Comparative Assessment of Human-Mars-Mission Technologies and Architectures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mars Scenario-Based Visioning: Logisitical Optimization of Transportation Architectures
MARS SCENARIO-BASED VISIONING: LOGISITICAL OPTIMIZATION OF TRANSPORTATION ARCHITECTURES GEORGIA INSTITUTE OF TECHNOLOGY Contributors: Ashraf Charania Kris Cowart Brad St. Germain Tadashi Sakai Roberto Salinas Kirk Sorensen Jeffrey Tooley Shannan Wilson Advisor: Dr. John R. Olds Assistant Professor, School of Aerospace Engineering Director, Space Systems Design Lab (SSDL) Georgia Institute of Technology ABSTRACT The purpose of this conceptual design investigation is to examine transportation forecasts for future human missions to Mars. Scenario-Based Visioning is used to generate possible future demand projections. These scenarios are then coupled with availability, cost, and capacity parameters for indigenously designed Mars Transfer Vehicles (solar electric, nuclear thermal, and chemical propulsion types) and Earth-to-Orbit launch vehicles (current, future, and indigenous) to provide a cost-conscious dual-phase launch manifest to meet such future demand. A simulator named M-SAT (Mars Scenario Analysis Tool) is developed using this method. This simulation is used to examine three specific transportation scenarios to Mars: a limited "flags and footprints" mission, a more ambitious scientific expedition similar to an expanded version of the Design Reference Mission from NASA, and a long-term colonization scenario. Initial results from the simulation indicate that chemical propulsion systems might be the architecture of choice for all three scenarios. With this mind, "what if" analyses were performed which indicated that if nuclear production costs were reduced by 30% for the colonization scenario, then the nuclear architecture would have a lower life cycle cost than the chemical. Results indicate that the most cost-effective solution to the Mars transportation problem is to plan for segmented development, this involves development of one vehicle at one opportunity and derivatives of that vehicle at subsequent opportunities. -
An Assessment of Aerocapture and Applications to Future Missions
Post-Exit Atmospheric Flight Cruise Approach An Assessment of Aerocapture and Applications to Future Missions February 13, 2016 National Aeronautics and Space Administration An Assessment of Aerocapture Jet Propulsion Laboratory California Institute of Technology Pasadena, California and Applications to Future Missions Jet Propulsion Laboratory, California Institute of Technology for Planetary Science Division Science Mission Directorate NASA Work Performed under the Planetary Science Program Support Task ©2016. All rights reserved. D-97058 February 13, 2016 Authors Thomas R. Spilker, Independent Consultant Mark Hofstadter Chester S. Borden, JPL/Caltech Jessie M. Kawata Mark Adler, JPL/Caltech Damon Landau Michelle M. Munk, LaRC Daniel T. Lyons Richard W. Powell, LaRC Kim R. Reh Robert D. Braun, GIT Randii R. Wessen Patricia M. Beauchamp, JPL/Caltech NASA Ames Research Center James A. Cutts, JPL/Caltech Parul Agrawal Paul F. Wercinski, ARC Helen H. Hwang and the A-Team Paul F. Wercinski NASA Langley Research Center F. McNeil Cheatwood A-Team Study Participants Jeffrey A. Herath Jet Propulsion Laboratory, Caltech Michelle M. Munk Mark Adler Richard W. Powell Nitin Arora Johnson Space Center Patricia M. Beauchamp Ronald R. Sostaric Chester S. Borden Independent Consultant James A. Cutts Thomas R. Spilker Gregory L. Davis Georgia Institute of Technology John O. Elliott Prof. Robert D. Braun – External Reviewer Jefferey L. Hall Engineering and Science Directorate JPL D-97058 Foreword Aerocapture has been proposed for several missions over the last couple of decades, and the technologies have matured over time. This study was initiated because the NASA Planetary Science Division (PSD) had not revisited Aerocapture technologies for about a decade and with the upcoming study to send a mission to Uranus/Neptune initiated by the PSD we needed to determine the status of the technologies and assess their readiness for such a mission. -
The Case for Mars Subsurface Exploration
Ninth International Conference on Mars 2019 (LPI Contrib. No. 2089) 6279.pdf THE CASE FOR MARS SUBSURFACE EXPLORATION. L. W. Beegle1, V. Stamenković1, K. Zacny2.1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA. 2Honeybee Robotics, New York, NY, USA. The Martian subsurface is of enormous interest for Orbiters, landers and rovers, especially the two astrobiology, geochemistry, climatology, and In Situ MERs and Curiosity, have delivered data that have revo- Resource Utilization (ISRU) objectives, which cannot lutionized our understanding of ancient Martian surface be addressed with surface missions alone. Specifically, environments. Those data support a rich history of subsurface data are needed to continue the search for groundwater flow and a diverse, and from the surface extinct of extant life started by the Viking landers more very different, world hiding beneath the oxidized surficial than forty years ago and to prepare for human explora- regolith. InSight and future missions like the ExoMars tion. If Mars ever had life, whether it emerged on or and Mars 2020 rovers will aim to extend our knowledge of ancient habitable surface environments, to produce below the surface, then as the atmosphere thinned and unprecedented data on global large-scale interior proper- global temperatures dropped[1], life may have fol- ties, and to inform us about the very shallow Martian lowed the groundwater table to progressively greater regolithic subsurface. However, questions, in particular depths where stable liquid water could persist. At such about whether there ever was or is still life on Mars, how depths, life could have been sustained by hydrothermal the Martian climate changed over long periods of time, activity and rock-water reactions. -
