Aas 19-725 Improved Atmospheric Estimation for Aerocapture Guidance

Total Page:16

File Type:pdf, Size:1020Kb

Aas 19-725 Improved Atmospheric Estimation for Aerocapture Guidance AAS 19-725 IMPROVED ATMOSPHERIC ESTIMATION FOR AEROCAPTURE GUIDANCE Evan Roelke,∗ Phil D. Hattis,y and R.D. Braunz Increased interest in Lunar or Mars-sample return missions encourages considera- tion of innovative orbital operations such as aerocapture, which generally provides significant mass-savings for orbital insertion at Earth or Mars. Drag modulation architectures offer a straightforward approach to orbital apoapsis targeting by en- abling ballistic entry, among other benefits. A shortcoming of these architectures is the poor estimation of atmospheric density resulting in target apoapsis altitude errors. This research seeks to assess and improve upon current atmospheric den- sity estimation techniques in order to support the flight viability of discrete event drag modulated aerocapture. Three different estimation techniques are assessed in terms of estimation error and apoapsis altitude error: a static density factor, a density array interpolator, and an ensemble correlation filter. The density inter- polator achieves a 5% improvement in median apoapsis altitude over the density factor when entering at −5:9◦ and targeting a 2000km apoapsis altitude, while the ensemble correlation filter achieves a 7% improvement under identical simulation conditions. The ensemble correlation filter was found to improve with decreasing density search tolerance, achieving a 4:6% improvement in median apoapsis alti- tude for a tolerance of 1% over 5%. These improvements are dependent on entry and vehicle parameters and improve as the entry angle becomes more shallow or the target apoapsis is reduced. Errors in the density factor measurements are main contributors to the error in estimated versus true density profiles. INTRODUCTION The revitalized interest in Lunar missions as well as the drive for Mars sample-return missions in recent years encourages innovative solutions to orbital operations. One such innovation is aero- capture, which falls under the realm of aeroassist maneuvers. Aerocapture is a re-entry maneuver in which a spacecraft flies through the upper atmosphere of a planetary body from an inbound hyperbolic trajectory in order to capture into a closed orbit about the central body by means of at- mospheric deceleration.1,2 Although it has yet to be flight-proven, aerocapture has been shown to provide significant mass savings for orbital insertion. A cost-benefit analysis of aerocapture mission sets shows that this maneuver can provide mass savings of up to 15% for low-altitude orbit missions to Mars.3 Aerocapture Guidance In order to mitigate error from uncertainty in the atmospheric density, entry state, and other parameters, an active GNC system is required. Lift modulation architectures have typically been ∗Draper Laboratory Fellow, The Charles Stark Draper Laboratory, Inc. Graduate Research Assistant, Entry systems Design Lab, Colorado Center for Astrodynamics Research, 1111 Engineering Drive, Boulder, CO 80309 yThe Charles Stark Draper Laboratory Inc., 555 Technology Square, Cambridge, MA 02139 zSmead Professor of Space Technology, Dean of Engineering and Applied Science, 1111 Engineering Drive, Boulder, CO 80309 1 studied due to their flight heritage.2,4,5 These systems utilize a reaction control system (RCS) thruster framework to alter the vehicle’s bank angle, and consequently lift vector direction, to steer the vehicle through the atmosphere for range control.4,6 While flight-proven, these systems require ballast mass to enforce an off-centered center of gravity, allowing the vehicle to fly at an angle of attack (AOA) and, subsequently, with a non-zero lift force. In addition, the active bank modulation GNC algorithm is computationally intensive and prone to actuator latency.7 Drag modulation architectures offer a more straightforward re-entry architecture to lift modula- tion systems. Such systems negate the need for ballast mass, enabling the vehicle to fly in a ballistic configuration, or at an AOA of zero. These systems instead provide a control event by modifying the vehicle’s ballistic coefficient, defined in Equation1. This modification is typically performed by jettisoning a rigid drag skirt or ballute to modify the vehicle mass and reference area mid-flight.8–10 m β = (1) cDAref Changing the vehicle’s