Going Nowhere Why President Obama Must Give NASA a Destination

Total Page:16

File Type:pdf, Size:1020Kb

Going Nowhere Why President Obama Must Give NASA a Destination A Survey of Technology and Society Going Nowhere Why President Obama Must Give NASA a Destination aint Augustine famously wrote President Obama in early 2009 to in his Confessions that, as a young head a committee revisiting the plans Sman, he had prayed, “Lord make for NASA developed in the wake of the me chaste, but not yet.” Some sixteen 2003 Columbia accident. Those plans centuries later, another Augustine— involved the retirement of the space Norm Augustine, the head of a commit- shuttle by 2010 and its replacement tee deciding NASA’s future—may have with a new architecture for sending taken inspiration from his namesake astronauts to orbit, the Moon, and ulti- when he announced that he wants the mately Mars. Dubbed Constellation, United States to have a bold manned this new architecture would include space exploration program, but not yet. new rockets and spacecraft, both of Augustine, the former CEO of which NASA spent several years and Lockheed Martin, was selected by billions of dollars designing. Spring 2010 ~ 109 Copyright 2010. All rights reserved. See www.TheNewAtlantis.com for more information. State of the Art In its final report, published in Obama approach. For instance, Burt October 2009, the Augustine committee Rutan, the respected engineer whose called for cancelling the Constellation SpaceShipOne won the Ansari X-Prize program’s drive to return to the Moon in 2004, has suggested that the Obama by 2020. Augustine and his colleagues proposal amounts to “a surrender of further noted that while “Mars is the our preeminence in human space- ultimate destination for human explo- flight.” While Rutan has criticized the ration of the inner solar system,” a so- existing Constellation plan, he wrote called “flexible path” plan—one that in an open letter in February that he might enable NASA to send humans does “not think that NASA should to a range of “inner solar system loca- ‘give up’ on manned spaceflight,” and tions” and perhaps eventually on to that the startup space companies won’t Mars in some distant future—would be “taking Americans to Mars or to the be more feasible for budgetary and moons of Saturn within my lifetime.” technical reasons. The Obama administration’s plan is Working from the Augustine com- not yet set in stone. Almost no mem- mittee report, the Obama administra- bers of Congress, who control the tion in February 2010 proposed a new purse strings, have come out in sup- space policy comprising three key deci- port of the plan, while several members sions. First, the Constellation program have voiced strong opposition, includ- would be cancelled. Second, NASA ing Democratic Senator Bill Nelson would subsidize the development of from Florida—a politically important private space-launch systems for deliv- state with a large NASA constituency. ering astronauts to the International Apparently surprised by the congres- Space Station. And third, the agency sional opposition, President Obama would take up the Augustine commit- scheduled a “space summit” for April tee’s “flexible path” option, abandoning 15, 2010 in Florida. Presumably, he the concept of setting a specific mission will use the occasion to either defend goal for its human spaceflight program and elaborate upon his proposal, or to in favor of an approach that would fund backtrack away from it. technology research for the purported President Obama should do the lat- purpose of better enabling some unstat- ter. The February 2 proposal is funda- ed mission that might be selected later. mentally flawed, as a review of its three The response to the Obama plan key decisions makes clear. The first has so far been mixed. By and large, decision, to cancel the Constellation the space policy community is wary, program, is very harmful to America’s and although many of the hopeful long-term interests in space—unless startups involved in the private space something better were to be proposed industry are excited by the prospect in its place. of competing for NASA projects, even The second decision, to support new they are not unified in support of the launch companies, is a good idea, and 110 ~ The New Atlantis Copyright 2010. All rights reserved. See www.TheNewAtlantis.com for more information. A Survey of Technology and Society long overdue, but not terribly impor- superior to the Shuttle Mode. During tant for the overall future of the space the Apollo era, dozens of groundbreak- program, since NASA has been buying ing new technologies were developed launches from private space firms for and were flown in missions of historic the past half century. importance, including the manned But the third decision, to adopt a lunar landings. The shuttle-era record “flexible path” plan, is a horrible mis- is far less impressive; it resulted in no take that would guarantee