Why NASA Consistently Fails at Congress
W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 6-2013 The Wrong Right Stuff: Why NASA Consistently Fails at Congress Andrew Follett College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Political Science Commons Recommended Citation Follett, Andrew, "The Wrong Right Stuff: Why NASA Consistently Fails at Congress" (2013). Undergraduate Honors Theses. Paper 584. https://scholarworks.wm.edu/honorstheses/584 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. The Wrong Right Stuff: Why NASA Consistently Fails at Congress A thesis submitted in partial fulfillment of the requirement for the degree of Bachelors of Arts in Government from The College of William and Mary by Andrew Follett Accepted for . John Gilmour, Director . Sophia Hart . Rowan Lockwood Williamsburg, VA May 3, 2013 1 Table of Contents: Acknowledgements 3 Part 1: Introduction and Background 4 Pre Soviet Collapse: Early American Failures in Space 13 Pre Soviet Collapse: The Successful Mercury, Gemini, and Apollo Programs 17 Pre Soviet Collapse: The Quasi-Successful Shuttle Program 22 Part 2: The Thin Years, Repeated Failure in NASA in the Post-Soviet Era 27 The Failure of the Space Exploration Initiative 28 The Failed Vision for Space Exploration 30 The Success of Unmanned Space Flight 32 Part 3: Why NASA Fails 37 Part 4: Putting this to the Test 87 Part 5: Changing the Method. -
An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger Depauw University
DePauw University Scholarly and Creative Work from DePauw University Student research Student Work 2015 An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger DePauw University Follow this and additional works at: http://scholarship.depauw.edu/studentresearch Part of the Economics Commons, and the The unS and the Solar System Commons Recommended Citation Knappenberger, Clayton, "An Economic Analysis of Mars Exploration and Colonization" (2015). Student research. Paper 28. This Thesis is brought to you for free and open access by the Student Work at Scholarly and Creative Work from DePauw University. It has been accepted for inclusion in Student research by an authorized administrator of Scholarly and Creative Work from DePauw University. For more information, please contact [email protected]. An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger 2015 Sponsored by: Dr. Villinski Committee: Dr. Barreto and Dr. Brown Contents I. Why colonize Mars? ............................................................................................................................ 2 II. Can We Colonize Mars? .................................................................................................................... 11 III. What would it look like? ............................................................................................................... 16 A. National Program ......................................................................................................................... -
Up, Up, and Away by James J
www.astrosociety.org/uitc No. 34 - Spring 1996 © 1996, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. Up, Up, and Away by James J. Secosky, Bloomfield Central School and George Musser, Astronomical Society of the Pacific Want to take a tour of space? Then just flip around the channels on cable TV. Weather Channel forecasts, CNN newscasts, ESPN sportscasts: They all depend on satellites in Earth orbit. Or call your friends on Mauritius, Madagascar, or Maui: A satellite will relay your voice. Worried about the ozone hole over Antarctica or mass graves in Bosnia? Orbital outposts are keeping watch. The challenge these days is finding something that doesn't involve satellites in one way or other. And satellites are just one perk of the Space Age. Farther afield, robotic space probes have examined all the planets except Pluto, leading to a revolution in the Earth sciences -- from studies of plate tectonics to models of global warming -- now that scientists can compare our world to its planetary siblings. Over 300 people from 26 countries have gone into space, including the 24 astronauts who went on or near the Moon. Who knows how many will go in the next hundred years? In short, space travel has become a part of our lives. But what goes on behind the scenes? It turns out that satellites and spaceships depend on some of the most basic concepts of physics. So space travel isn't just fun to think about; it is a firm grounding in many of the principles that govern our world and our universe. -
