Andrew-Shayler-Salmon-Marswalk-One-First-Steps-On-A-New-Planet.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Andrew-Shayler-Salmon-Marswalk-One-First-Steps-On-A-New-Planet.Pdf Marswalk One First Steps on a New Planet David J. Shayler, Andrew Salmon and Michael D. Shayler Mars walk One First Steps on a New Planet Published in association with ^ Springer Praxis Publishing pR Chichester, UK David J. Shayler, FBIS Andrew Salmon, BSc (Hon) Michael D. Shayler Astronautical Historian Space Writer Editor and Designer Astro Info Service Astronautics News Astro Info Service Halesowen Smethwick Hall Green West Midlands West Midlands Birmingham UK UK UK SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION SUBJECT ADVISORY EDITOR: John Mason B.Sc, M.Sc, Ph.D. ISBN 1-85233-792-3 Springer Berlin Heidelberg New York Springer is a part of Springer Science + Business Media (springeronline.com) Library of Congress Control Number: 2005922813 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. © Copyright, 2005 Praxis Publishing Ltd. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Jim Wilkie Copy editing and graphics processing: R. A. Marriott Typesetting: BookEns Ltd, Royston, Herts., UK Printed in Germany on acid-free paper Printing: Mercedes-Druck, Berlin Binding: Stein+Lehmann, Berlin This book is dedicated to the lasting memory of William HJ. Salmon (1924-1985) and Derek J. Shayler (1927-2002) *v 'Magnificent desolation' - a view of Mars' terrain and horizon, from Spirit, 2004 'Man's first step on Mars will be no less exciting than Neil Armstrong's first step on the Moon' Wernher von Braun, from his Manned Mars Landing presentation to the Space Task Group on 4 August 1969, two weeks after Neil Armstrong took his 'small step' on the Moon Other books by David J. Shayler in this series Disasters and Accidents in Manned Spaceflight (2000), ISBN 1-85233-225-5 Skylab: Americas Space Station (2001), ISBN 1-85233-407-X Gemini: Steps to the Moon (2001), ISBN 1-85233-405-3 Apollo: The Lost and Forgotten Missions (2002), ISBN 1-85233-575-0 Walking in Space (2004), ISBN 1-85233-710-9 With Rex D. Hall The Rocket Men (2001), ISBN 1-85233-391-X Soyuz: A Universal Spacecraft (2003), ISBN 1-85233-657-9 With Ian A. Moule Women in Space: Following Valentina (2005), ISBN 1-85233-744-3 Table of contents Foreword xiii Authors' preface xvii Acknowledgements xix List of illustrations xxi Prologue xxiii DESTINATION MARS 1 Time and motion study 2 Orbital close-up 3 Home from home 4 Observing Mars 6 A rusty planet 6 Something in the air 7 On the ground 9 Mountain high 10 Grand canyons 12 Channels and valleys 12 Ice caps 13 Phobos and Deimos 14 Prospects for landing 17 References 18 HISTORY OF MARS EXPLORATION 20 Boldly sending, not boldly going 20 Robotics 21 Early attempts 21 1965: Mariner 4 22 1969: the Moon and Mars 22 1971: Mariner 9, and some success for the USSR 23 1974: Red Fleet 25 1976: Viking invasion 27 viii Table of contents 1989: a different target 28 The 1990s: mixed fortunes 29 Mars Pathfinder and Mars Global Surveyor 29 A new player 31 American setbacks 32 Mars Odyssey 33 Another new kid on the block 33 Rovers hit the ground 'on the bounce' 34 Future plans 35 Safe landing sites 35 Where do we go first? 35 Landing sites 36 Information is everything 39 Scientific influences on the choice of landing sites 41 References 42 VOYAGE TO MARS 43 Training 44 Mars on Earth 44 Equipment and procedures 47 Way stations to Mars 47 Life in low gravity 48 Tools for the job 49 The crew 51 Human skills 51 The university of life 52 The value of an engineer 53 The journey to Mars 54 Crossing the void 55 Celestial mechanics 57 Keeping the kids amused 58 Medical implications 60 Mind over matter 61 Radiation 62 EVA on the way 63 Arrival at Mars 63 Approach speed 63 Heavy pressure 64 Orbital operations 65 Science from Mars orbit 65 Work by the astronauts in orbit 67 Telerobotics 68 To land, or not to land 70 Communications 70 TDRS, or ground stations 70 Table of contents ix Areocentric satellites 71 Solar conjunction interference 71 Spacecraft communications 72 References 72 EVOLUTION OF A MARSWALK 75 Concepts for a Marswalk 75 Das Marsprojekt 75 Cosmonauts on Mars by 1969? 