that the U.S. new technologies of importance and human spaceflight program accom- reached no new destinations—despite plishes nothing for the foreseeable the fact that the agency’s budget for future. the past twenty years has been approx- As I have argued before in the pages imately the same, in inflation-adjusted of this journal, NASA has over its his- dollars, as that which it enjoyed during tory employed two distinct modes of the Apollo period. In the Apollo Mode, operation which, for shorthand, we NASA’s efforts are focused and direct- can call the “Apollo Mode” and the ed; in the Shuttle Mode, the space “Shuttle Mode.” The Apollo Mode, agency’s efforts are random and entro- which prevailed in the human space- pic, shuffling along without a purpose, flight program during the period from always buffeted by political winds. 1961 to 1973, involved first choosing Perhaps the only area in which the a mission goal, then developing a plan achievements of the current NASA to achieve that goal, and then design- compare with those of the agency’s ing and developing the hardware and Apollo period is robotic explora- technologies needed to implement the tion—the rovers exploring Mars and plan. The hardware set is then built, the various probes sent around the after which the mission is flown. solar system. But this is the exception The Shuttle Mode, which has pre- that proves the rule: these projects vailed within the U.S. manned space- have been successful precisely because flight effort since 1974, during the they continue to use an Apollo-style period when the space shuttle was approach in which missions are select- being developed and flown, is almost ed first, designs are then drawn up, the reverse: The technologies and and technology is developed to realize hardware elements are selected first, those designs. If, instead of adopt- based on the wishes of various techni- ing a mission-driven approach, the Jet cal communities. These projects are Propulsion Laboratory (which pro- then justified by arguments that they duced the Mars rovers) instead chose might conceivably prove useful some to spend its funds developing random distant day when grand spaceflight technologies and then designed its mis- projects are finally initiated. sions around the purpose of employing The historical record makes clear those toys to justify their existence, its the ways that the Apollo Mode is productivity would fall to nil as well. Spring 2010 ~ 111 Copyright 2010. All rights reserved. See www.TheNewAtlantis.com for more information. State of the Art Which brings us to the open-ended in space—as a way to enable manned Obama proposal to take a “flexible missions to the Moon, near-Earth path” to space. It is squarely in the asteroids, or Mars has never been Shuttle Mode. established. To the contrary, none of Consider the following: At the same NASA’s recent designs for Moon or time that the Obama administration Mars missions has involved refuel- announced its new policy, NASA gave ing spacecraft from orbital propellant notice that the three key supposedly stations. To insist that future mission “game-changing” inventions it would architects adopt such a strategy is to seek to develop as part of the effort force them to swallow a suboptimal would be the Variable Specific Impulse system design based on an arbitrary Magnetoplasma Rocket (VaSIMR) decision to favor one technology. propulsion drive, orbital space depots, Finally, it is simply not the case that and heavy-lift technology. we need new technologies to create But the VaSIMR thruster, while heavy-lift launch systems. We flew energetically advocated by its inventor our first heavy-lifter, the Saturn V, as supposedly necessary for sending in 1967. What is needed to give us a humans to Mars, offers no clear mission functioning heavy-lift booster now is a benefits over existing ion-drive electric decision to build it—which will never propulsion systems—and both remain come unless there is first a mission to useless as tools for supporting human employ it. exploration missions without the prior Thus, without the guidance supplied development of huge multi-megawatt by a driving mission, under the new space nuclear reactors to power them, Obama space policy, another ten years which is not part of the program. and more than a hundred billion dol- Furthermore, even if such huge space lars will be spent by NASA’s human nuclear-power systems were created, the spaceflight program without achieving claim that VaSIMR (or any other elec- anything significant. We may take part tric thruster) would then enable transit in another twenty flights to low-Earth to Mars with much shorter flight times orbit, but there is no new world there than existing chemical propulsion sys- to explore. Together with the Russians, tems, or even equal flight times to those we have already flown there some available from existing rockets, simply three hundred times over the past half- has no basis in technical reality.