ballistic coefficient ultimately affects its energy loss rate due to atmo- spheric drag, enabling these systems to target a specific orbital energy, or geometry, based on the time and location of the jettison event during the atmospheric trajectory.9, 11 Such architectures are ideal candidates for innovative re-entry systems; the removal of propellant, propellant tanks, and ballast mass simplify the packaging in addition to providing mass savings beyond the benefit of aerocapture itself.7 Additionally, the aforementioned reduction in GNC complexity by requiring only discrete control events as opposed to continuous control reduces the risk of failure. Finally, reduction in uncertainty of flight parameters and flow field interaction are reduced with a ballistic configuration.7,8 This research is concerned with the performance of a discrete, rigid drag-skirt jettison event, de- tailed in Figure1, at Earth. The control authority allotted to the spacecraft in this event is measured by the ratio of β2 , where β refers to the ballistic coefficient of the vehicle after separation, and β β1 2 1 refers to the value before separation. Figure 1: Diagram of Discrete-Event, Drag Modulation Aerocapture with a Rigid Drag Skirt Jettison Event9 The control authority of the spacecraft affects how well the spacecraft can mitigate against at- mospheric uncertainties. If the entry conditions are off nominal and/or the atmospheric density significantly perturbed, the GNC system can adjust its jettison time to reflect these changes in order to alter the total energy lost throughout the trajectory. In doing so, the spacecraft can target a spe- cific orbit, typically by means of an orbital apoapsis altitude. Of course, errors in the jettison time due to guidance system biasing, atmospheric uncertainties, or other uncertainties can result in large apoapsis errors, surface impacts, or failure to enclose the resulting orbit in extreme cases.9 2 Atmospheric Variations There are several sources of atmospheric uncertainty in the density, temperature, pressure, and wind profiles. Solar heating causes numerous secondary perturbing effects such as geomagnetic storms, atmospheric tides by surface heating, and gravity waves resulting from jet stream shear.12, 13 The periodicity of these atmospheric disturbances ranges between short scale, primarily due to atmospheric turbulence, and seasonal up to quasi-biennial scales.14 Fortunately, the time scale of an aerocapture trajectory is small, meaning that the longer time scale perturbations are effectively held constant throughout the aerocapture trajectory. The primary sources of atmospheric uncertainty then lie with diurnal (daily) and semi-diurnal perturbations, including solar heating, geomagnetic fluctuations, gravity waves, planetary waves, and atmospheric tides. In this investigation, we will focus on accurate estimation of atmospheric density. Solar Heating. Solar heating directly affects parameters such as the geomagnetic index, and heats up water vapor in the troposphere and stratosphere, resulting in density perturbations through atmospheric tides. Many of the perturbations resulting from solar heating can be characterized by a diurnal or semi-diurnal period, making them significant to re-entry guidance atmospheric mod- els.12 The correlation between solar heating and density perturbations can also be recognized as a correlation between atmospheric temperature and density. Geomagnetism. Geomagnetism typically has low impact on the atmospheric density, particu- larly below the Thermosphere. However, geomagnetic storms due to increased solar wind pressure may influence the atmospheric density distribution, especially at lower latitudes.15 A Disturbance Storm Time (Dst) index is used to quantify the severity of the geomagnetic storm. Dst > −75nT causes minimal density disturbances, while a severe geomagnetic storm can result in a Dst of less than −200nT .15 Again, these disturbances primarily affect the Thermosphere density distribution, limiting the overall perturbations on an aerocapture trajectory. Planetary Waves. Wave patterns in the atmosphere characterized mainly as gravity waves, at- mospheric tides, and planetary waves can add both small and large-scale fluctuations in the atmo- spheric density (and other parameters).16 Planetary waves, also referred to as Rossby waves, are caused by planetary rotation, having periods of several days and are modeled as a cosine function in