76 Early NASA plans, 1960-64 77 The golden era, 1968-71 78 Mars in a new light 82 Mars Direct 84 How long to stay? 86 Hazards for EVA on Mars 88 The 1989 study report 89 NASA's Mars Reference Mission 90 Walk the walk 91 2001: a Mars workshop 91 Drawing on four decades of experience 93 2004: a new spirit of discovery 94 References 94 WARDROBE FOR MARS 97 New technology using old ideas 97 Walking on the wild side 97 Which way to go? 99 From surface to sea bed 100 Advantages and disadvantages of atmospheric diving suits 103 From sea to space 105 Ultimate high-altitude pressure suits and cabins 105 Surface exploration suit development 106 Suited for Apollo 107 Suited for the Moon 110 Early hard suits for space Ill The RX suit programme 112 Suited for Space Shuttle and space station 117 Soviet developments 118 The first planetary EVA suit 119 Physical and environmental limitations 119 Information technology 121 New ideas for a new goal 121 Scenarios for EVA suit utilisation 124 Considerations for access to and from the martian surface 125 Developments towards a Mars EVA suit 127 x Table of contents Zvezda evaluations 127 The I, D and H demonstration suits 127 Support technologies 128 Mars suit requirements 129 References 131 SURFACE EXPLORATION 133 Potential crew activities on Mars 133 Learning from Apollo 135 A study in surface activities 140 Crew-member suggestions 141 Initial surface activities 142 Mission control in orbit 142 Why 90 days? 143 Surface exploration: 1989 study plans 144 Definition of a Mars EVA task 144 Planning the EVAs 145 Achieving the objectives 147 Operational requirements 150 Hypothetical scenario 151 EVA on Mars: the operational issues 154 Early extended expeditions 154 EVA planning 157 Communications 160 EVA communications 161 Field camps 162 Field geology 163 EVA support 164 Robots on surface traverses 164 Partners working together 166 The dangers of EVA 167 Hazards on Mars 168 Dust-storms 168 Radiation 169 Medical considerations 169 Mobility 170 References 171 SCIENCE ON THE SURFACE 173 Areas of research 173 A reason to go 174 Tools of the trade 174 Surface science and applications 175 The geosciences 178 Weather and climate 179 Table of contents xi Upper atmospheric physics 180 Dust 180 Radiation 181 Equipment 181 Surface science packages 181 Comparison of ALSEP and MSEP 182 Lander science laboratory 186 Laboratory design 186 Sample analysis in the laboratory 187 Sample collection on Mars 187 Microscopes 188 Learning and returning 188 Science on traverses 189 Size of the field party 189 Other considerations 189 Justification for human scientists on Mars 190 References 192 LIVING THE DREAM 193 Crew training 193 Hardware 196 Habitation on Mars 196 The working environment 199 Life support systems 200 The working day 202 Medical considerations 203 Hygiene 204 Clothing 205 Food preparation and meals 206 Waste disposal 208 Sleep 210 Storage 211 Communications 211 Leisure time 213 Mechanics and repairs 215 Learning to live in space 216 References 217 THE RETURN 219 The return to Earth 219 Pre-departure operations 219 Coming home 220 Public affairs at home 222 Martian samples 222 Analysis 223 xii Table of contents Contamination 224 The return to Mars 225 Beyond Mars 226 References 228 Chronology 229 Bibliography 237 Index 241 Foreword On 14 January 2004, President George W. Bush appeared before employees at NASA headquarters and announced 'a new plan to explore space and extend a human presence across our Solar System.' This initiative energises and refocuses NASA on new goals that include manned missions to the Moon by 2015 and a permanent lunar base by 2020, with Mars as an ultimate objective. The President stated: 'We will build new ships to carry men forward into the universe, to gain a new foothold on the Moon, and to prepare for new journeys to worlds beyond our own.' The schedule presented calls for a new Crew Exploration Vehicle (CEV) to be developed and tested by 2008, for robotic rovers to begin exploring the lunar surface, and for the International Space Station (ISS) to be completed, and the Space Transportation System (Space Shuttle) to be retired by 2010. The CEV is to begin human space flight by 2014, and return to the Moon and establish a lunar base between the years 2015 and 2020. Missions to Mars would commence beyond 2020. To assist NASA, the President named Edward 'Pete' Aldridge, former Secretary of the Air Force, to be Chairman of the new Space Exploration Commission. The Chairman and his Commission had 120 days to make recommendations to President Bush. Aldridge has stated that priorities will certainly touch on affordability, the talent base at NASA, and contributions by other countries and commercial enterprises.
