in determining the locations of glaciers. back system, whereby glaciers are protected by An optimum glacier location is a large cirque cirque forms that owe their morphology to gla­ facing northeast, with a planimetric shape of cial processes. INTRODUCTION During the Pleistocene period, huge valley were recognized as products of glacial activity. and plateau glaciers covered large portions of The activities of cirque glaciers in developing the American Rocky Mountains, but as climate cirque morphology have been explored (Lewis, changed, glaciers receded and in most cases 1938) but, with one notable exception, the pro­ vanished.
    [Show full text]
  • Glaciers I: Intro, Geology and Mass Balance
    T. Perron – 12.001 – Glaciers 1 Glaciers I: Intro, Geology and Mass Balance I. Why study glaciers? • Role in freshwater budget o Fraction of earth’s water that is fresh (non-saline): 3% o Fraction of earth’s freshwater that is ice: ~2/3 o Fraction of earth’s surface covered by ice: ~8% • Climate records, climate effects & feedbacks: more in climate lecture • Postglacial rebound helps constrain mantle viscosity • Major driver of erosion, sediment transport, and landscape evolution • But how important have glaciers been over Earth’s history? o Over very long timescales, there seems to be a rhythm to glaciations . From geologic evidence: 950 Ma, 750, 650, 450, 350-250, 4-? . Proposed to reflect arrangement of continents (supercontinents promote accumulation of continental ice). But we don’t even have a very good record of this beyond a few hundred Myr, let alone precise climate records o We have better records for more recent intervals . Antarctic glaciation began 25 Ma, Greenland 20Ma, Alaska 7Ma. Major Northern hemisphere glaciations began ~4Myr. And this has been the typical climate state since! . Again, more in climate lecture. For now, suffice to say that glacial periods have dominated recent climate history. We’re in an interglacial, the first major one since ~125 ka. And our interglacial is an anomalously warm one. We must remind ourselves of this when examining landforms today. o What was North America like during glacial conditions? During LGM, we know there were . Extensive ice sheets [PPT] . Alpine glaciers in mountains beyond the ice margin . Large glacially-dammed lakes (Missoula, Bonneville) [PPT] .
    [Show full text]
  • The Great Mazury Lakes Trail
    hen we think of Mazury, we usually associate it with sailing on the lakes, Water, forests beautiful, wild landscapes, and wind, Wlarge stretches of forests, and wind - not always blowing in the sails. And i.e. the essence of the that’s right! Someone who has never stayed in this area is not aware of how Mazury climate much he has lost, but someone who has just once been tempted to experience the Masurian adventure, will Wind in the sails…, remain faithful to the Land of the Great Mazury Lakes forever. The unques- photo GEP Chroszcz tionable natural and touristic values of the region are substantiated by the fact that it qualified for the final of the international competition, the New 7 Wonders of Nature, in which Mazury has been recognised as one of the 28 most beautiful places in the world. We shall wander across these unique areas along the water route whose main axis, leading from Węgorzewo to Nida Lake, is over 100 km long. If one is willing to visit everything, a distance of at least 330 km needs to be covered, and even then some places will remain undiscov- ered. The route leads to Węgorzewo, via Giżycko and Ryn to Mikołajki, from where you can set off to Pisz or Ruciane-Nida. If one wants to sail slowly, the proposed route will take less than two weeks. Choosing the express option, it is enough to reserve several days to cover it. What can fascinate us during the trip we are just starting? First of all, the environment, the richness of which can be hardly experienced on other routes.
    [Show full text]