Orbital Fueling Architectures Leveraging Commercial Launch Vehicles for More Affordable Human Exploration
Total Page:16
File Type:pdf, Size:1020Kb
ORBITAL FUELING ARCHITECTURES LEVERAGING COMMERCIAL LAUNCH VEHICLES FOR MORE AFFORDABLE HUMAN EXPLORATION by DANIEL J TIFFIN Submitted in partial fulfillment of the requirements for the degree of: Master of Science Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY January, 2020 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of DANIEL JOSEPH TIFFIN Candidate for the degree of Master of Science*. Committee Chair Paul Barnhart, PhD Committee Member Sunniva Collins, PhD Committee Member Yasuhiro Kamotani, PhD Date of Defense 21 November, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Table of Contents List of Tables................................................................................................................... 5 List of Figures ................................................................................................................. 6 List of Abbreviations ....................................................................................................... 8 1. Introduction and Background.................................................................................. 14 1.1 Human Exploration Campaigns ....................................................................... 21 1.1.1. Previous Mars Architectures ..................................................................... 21 1.1.2. Latest Mars Architecture .......................................................................... 26 1.1.3. Fueling Architectures ............................................................................... 27 1.1.4. Logistics and Tracking ............................................................................. 29 2. Methods ................................................................................................................. 32 2.1. The Systems Engineering Process .................................................................... 32 2.1.1. Systems Analysis and Control .................................................................. 33 2.1.2. Systems Analysis in Practice .................................................................... 34 2.1.3. Architectures ............................................................................................ 35 2.1.4. Architecture Definition ............................................................................. 36 2.2. Propellant Tracking Theory ............................................................................. 40 2.2.1. Capabilities and Rationale for Propellant Tracking ................................... 40 2.2.2. Program Logic and Structure .................................................................... 41 2.2.3. Program Verification ................................................................................ 44 2.3. Campaign Analysis .......................................................................................... 46 2.3.1. Mars Hybrid Propulsion System Campaign .............................................. 47 2.3.2. Lunar Exploration Campaign .................................................................... 64 2.4. Useful Concepts .............................................................................................. 69 3. Results and Discussion ........................................................................................... 73 3.1. Mars Hybrid Propulsion System Campaign Trades .......................................... 73 3.1.1. Hypergolic Chemical Propellant Alternative ............................................. 73 3.1.2. Latitude Sensitivity................................................................................... 75 3.1.3. Tanker Design Sensitivity ......................................................................... 78 3.1.4. Lander Trade ............................................................................................ 80 3.1.5. Tanker Thermal Control System Trade ..................................................... 81 3.1.6. Propellant Transfer Rate Trade ................................................................. 82 3.2. Lunar ............................................................................................................... 84 3 3.2.1. Fueling Architectures ............................................................................... 84 3.2.2. Element Designs ....................................................................................... 84 3.2.3. Performance ............................................................................................. 94 4. Conclusions and Future Work ............................................................................... 105 Appendix ..................................................................................................................... 110 References ................................................................................................................... 116 4 List of Tables Table 1. Previously Proposed Mars Architecture Breakdown ........................................ 23 Table 2. Potential Risks ................................................................................................ 31 Table 3. Summary of the Spacecraft Design and Sizing Process .................................... 39 Table 4. Hybrid Propulsion System Mass Breakdown ................................................... 47 Table 5. Baseline HPS Summary .................................................................................. 48 Table 6. Launch Vehicle Capability Assumptions ......................................................... 52 Table 7. Passive and Active TCS Hybrid Tanker .......................................................... 54 Table 8. Mars Crew Campaign: Storable HPS ............................................................... 56 Table 9. Storable HPS Mass Breakdown ....................................................................... 56 Table 10. Storable HPS Key Information ...................................................................... 57 Table 11. Passive CFM Hybrid Tanker ......................................................................... 63 Table 12. Propellant Need Assumptions: Human Lunar Lander .................................... 68 Table 13. Launch vehicle capability assumptions .......................................................... 68 Table 14. HPS Fueling Window.................................................................................... 83 Table 15. HPS Order of Magnitude Fluid Transfer Rate Requirements ......................... 83 Table 16. Propellant Thermophysical Data.................................................................... 85 Table 17. Propellant Delivered to NRHO ...................................................................... 95 5 List of Figures Figure 1. Close-up of Progress Spacecraft docking to ISS .............................................. 15 Figure 2. Restore-L Conceptual Rendering .................................................................... 18 Figure 3. Explanation of currently planned SLS Block configurations. .......................... 24 Figure 4. The Systems Engineering Process ................................................................... 32 Figure 5. PropTracker Basic Code Structure .................................................................. 42 Figure 6. PropTracker Sample of Graphical Output ....................................................... 44 Figure 7. Hybrid Propulsion System .............................................................................. 47 Figure 8. Mars Campaign to be used as a basis of comparison ....................................... 52 Figure 9. Visualization of NRHO proposed for Gateway ............................................... 53 Figure 10. Storable HPS Model. .................................................................................... 56 Figure 11. Storable HPS: Crew-Only Campaign Full Factorial....................................... 74 Figure 12. HPS Campaign: Latitude Sensitivity on Fueling for 15 t CLV Tankers ......... 77 Figure 13. HIAD Lander Campaign: Tanker Design Sensitivity ..................................... 78 Figure 14. Lander Mass Sensitivity ................................................................................ 80 Figure 15. Cryogen Thermal Control Trade ................................................................... 82 Figure 16. Expendable Tanker Mass Fraction Delta: Total Lunar Campaign Refueling .. 96 Figure 17. Refueling Flights: 7.1 t Tanker Inert Mass .................................................... 97 Figure 18. 50 Missions: No. of Stages & Elements Expended: 7.1 t Inert Tanker ........... 98 Figure 19.Passive Fast v. Active Slow Fueling Architecture: Delivered Propellant ...... 100 Figure 20. Propellant Delivered to NRHO: Upper Stage Stays in NRHO ..................... 101 Figure 21. Propellant Delivered to NRHO: SEP Tug; Upper Stage Stays in NRHO ..... 102 Figure 22. Propellant Delivered to NRHO: SEP Tug .................................................... 104 6 Figure 23.Refueling Architecture Comparison: Propellant Delivered to NRHO ........... 105 A- 1. Human Landing System: Baseline 3-Element Architecture ................................. 111 A- 2. Refueling Element (CLV Upper Stage or Tanker) ............................................... 112 A- 3. Refueling Element (Either CLV Upper Stage or Tanker) + Reusable Bus