Recommended publications
  • The Case for Mars Subsurface Exploration
    Ninth International Conference on Mars 2019 (LPI Contrib. No. 2089) 6279.pdf THE CASE FOR MARS SUBSURFACE EXPLORATION. L. W. Beegle1, V. Stamenković1, K. Zacny2.1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA. 2Honeybee Robotics, New York, NY, USA. The Martian subsurface is of enormous interest for Orbiters, landers and rovers, especially the two astrobiology, geochemistry, climatology, and In Situ MERs and Curiosity, have delivered data that have revo- Resource Utilization (ISRU) objectives, which cannot lutionized our understanding of ancient Martian surface be addressed with surface missions alone. Specifically, environments. Those data support a rich history of subsurface data are needed to continue the search for groundwater flow and a diverse, and from the surface extinct of extant life started by the Viking landers more very different, world hiding beneath the oxidized surficial than forty years ago and to prepare for human explora- regolith. InSight and future missions like the ExoMars tion. If Mars ever had life, whether it emerged on or and Mars 2020 rovers will aim to extend our knowledge of ancient habitable surface environments, to produce below the surface, then as the atmosphere thinned and unprecedented data on global large-scale interior proper- global temperatures dropped[1], life may have fol- ties, and to inform us about the very shallow Martian lowed the groundwater table to progressively greater regolithic subsurface. However, questions, in particular depths where stable liquid water could persist. At such about whether there ever was or is still life on Mars, how depths, life could have been sustained by hydrothermal the Martian climate changed over long periods of time, activity and rock-water reactions.
    [Show full text]
  • Why NASA Consistently Fails at Congress
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 6-2013 The Wrong Right Stuff: Why NASA Consistently Fails at Congress Andrew Follett College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Political Science Commons Recommended Citation Follett, Andrew, "The Wrong Right Stuff: Why NASA Consistently Fails at Congress" (2013). Undergraduate Honors Theses. Paper 584. https://scholarworks.wm.edu/honorstheses/584 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Wrong Right Stuff: Why NASA Consistently Fails at Congress A thesis submitted in partial fulfillment of the requirement for the degree of Bachelors of Arts in Government from The College of William and Mary by Andrew Follett Accepted for . John Gilmour, Director . Sophia Hart . Rowan Lockwood Williamsburg, VA May 3, 2013 1 Table of Contents: Acknowledgements 3 Part 1: Introduction and Background 4 Pre Soviet Collapse: Early American Failures in Space 13 Pre Soviet Collapse: The Successful Mercury, Gemini, and Apollo Programs 17 Pre Soviet Collapse: The Quasi-Successful Shuttle Program 22 Part 2: The Thin Years, Repeated Failure in NASA in the Post-Soviet Era 27 The Failure of the Space Exploration Initiative 28 The Failed Vision for Space Exploration 30 The Success of Unmanned Space Flight 32 Part 3: Why NASA Fails 37 Part 4: Putting this to the Test 87 Part 5: Changing the Method.
    [Show full text]
  • An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger Depauw University
    DePauw University Scholarly and Creative Work from DePauw University Student research Student Work 2015 An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger DePauw University Follow this and additional works at: http://scholarship.depauw.edu/studentresearch Part of the Economics Commons, and the The unS and the Solar System Commons Recommended Citation Knappenberger, Clayton, "An Economic Analysis of Mars Exploration and Colonization" (2015). Student research. Paper 28. This Thesis is brought to you for free and open access by the Student Work at Scholarly and Creative Work from DePauw University. It has been accepted for inclusion in Student research by an authorized administrator of Scholarly and Creative Work from DePauw University. For more information, please contact [email protected]. An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger 2015 Sponsored by: Dr. Villinski Committee: Dr. Barreto and Dr. Brown Contents I. Why colonize Mars? ............................................................................................................................ 2 II. Can We Colonize Mars? .................................................................................................................... 11 III. What would it look like? ............................................................................................................... 16 A. National Program .........................................................................................................................