EarthGRAM.12 On the other hand, atmospheric tides and gravity waves produce shorter time scale perturbations due to jet stream shear or surface heating due to solar radiation. Atmospheric tide variations have also been observed to intensify with altitude, resulting in larger variations at aerocapture altitude/density ranges.12 The small-scale perturbations such as gravity waves and gen- eral atmospheric turbulence are highly irregular in nature, and must be modeled with the stochastic approach of Equation 2b. Atmospheric Modeling Earth Global Reference Atmosphere Model (EarthGRAM) is used to simulate atmospheric pa- rameters as functions of altitude. Developed at NASA Marshall Spaceflight Center, EarthGRAM pulls data from numerous data sources and empirical models over various altitude ranges such as the Marshall Thermosphere Model (MET), Jacchia
Recommended publications
  • Onboard Determination of Vehicle Glide Capability for Shuttle Abort Flight Managment (Safm)
    Source of Acquisition NASA Johnson Space Center ONBOARD DETERMINATION OF VEHICLE GLIDE CAPABILITY FOR SHUTTLE ABORT FLIGHT MANAGMENT (SAFM) Mark Jackson, Timothy Straube, Thomas Fill, Scott Nemeth, When one or more main engines fail during ascent, the flight crew of the Space Shuttle must make several critical decisions and accurately perform a series of abort procedures. One of the most important decisions for many aborts is the selection ofa landing site. Several factors influence the ability to reach a landing site, including the spacecraft point of atmospheric entry, the energy state at atmospheric entry, the vehicle glide capability from that energy state, and whether one or more suitable landing sites are within the glide capability. Energy assessment is further complicated by the fact that phugoid oscillations in total energy influence glide capability. Once the glide capability is known, the crew must select the "best" site option based upon glide capability and landing site conditions and facilities. Since most of these factors cannot currently be assessed by the crew in flight, extensive planning is required prior to each mission to script a variety of procedures based upon spacecraft velocity at the point of engine failure (or failures). The results of this pre­ flight planning are expressed in tables and diagrams on mission-specific cockpit checklists. Crew checklist procedures involve leafing through several pages of instructions and navigating a decision tree for site selection and flight procedures - all during a time critical abort situation. With the advent of the Cockpit Avionics Upgrade (CAU), the Shuttle will have increased on-board computational power to help alleviate crew workload during aborts and provide valuable situational awareness during nominal operations.
    [Show full text]
  • Notes on Earth Atmospheric Entry for Mars Sample Return Missions
    NASA/TP–2006-213486 Notes on Earth Atmospheric Entry for Mars Sample Return Missions Thomas Rivell Ames Research Center, Moffett Field, California September 2006 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical confer- NASA Scientific and Technical Information (STI) ences, symposia, seminars, or other meetings Program Office plays a key part in helping NASA sponsored or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the Lead Center for projects, and missions, often concerned with NASA’s scientific and technical information. The subjects having substantial public interest. NASA STI Program Office provides access to the NASA STI Database, the largest collection of • TECHNICAL TRANSLATION. English- aeronautical and space science STI in the world. language translations of foreign scientific and The Program Office is also NASA’s institutional technical material pertinent to NASA’s mission. mechanism for disseminating the results of its research and development activities. These results Specialized services that complement the STI are published by NASA in the NASA STI Report Program Office’s diverse offerings include creating Series, which includes the following report types: custom thesauri, building customized databases, organizing and publishing research results . even • TECHNICAL PUBLICATION. Reports of providing videos. completed research or a major significant phase of research that present the results of NASA For more information about the NASA STI programs and include extensive data or theoreti- Program Office, see the following: cal analysis.