Recommended publications
  • The Case for Mars Subsurface Exploration
    Ninth International Conference on Mars 2019 (LPI Contrib. No. 2089) 6279.pdf THE CASE FOR MARS SUBSURFACE EXPLORATION. L. W. Beegle1, V. Stamenković1, K. Zacny2.1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA. 2Honeybee Robotics, New York, NY, USA. The Martian subsurface is of enormous interest for Orbiters, landers and rovers, especially the two astrobiology, geochemistry, climatology, and In Situ MERs and Curiosity, have delivered data that have revo- Resource Utilization (ISRU) objectives, which cannot lutionized our understanding of ancient Martian surface be addressed with surface missions alone. Specifically, environments. Those data support a rich history of subsurface data are needed to continue the search for groundwater flow and a diverse, and from the surface extinct of extant life started by the Viking landers more very different, world hiding beneath the oxidized surficial than forty years ago and to prepare for human explora- regolith. InSight and future missions like the ExoMars tion. If Mars ever had life, whether it emerged on or and Mars 2020 rovers will aim to extend our knowledge of ancient habitable surface environments, to produce below the surface, then as the atmosphere thinned and unprecedented data on global large-scale interior proper- global temperatures dropped[1], life may have fol- ties, and to inform us about the very shallow Martian lowed the groundwater table to progressively greater regolithic subsurface. However, questions, in particular depths where stable liquid water could persist. At such about whether there ever was or is still life on Mars, how depths, life could have been sustained by hydrothermal the Martian climate changed over long periods of time, activity and rock-water reactions.
    [Show full text]
  • Why NASA Consistently Fails at Congress
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 6-2013 The Wrong Right Stuff: Why NASA Consistently Fails at Congress Andrew Follett College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Political Science Commons Recommended Citation Follett, Andrew, "The Wrong Right Stuff: Why NASA Consistently Fails at Congress" (2013). Undergraduate Honors Theses. Paper 584. https://scholarworks.wm.edu/honorstheses/584 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Wrong Right Stuff: Why NASA Consistently Fails at Congress A thesis submitted in partial fulfillment of the requirement for the degree of Bachelors of Arts in Government from The College of William and Mary by Andrew Follett Accepted for . John Gilmour, Director . Sophia Hart . Rowan Lockwood Williamsburg, VA May 3, 2013 1 Table of Contents: Acknowledgements 3 Part 1: Introduction and Background 4 Pre Soviet Collapse: Early American Failures in Space 13 Pre Soviet Collapse: The Successful Mercury, Gemini, and Apollo Programs 17 Pre Soviet Collapse: The Quasi-Successful Shuttle Program 22 Part 2: The Thin Years, Repeated Failure in NASA in the Post-Soviet Era 27 The Failure of the Space Exploration Initiative 28 The Failed Vision for Space Exploration 30 The Success of Unmanned Space Flight 32 Part 3: Why NASA Fails 37 Part 4: Putting this to the Test 87 Part 5: Changing the Method.
    [Show full text]
  • An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger Depauw University
    DePauw University Scholarly and Creative Work from DePauw University Student research Student Work 2015 An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger DePauw University Follow this and additional works at: http://scholarship.depauw.edu/studentresearch Part of the Economics Commons, and the The unS and the Solar System Commons Recommended Citation Knappenberger, Clayton, "An Economic Analysis of Mars Exploration and Colonization" (2015). Student research. Paper 28. This Thesis is brought to you for free and open access by the Student Work at Scholarly and Creative Work from DePauw University. It has been accepted for inclusion in Student research by an authorized administrator of Scholarly and Creative Work from DePauw University. For more information, please contact [email protected]. An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger 2015 Sponsored by: Dr. Villinski Committee: Dr. Barreto and Dr. Brown Contents I. Why colonize Mars? ............................................................................................................................ 2 II. Can We Colonize Mars? .................................................................................................................... 11 III. What would it look like? ............................................................................................................... 16 A. National Program .........................................................................................................................
    [Show full text]
  • NASA Technical Memorandum 0000
    NASA/TM–2016-219182 Frontier In-Situ Resource Utilization for Enabling Sustained Human Presence on Mars Robert W. Moses and Dennis M. Bushnell Langley Research Center, Hampton, Virginia April 2016 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and technical NASA scientific and technical information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or this important role. co-sponsored by NASA. The NASA STI program operates under the auspices SPECIAL PUBLICATION. Scientific, of the Agency Chief Information Officer. It collects, technical, or historical information from NASA organizes, provides for archiving, and disseminates programs, projects, and missions, often NASA’s STI. The NASA STI program provides access concerned with subjects having substantial to the NTRS Registered and its public interface, the public interest. NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space TECHNICAL TRANSLATION. science STI in the world. Results are published in both English-language translations of foreign non-NASA channels and by NASA in the NASA STI scientific and technical material pertinent to Report Series, which includes the following report NASA’s mission. types: Specialized services also include organizing TECHNICAL PUBLICATION. Reports of and publishing research results, distributing completed research or a major significant phase of specialized research announcements and feeds, research that present the results of NASA providing information desk and personal search Programs and include extensive data or theoretical support, and enabling data exchange services.