    [Show full text]
  • 2020 Crew Health & Performance EVA Roadmap
    NASA/TP-20205007604 Crew Health and Performance Extravehicular Activity Roadmap: 2020 Andrew F. J. Abercromby1 Omar Bekdash4 J. Scott Cupples1 Jocelyn T. Dunn4 E. Lichar Dillon2 Alejandro Garbino3 Yaritza Hernandez4 Alexandros D. Kanelakos1 Christine Kovich5 Emily Matula6 Matthew J. Miller7 James Montalvo6 Jason Norcross4 Cameron W. Pittman7 Sudhakar Rajulu1 Richard A. Rhodes1 Linh Vu8 1NASA Johnson Space Center, Houston, Texas 2University of Texas Medical Branch, Galveston, Texas 3GeoControl Systems Inc., Houston, Texas 4KBR, Houston, Texas 5The Aerospace Corporation, Houston, Texas 6Stinger Ghaffarian Technologies (SGT) Inc., Houston, Texas 7Jacobs Technology, Inc., Houston, Texas 8MEI Technologies, Inc., Houston, Texas National Aeronautics and Space Administration Johnson Space Center Houston, Texas 77058 October 2020 The NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and NASA scientific and technical information (STI) technical conferences, symposia, seminars, program plays a key part in helping NASA or other meetings sponsored or maintain this important role. co-sponsored by NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information Officer. technical, or historical information from It collects, organizes, provides for archiving, and NASA programs, projects, and missions, disseminates NASA’s STI. The NASA STI often concerned with subjects having program provides access to the NTRS Registered substantial public interest. and its public interface, the NASA Technical Report Server, thus providing one of the largest • TECHNICAL TRANSLATION. collections of aeronautical and space science STI in English-language translations of foreign the world. Results are published in both non-NASA scientific and technical material pertinent to channels and by NASA in the NASA STI Report NASA’s mission.
    [Show full text]
  • This Preview Includes the Entire Resource. the Teacher Information
    This preview includes the entire resource. The teacher information pages and two of the student pages are unmarked so that you can try before you buy! I I Literacy is a challenging, quick, and fun way to reinforce ELA and reading skills. Each page features a different theme, so not only will your students be practicing skills, they will also be learning about curriculum-based, high-interest topics. Each page has its own unique design, so students will never get bored seeing the same old thing over and over. While each page is different, they do have some elements in common. Each page features: • 6 standards-based ELA/Reading activities, each in its own space. Activities are numbered for easy reference. • An open-ended bonus activity, marked by a star, at the bottom of the page to be completed on the backside. Perfect for fast finishers, as homework, or extra credit. • A short reading passage with one or two text-dependent questions. Most of the passages are informational text (written by a published author of over 100 nonfiction books for children), but a few are fictional – just to shake things up. The questions are more closely aligned to close reading than simple comprehension. • A theme-based joke or fun fact (joke answers can be found upside down in the bottom right hand corner). • A list of the skills addressed at the bottom (indicated by a picture of a nail – which stands for “nailed it!”) This list repeats in the table of contents for easy reference. • A picture of a whale in the upper right corner simply because it is so adorable.
    [Show full text]
  • Going Nowhere Why President Obama Must Give NASA a Destination
    A Survey of Technology and Society Going Nowhere Why President Obama Must Give NASA a Destination aint Augustine famously wrote President Obama in early 2009 to in his Confessions that, as a young head a committee revisiting the plans Sman, he had prayed, “Lord make for NASA developed in the wake of the me chaste, but not yet.” Some sixteen 2003 Columbia accident. Those plans centuries later, another Augustine— involved the retirement of the space Norm Augustine, the head of a commit- shuttle by 2010 and its replacement tee deciding NASA’s future—may have with a new architecture for sending taken inspiration from his namesake astronauts to orbit, the Moon, and ulti- when he announced that he wants the mately Mars. Dubbed Constellation, United States to have a bold manned this new architecture would include space exploration program, but not yet. new rockets and spacecraft, both of Augustine, the former CEO of which NASA spent several years and Lockheed Martin, was selected by billions of dollars designing. Spring 2010 ~ 109 Copyright 2010. All rights reserved. See www.TheNewAtlantis.com for more information. State of the Art In its final report, published in Obama approach. For instance, Burt October 2009, the Augustine committee Rutan, the respected engineer whose called for cancelling the Constellation SpaceShipOne won the Ansari X-Prize program’s drive to return to the Moon in 2004, has suggested that the Obama by 2020. Augustine and his colleagues proposal amounts to “a surrender of further noted that while “Mars is the our preeminence