Magnetoshell Aerocapture: Advances Toward Concept Feasibility
Magnetoshell Aerocapture: Advances Toward Concept Feasibility Charles L. Kelly A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics & Astronautics University of Washington 2018 Committee: Uri Shumlak, Chair Justin Little Program Authorized to Offer Degree: Aeronautics & Astronautics c Copyright 2018 Charles L. Kelly University of Washington Abstract Magnetoshell Aerocapture: Advances Toward Concept Feasibility Charles L. Kelly Chair of the Supervisory Committee: Professor Uri Shumlak Aeronautics & Astronautics Magnetoshell Aerocapture (MAC) is a novel technology that proposes to use drag on a dipole plasma in planetary atmospheres as an orbit insertion technique. It aims to augment the benefits of traditional aerocapture by trapping particles over a much larger area than physical structures can reach. This enables aerocapture at higher altitudes, greatly reducing the heat load and dynamic pressure on spacecraft surfaces. The technology is in its early stages of development, and has yet to demonstrate feasibility in an orbit-representative envi- ronment. The lack of a proof-of-concept stems mainly from the unavailability of large-scale, high-velocity test facilities that can accurately simulate the aerocapture environment. In this thesis, several avenues are identified that can bring MAC closer to a successful demonstration of concept feasibility. A custom orbit code that dynamically couples magnetoshell physics with trajectory prop- agation is developed and benchmarked. The code is used to simulate MAC maneuvers for a 60 ton payload at Mars and a 1 ton payload at Neptune, both proposed NASA mis- sions that are not possible with modern flight-ready technology. In both simulations, MAC successfully completes the maneuver and is shown to produce low dynamic pressures and continuously-variable drag characteristics. -
Orbital Fueling Architectures Leveraging Commercial Launch Vehicles for More Affordable Human Exploration
ORBITAL FUELING ARCHITECTURES LEVERAGING COMMERCIAL LAUNCH VEHICLES FOR MORE AFFORDABLE HUMAN EXPLORATION by DANIEL J TIFFIN Submitted in partial fulfillment of the requirements for the degree of: Master of Science Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY January, 2020 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of DANIEL JOSEPH TIFFIN Candidate for the degree of Master of Science*. Committee Chair Paul Barnhart, PhD Committee Member Sunniva Collins, PhD Committee Member Yasuhiro Kamotani, PhD Date of Defense 21 November, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Table of Contents List of Tables................................................................................................................... 5 List of Figures ................................................................................................................. 6 List of Abbreviations ....................................................................................................... 8 1. Introduction and Background.................................................................................. 14 1.1 Human Exploration Campaigns ....................................................................... 21 1.1.1. Previous Mars Architectures ..................................................................... 21 1.1.2. Latest Mars Architecture ......................................................................... -
Resource Utilization and Site Selection for a Self-Sufficient Martian Outpost
NASA/TM-98-206538 Resource Utilization and Site Selection for a Self-Sufficient Martian Outpost G. James, Ph.D. G. Chamitoff, Ph.D. D. Barker, M.S., M.A. April 1998 The NASA STI Program Office... in Profile Since its founding, NASA has been dedicated to CONTRACTOR REPORT. Scientific and the advancement of aeronautics and space technical findings by NASA-sponsored science. The NASA Scientific and Technical contractors and grantees. Information (STI) Program Office plays a key part in helping NASA maintain this important CONFERENCE PUBLICATION. Collected role. papers from scientific and technical confer- ences, symposia, seminars, or other meetings The NASA STI Program Office is operated by sponsored or cosponsored by NASA. Langley Research Center, the lead center for NASA's scientific and technical information. SPECIAL PUBLICATION. Scientific, The NASA STI Program Office provides access technical, or historical information from to the NASA STI Database, the largest NASA programs, projects, and mission, often collection of aeronautical and space science STI concerned with subjects having substantial in the word. The Program Office is also public interest. NASA's institutional mechanism for disseminating the results of its research and • TECHNICAL TRANSLATION. development activities. These results are English-language translations of foreign scientific published by NASA in the NASA STI Report and technical material pertinent to NASA's Series, which includes the following report mission. types: Specialized services that complement the STI TECHNICAL PUBLICATION. Reports of Program Office's diverse offerings include completed research or a major significant creating custom thesauri, building customized phase of research that present the results of databases, organizing and publishing research NASA programs and include extensive results.., even providing videos. -
Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability L
Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability L. Pepermans Technische Universiteit Delft Reusable Rocket Upper Stage Development of a Multidisciplinary Design Optimisation Tool to Determine the Feasibility of Upper Stage Reusability by L. Pepermans to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Wednesday October 30, 2019 at 14:30 AM. Student number: 4144538 Project duration: September 1, 2018 – October 30, 2019 Thesis committee: Ir. B.T.C Zandbergen , TU Delft, supervisor Prof. E.K.A Gill, TU Delft Dr.ir. D. Dirkx, TU Delft This thesis is confidential and cannot be made public until October 30, 2019. An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover image: S-IVB upper stage of Skylab 3 mission in orbit [23] Preface Before you lies my thesis to graduate from Delft University of Technology on the feasibility and cost-effectiveness of reusable upper stages. During the accompanying literature study, it was determined that the technology readiness level is sufficiently high for upper stage reusability. However, it was unsure whether a cost-effective system could be build. I have been interested in the field of Entry, Descent, and Landing ever since I joined the Capsule Team of Delft Aerospace Rocket Engineering (DARE). During my time within the team, it split up in the Structures Team and Recovery Team. In September 2016, I became Chief Recovery for the Stratos III student-built sounding rocket. During this time, I realised that there was a lack of fundamental knowledge in aerodynamic decelerators within DARE. -
Going Nowhere Why President Obama Must Give NASA a Destination
A Survey of Technology and Society Going Nowhere Why President Obama Must Give NASA a Destination aint Augustine famously wrote President Obama in early 2009 to in his Confessions that, as a young head a committee revisiting the plans Sman, he had prayed, “Lord make for NASA developed in the wake of the me chaste, but not yet.” Some sixteen 2003 Columbia accident. Those plans centuries later, another Augustine— involved the retirement of the space Norm Augustine, the head of a commit- shuttle by 2010 and its replacement tee deciding NASA’s future—may have with a new architecture for sending taken inspiration from his namesake astronauts to orbit, the Moon, and ulti- when he announced that he wants the mately Mars. Dubbed Constellation, United States to have a bold manned this new architecture would include space exploration program, but not yet. new rockets and spacecraft, both of Augustine, the former CEO of which NASA spent several years and Lockheed Martin, was selected by billions of dollars designing. Spring 2010 ~ 109 Copyright 2010. All rights reserved. See www.TheNewAtlantis.com for more information. State of the Art In its final report, published in Obama approach. For instance, Burt October 2009, the Augustine committee Rutan, the respected engineer whose called for cancelling the Constellation SpaceShipOne won the Ansari X-Prize program’s drive to return to the Moon in 2004, has suggested that the Obama by 2020. Augustine and his colleagues proposal amounts to “a surrender of further noted that while “Mars is the our preeminence -
NASA Technical Memorandum 0000
NASA/TM–2016-219182 Frontier In-Situ Resource Utilization for Enabling Sustained Human Presence on Mars Robert W. Moses and Dennis M. Bushnell Langley Research Center, Hampton, Virginia April 2016 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and technical NASA scientific and technical information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or this important role. co-sponsored by NASA. The NASA STI program operates under the auspices SPECIAL PUBLICATION. Scientific, of the Agency Chief Information Officer. It collects, technical, or historical information from NASA organizes, provides for archiving, and disseminates programs, projects, and missions, often NASA’s STI. The NASA STI program provides access concerned with subjects having substantial to the NTRS Registered and its public interface, the public interest. NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space TECHNICAL TRANSLATION. science STI in the world. Results are published in both English-language translations of foreign non-NASA channels and by NASA in the NASA STI scientific and technical material pertinent to Report Series, which includes the following report NASA’s mission. types: Specialized services also include organizing TECHNICAL PUBLICATION. Reports of and publishing research results, distributing completed research or a major significant phase of specialized research announcements and feeds, research that present the results of NASA providing information desk and personal search Programs and include extensive data or theoretical support, and enabling data exchange services.