    [Show full text]
  • Groundbreaking Mars Sample Return for Science and Human Exploration
    Concepts and Approaches for Mars Exploration (2012) 4119.pdf GROUNDBREAKING MARS SAMPLE RETURN FOR SCIENCE AND HUMAN EXPLORATION. B. A. Cohen, NASA Marshall Space Flight Center, Huntsville AL 35812 ([email protected]). Introduction: Partnerships between science and returned. However, a simpler, “groundbreaking” Mars human exploration have recent heritage for the Moon Sample Return (GMSR) mission has been advanced (Lunar Precursor Robotics Program, LPRP) and near- several times as delivering a significant fraction of earth objects (Exploration Precursor Robotics Pro- important Mars science objectives at a reduced cost. gram, xPRP). Both programs spent appreciable time Such a mission architecture would do double duty for and effort determining measurements needed or de- science and exploration at a price point well within the sired before human missions to these destinations. Mars Next Decade budget. These measurements may be crucial to human health Science. The scientific value of a simplified sample or spacecraft design, or may be desired to better opti- return includes characterizing the igneous products and mize systems designs such as spacesuits or operations. interior evolution of Mars, characterizing surface de- Both LPRP and xPRP recommended measurements positional processes and post-depositional histories, from orbit, by landed missions and by sample return. tying absolute ages to relative crater histories, and de- LPRP conducted the Lunar Reconnaissance Orbiter termining how regolith forms and is modified [5-7]. It (LRO) and Lunar Crater Observation and Sensing Sat- is to be emphasized that the science community would ellite (LCROSS) missions, providing high-resolution not be satisfied with this approach if it were the only visible imagery, surface and subsurface temperatures, sample return mission under consideration for a Mars global topography, mapping of possible water ice de- program; but if it is approached as the first in a series, posits, and the biological effects of radiation [1].
    [Show full text]
  • <0Df6e1d> PDF the Case for Mars: the Plan to Settle the Red Planet
    PDF The Case For Mars: The Plan To Settle The Red Planet And Why We Must Richard Wagner, Arthur C. Clarke, Robert Zubrin - download pdf free book The Case for Mars: The Plan to Settle the Red Planet and Why We Must Free PDF Online, Download PDF The Case for Mars: The Plan to Settle the Red Planet and Why We Must Free Online, The Case for Mars: The Plan to Settle the Red Planet and Why We Must Download PDF, Read Online The Case for Mars: The Plan to Settle the Red Planet and Why We Must Ebook Popular, online free The Case for Mars: The Plan to Settle the Red Planet and Why We Must, Free Download The Case for Mars: The Plan to Settle the Red Planet and Why We Must Books [E-BOOK] The Case for Mars: The Plan to Settle the Red Planet and Why We Must Full eBook, PDF The Case for Mars: The Plan to Settle the Red Planet and Why We Must Free Download, Read The Case for Mars: The Plan to Settle the Red Planet and Why We Must Book Free, Download PDF The Case for Mars: The Plan to Settle the Red Planet and Why We Must Free Online, The Case for Mars: The Plan to Settle the Red Planet and Why We Must Download PDF, PDF The Case for Mars: The Plan to Settle the Red Planet and Why We Must Full Collection, book pdf The Case for Mars: The Plan to Settle the Red Planet and Why We Must, The Case for Mars: The Plan to Settle the Red Planet and Why We Must Download PDF, The Case for Mars: The Plan to Settle the Red Planet and Why We Must Download PDF, Download The Case for Mars: The Plan to Settle the Red Planet and Why We Must E-Books, The Case for Mars: The
    [Show full text]
  • Go Play in Space (Second Edition) © 2006 by Bruce Irving and Andy Mcsorley, All Rights Reserved Space Is Real
    Your Future In Space his final chapter is different from the others, because it is concerned with real space flight, and with some of my own ideas and opinions about the future of space flight, and the future in general. The rest of this manual has been about simulated “playing in space,” T using Orbiter for fun and as a framework to encourage you to explore certain aspects of space flight in a fairly realistic way. If you find this sort of thing to be interesting, and depending on where you are in your schooling or career plans, you might consider doing something that’s connected with real space flight. It could lead to involvement with some of the most interesting and important developments of the next 50 years or so. You could get involved now by joining a space advocacy group. Opinions expressed here about the importance of space for the future of humanity, and on the feasibility of human flights to Mars in the near future, are my own take on various things I have read and thought about. But some aspects of this epilogue were inspired by several writers in particular. The nonfiction writings of Dr. Robert Zubrin and Dr. Raymond Kurzweil, and the writings of science fiction authors Kim Stanley Robinson, John Barnes, Stephen Baxter, and Gregory Benford have been particularly helpful. I will provide references and more detailed credits at the end of this chapter. Mars for Less is a reference mission designed by Grant Bonin for MarsDrive Consortium, a group that is trying to organize other groups and individuals in support of human missions to Mars within the next twenty years.