    [Show full text]
  • Complex Garment Systems to Survive in Outer Space
    Volume 7, Issue 2, Fall 2011 Complex Garment Systems to Survive in Outer Space Debi Prasad Gon, Assistant Professor, Textile Technology, Panipat Institute of Engineering & Technology, Pattikalyana, Samalkha, Panipat, Haryana, INDIA [email protected] Palash Paul, Assistant Professor, Textile Technology, Panipat Institute of Engineering & Technology, Pattikalyana, Samalkha, Panipat, Haryana, INDIA ABSTRACT The success of astronauts in performing Extra-Vehicular Activity (EVA) is highly dependent on the performance of the spacesuit they are wearing. Since the beginning of the Space Shuttle Program, one basic suit design has been evolving. The Space Shuttle Extravehicular Mobility Unit (EMU) is a waist entry suit consisting of a hard upper torso (HUT) and soft fabric mobility joints. The EMU was designed specifically for zero gravity operations. With a new emphasis on planetary exploration, a new EVA spacesuit design is required. Now the research scientists are working hard and striving for the new, lightweight and modular designs. Thus they have reached to the Red surface of Mars. And sooner or later the astronauts will reach the other planets too. This paper is a review of various types of spacesuits and the different fabrics required for the manufacturing of the same. The detailed construction of EMU and space suit for Mars is discussed here, along with certain concepts of Biosuit- Mechanical Counter pressure Suit. Keywords: Extra-Vehicular Activity (EVA), spacesuits, Biosuit-Mechanical Counter pressure Suit Tissues (skin, heart,
    [Show full text]
  • NASA Technical Memorandum 0000
    NASA/TM–2016-219182 Frontier In-Situ Resource Utilization for Enabling Sustained Human Presence on Mars Robert W. Moses and Dennis M. Bushnell Langley Research Center, Hampton, Virginia April 2016 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and technical NASA scientific and technical information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or this important role. co-sponsored by NASA. The NASA STI program operates under the auspices SPECIAL PUBLICATION. Scientific, of the Agency Chief Information Officer. It collects, technical, or historical information from NASA organizes, provides for archiving, and disseminates programs, projects, and missions, often NASA’s STI. The NASA STI program provides access concerned with subjects having substantial to the NTRS Registered and its public interface, the public interest. NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space TECHNICAL TRANSLATION. science STI in the world. Results are published in both English-language translations of foreign non-NASA channels and by NASA in the NASA STI scientific and technical material pertinent to Report Series, which includes the following report NASA’s mission. types: Specialized services also include organizing TECHNICAL PUBLICATION. Reports of and publishing research results, distributing completed research or a major significant phase of specialized research announcements and feeds, research that present the results of NASA providing information desk and personal search Programs and include extensive data or theoretical support, and enabling data exchange services.
    [Show full text]
  • Abort Capabilities from Manned Mars Missions in 1986 David Harold Kruse Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1967 Abort capabilities from manned Mars missions in 1986 David Harold Kruse Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Aerospace Engineering Commons Recommended Citation Kruse, David Harold, "Abort capabilities from manned Mars missions in 1986 " (1967). Retrospective Theses and Dissertations. 3190. https://lib.dr.iastate.edu/rtd/3190 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 6 8-5961 KRUSE, David Harold, 1941- ABORT CAPABILITIES FROM MANNED MARS MISSIONS IN 1986. Iowa State University, Ph.D., 1967 Engineering, aeronautical University Microfilms, Inc., Ann Arbor, Michigan ABORT CAPABILITIES PROM MANNED MARS MISSIONS IN I986 by David Harold Kruse A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirement for the Degree of DOCTOR OP PHILOSOPHY Major Subjects: Aerospace Engineering Mechanical Engineering Approved: Signature was redacted for privacy. :n'Charge or Major work Signature was redacted for privacy. Heads of Major Departments Signature was redacted for privacy. Dèan of Gradua' Iowa State University Of Science and Technology Ames, Iowa 1967 ii TABLE OF CONTENTS Page I. INTRODUCTION 1 A. Necessity for Rescue Research 1 B. Previous Work 3 C. Problem Definition 7 D.