    [Show full text]
  • Effects and Solutions on the Human Body After Long-Duration Space Flights
    McNair Research Journal SJSU Volume 15 Spring 2019 Article 9 2019 Effects and Solutions on the Human Body After Long-Duration Space Flights Jose Jaime Esquivel Patricio San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/mcnair Part of the Other Aerospace Engineering Commons Recommended Citation Esquivel Patricio, Jose Jaime (2019) "Effects and Solutions on the Human Body After Long-Duration Space Flights," McNair Research Journal SJSU: Vol. 15 , Article 9. Available at: https://scholarworks.sjsu.edu/mcnair/vol15/iss1/9 This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in McNair Research Journal SJSU by an authorized editor of SJSU ScholarWorks. For more information, please contact [email protected]. Esquivel Patricio: Effects and Solutions on the Human Body After Long-Duration Space Biography Jaime is a first-generation student pursuing a B.S. in Aerospace Engineering with a Minor in Astronomy. His research focuses on the effects of microgravity on astronauts in order to find solutions for long-duration space flights to Mars. After graduating, he plans to attend graduate school to continue his dream of making humans an interplanetary species. He believes the purpose of engineering goes beyond making people’s lives easier. When used sensibly, human history demonstrates engineering can propel humanity into unimaginable new boundaries. He Jose Jaime Esquivel developed his mission to promote higher education among Patricio underrepresented groups in his community and advocate for more Major: students to pursue a career in Aerospace Engineering STEM. His belief is that if we only have one life; to make our lives Mentor: more meaningful, we should strive Taylor-Dawn Francis to make this world better and to serve the community.
    [Show full text]
  • Getting Space Exploration Right Robert Zubrin
    Getting Space Exploration Right Robert Zubrin In early 2004, President George W. Bush delivered a major policy speech charting a new course for the National Aeronautics and Space Administration (NASA). Instead of focusing on perfecting flight to and operations in low Earth orbit, the space agency would henceforth set its sights on a return to the Moon and then “human missions to Mars and to worlds beyond.” The president’s move was a direct response to concerted criticism of the nation’s space policy following the shuttle Columbia acci- dent of February 2003. Numerous members of Congress had decried the fact that the U.S. manned space program had gone adrift, spending huge amounts of money and putting lives at risk without any discernable objective. Accordingly, in a reversal of previous administration pro- nouncements, the new “Vision for Space Exploration” was created to pose grand goals for America in space. There is no doubt that a radical policy shift was in order. During the first dozen years of its existence, NASA took the nation from having no space capability to landing humans on the Moon, but since then, the manned space program has been stuck in low Earth orbit. Clearly, three decades of stagnation are enough. The question is whether the new poli- cy is adequate to remedy the problems that have mired the space program in confusion and impotence, or whether it will amount to nothing. What needs to be done to make the Bush vision real? To answer this question, we need to examine NASA’s fundamental mode of operation, and see how the new policy bears on the organization’s pathology.