    [Show full text]
  • Mars One Applicant Study Material Booklet
    COMPILED BY MICHAEL GRUNDLING Index: PAGE WHAT ’S THE HISTORIC SUCCESS RATE OF MISSIONS TO MARS ............................................................... 3 THE ROADMAP ..................................................................................................................................... 5 WHAT HAPPENS AFTER THE FIRST HUMANS ’ ARRIVAL ON MARS ? ............................................................. 11 WILL THE MISSION BE HARMFUL TO MARS ’ ENVIRONMENT ? ..................................................................... 12 IS THIS A SUSTAINABLE MISSION ?........................................................................................................... 13 WHAT GOVERNMENTAL SYSTEM AND SOCIAL STRUCTURE WILL BE IMPLEMENTED ON MARS ? .................... 14 WHAT WILL THE ASTRONAUTS DO ON MARS ? ......................................................................................... 15 WHAT ARE THE RISKS OF DUST AND SAND ON MARS ? ............................................................................. 17 IS IT SAFE TO LIVE ON MARS ? ................................................................................................................ 19 HOW SAFE IS THE JOURNEY ? ................................................................................................................. 20 HOW LONG DOES IT TAKE TO TRAVEL TO MARS ? .................................................................................... 21 WHY MARS , AND NOT ANOTHER PLANET ? .............................................................................................
    [Show full text]
  • Copyright © 2006 by Douglas W. Gage. Published by the Mars Society with Permission
    Copyright © 2006 by Douglas W. Gage. Published by The Mars Society with permission BEGIN HIGH FIDELITY MARS SIMULATIONS NOW! Douglas W. Gage XPM Technologies - [email protected] ABSTRACT While analog environments (e.g., Antarctica) and mission experiments (e.g., FMARS, MDRS) are useful, a long term, logically sequenced series of experiments and evaluations in faithfully simulated Mars (outdoor) and Mars habitat (indoor) environments is an absolute prerequisite for manned missions to Mars. Mars suit pressure should be minimized in order to simplify suit design, and habitat pressure should also be minimized, to eliminate "EVA" prebreathing and to reduce structural stress. But we need to experimentally establish the long-term health implications of living in such an atmosphere before we make irrevocable design decisions. This will require a habitat simulation facility that operates continuously for years. Coupling the habitat simulation with a Martian surface simulation (Martian atmospheric pressure and composition, temperature, lighting, wind, dust, and analog-regolith) will support the long term evolutionary development cycle of all types of systems and processes: equipment reliability testing, development of techniques and procedures (e.g., repair, emergency survival), mission plan development and validation, and then later crew training and mission rehearsal. Finally, after launch, the facility will be used to "shadow" actual mission operations. For these purposes we need high fidelity simulation facilities, not just rough analogs. Apart from reduced gravity and radiation, we can provide very high fidelity right here on earth, at costs much lower than in space or on the moon. The time to start is now! INTRODUCTION Sending humans to Mars is the capstone specific goal identified for the “Vision for Space Exploration” promulgated by President Bush [1].
    [Show full text]
  • Musculoskeletal Human-Spacesuit Interaction Model
    Musculoskeletal Human-Spacesuit Interaction Model Ana Diaz Dava Newman Massachusetts Institute of Technology Massachusetts Institute of Technology 77 Massachusetts Avenue 77 Massachusetts Avenue Cambridge, MA 02139 Cambridge, MA 02139 617-909-0644 617-258-8799 [email protected] [email protected] Abstract—Extravehicular Activity (EVA) is a highly demanding episodes that could affect astronauts’ performance in a space activity during space missions. The current NASA spacesuit, the mission [1, 2]. Extravehicular Mobility Unit (EMU), might be thought of as the ‘world’s smallest spacecraft’ and is quite an engineering The EMU is pressurized to 29.6 KPa, using 100% oxygen for achievement. However, the EMU has also led to discomfort and spaceflight and a mixture of nitrogen and oxygen (nitrox) for musculoskeletal injuries, mainly due to the lack of mobility in training. It is made with 14 different layers, and it consists of the pressurized suit that makes moving and operating within the suit challenging. A new musculoskeletal modeling framework is three main components [3], as shown in Figure 1: developed in OpenSim to analyze human-spacesuit interaction and musculoskeletal performance during EVA. Two spacesuits - The Liquid Cooling and Ventilation Garment are considered: the current EMU and NASA’s Mark III (LCVG). This piece of garment made of nylon and spacesuit technology demonstrator. In the model, the effect of spandex covers the whole body and its main the spacesuits is represented as external torques applied to the objective is to eliminate the excess body heat by human body, based on experimental data. Muscle forces during water circulation through the garment.
    [Show full text]