    [Show full text]
  • Strategic Implications of Phobos As a Staging Point for Mars Surface Missions Bret G
    Strategic Implications of Phobos as a Staging Point for Mars Surface Missions Bret G. Drake Michelle A. Rucker Alicia Dwyer Cianciolo The Aerospace Corporation NASA Johnson Space Center NASA Langley Research Center 2310 E El Segundo Blvd 2101 NASA Parkway 1 NASA Drive El Segundo, CA 90245 Houston, TX 77058 Hampton, VA 23681 [email protected] [email protected] [email protected] [email protected] Abstract— As human exploration endeavors begin to set sights beyond low Earth orbit to the surface of the Moon, exploration of the surface of Mars continues to serve as the “horizon destination” to help focus development and research efforts. One Mars exploration strategy often discussed is the notion of utilizing the moons of Mars, namely Phobos, as an exploration destination prior to Mars surface missions. The premise behind this is that staging missions from Mars’ moons as well as exploring the moons themselves would be less costly and risky. However, understanding potential advantages of Phobos staging and exploration must be done in the context of the overall end-to-end Mars surface exploration needs, goals, objectives, campaign approach, and systems required. This paper examines the strategic implications of utilizing the moons of Mars as a potential location for exploration of Mars. Operational concepts utilizing both Phobos and Mars orbital strategies will be examined to understand the architectural impacts of this staging strategy. The strategic implications of each operational concept are assessed to determine the overall key challenges and strategic links to other exploration destinations. Results from this analysis indicate that, if the objective is to conduct Mars surface missions, utilizing Phobos as an exploration destination adds little benefit toward the goal of exploration of Mars.
    [Show full text]
  • Generalizable Skills and Knowledge for Exploration Missions
    NASA/CR-2018-220445 Generalizable Skills and Knowledge for Exploration Missions Jack Stuster, PhD, CPE Anacapa Sciences, Inc. Santa Barbara, California Jurine Adolf, PhD Vicky Byrne, MS Maya Greene, PhD KBRwyle Johnson Space Center Houston, Texas National Aeronautics and Space Administration Johnson Space Center Houston, Texas 77058 July 2019 NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and NASA scientific and technical information (STI) technical conferences, symposia, seminars, program plays a key part in helping NASA or other meetings sponsored or maintain this important role. co-sponsored by NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information Officer. technical, or historical information from It collects, organizes, provides for archiving, and NASA programs, projects, and missions, disseminates NASA’s STI. The NASA STI often concerned with subjects having program provides access to the NTRS Registered substantial public interest. and its public interface, the NASA Technical Report Server, thus providing one of the largest • TECHNICAL TRANSLATION. collections of aeronautical and space science STI in English-language translations of foreign the world. Results are published in both non-NASA scientific and technical material pertinent to channels and by NASA in the NASA STI Report NASA’s mission. Series, which includes the following report types: Specialized services also include organizing • TECHNICAL PUBLICATION. Reports of and publishing research results, distributing completed research or a major significant specialized research announcements and feeds, phase of research that present the results of providing information desk and personal search NASA Programs and include extensive data or support, and enabling data exchange services.
    [Show full text]
  • Prospectives in Deep Space Infrastructures, Development, and Colonization
    NASA/TM–2020-220442 Prospectives in Deep Space Infrastructures, Development, and Colonization Dennis M. Bushnell and Robert W. Moses Langley Research Center, Hampton,Virginia February 2020 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and technical NASA scientific and technical information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or this important role. co-sponsored by NASA. The NASA STI program operates under the auspices SPECIAL PUBLICATION. Scientific, of the Agency Chief Information Officer. It collects, technical, or historical information from NASA organizes, provides for archiving, and disseminates programs, projects, and missions, often NASA’s STI. The NASA STI program provides access concerned with subjects having substantial to the NTRS Registered and its public interface, the public interest. NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space TECHNICAL TRANSLATION. science STI in the world. Results are published in both English-language translations of foreign non-NASA channels and by NASA in the NASA STI scientific and technical material pertinent to Report Series, which includes the following report NASA’s mission. types: Specialized services also include organizing TECHNICAL PUBLICATION. Reports of and publishing research results, distributing completed research or a major significant phase of specialized research announcements and feeds, research that present the results of NASA providing information desk and personal search Programs and include extensive data or theoretical support, and enabling data exchange services. analysis. Includes compilations of significant scientific and technical data and information For more information about the NASA STI program, deemed to be of continuing reference value.
    [Show full text]