    [Show full text]
  • FCC-20-54A1.Pdf
    Federal Communications Commission FCC 20-54 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Mitigation of Orbital Debris in the New Space Age ) IB Docket No. 18-313 ) REPORT AND ORDER AND FURTHER NOTICE OF PROPOSED RULEMAKING Adopted: April 23, 2020 Released: April 24, 2020 By the Commission: Chairman Pai and Commissioners O’Rielly, Carr, and Starks issuing separate statements; Commissioner Rosenworcel concurring and issuing a statement. Comment Date: (45 days after date of publication in the Federal Register). Reply Comment Date: (75 days after date of publication in the Federal Register). TABLE OF CONTENTS Heading Paragraph # I. INTRODUCTION .................................................................................................................................. 1 II. BACKGROUND .................................................................................................................................... 3 III. DISCUSSION ...................................................................................................................................... 14 A. Regulatory Approach to Mitigation of Orbital Debris ................................................................... 15 1. FCC Statutory Authority Regarding Orbital Debris ................................................................ 15 2. Relationship with Other U.S. Government Activities ............................................................. 20 3. Economic Considerations .......................................................................................................
    [Show full text]
  • A Feasibility Study for Using Commercial Off the Shelf (COTS)
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2011 A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2 Chad Lee Davis University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerodynamics and Fluid Mechanics Commons, Other Aerospace Engineering Commons, and the Space Vehicles Commons Recommended Citation Davis, Chad Lee, "A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2. " Master's Thesis, University of Tennessee, 2011. https://trace.tennessee.edu/utk_gradthes/965 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Chad Lee Davis entitled "A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aerospace Engineering.
    [Show full text]
  • An Assessment of Aerocapture and Applications to Future Missions
    Post-Exit Atmospheric Flight Cruise Approach An Assessment of Aerocapture and Applications to Future Missions February 13, 2016 National Aeronautics and Space Administration An Assessment of Aerocapture Jet Propulsion Laboratory California Institute of Technology Pasadena, California and Applications to Future Missions Jet Propulsion Laboratory, California Institute of Technology for Planetary Science Division Science Mission Directorate NASA Work Performed under the Planetary Science Program Support Task ©2016. All rights reserved. D-97058 February 13, 2016 Authors Thomas R. Spilker, Independent Consultant Mark Hofstadter Chester S. Borden, JPL/Caltech Jessie M. Kawata Mark Adler, JPL/Caltech Damon Landau Michelle M. Munk, LaRC Daniel T. Lyons Richard W. Powell, LaRC Kim R. Reh Robert D. Braun, GIT Randii R. Wessen Patricia M. Beauchamp, JPL/Caltech NASA Ames Research Center James A. Cutts, JPL/Caltech Parul Agrawal Paul F. Wercinski, ARC Helen H. Hwang and the A-Team Paul F. Wercinski NASA Langley Research Center F. McNeil Cheatwood A-Team Study Participants Jeffrey A. Herath Jet Propulsion Laboratory, Caltech Michelle M. Munk Mark Adler Richard W. Powell Nitin Arora Johnson Space Center Patricia M. Beauchamp Ronald R. Sostaric Chester S. Borden Independent Consultant James A. Cutts Thomas R. Spilker Gregory L. Davis Georgia Institute of Technology John O. Elliott Prof. Robert D. Braun – External Reviewer Jefferey L. Hall Engineering and Science Directorate JPL D-97058 Foreword Aerocapture has been proposed for several missions over the last couple of decades, and the technologies have matured over time. This study was initiated because the NASA Planetary Science Division (PSD) had not revisited Aerocapture technologies for about a decade and with the upcoming study to send a mission to Uranus/Neptune initiated by the PSD we needed to determine the status of the technologies and assess their readiness for such a mission.
    [Show full text]
  • An Ongoing Effort to Identify Near-Earth Asteroid Destination
    The Near-Earth Object Human Space Flight Accessible Targets Study: An Ongoing Effort to Identify Near-Earth Asteroid Destinations for Human Explorers Presented to the 2013 IAA Planetary Defense Conference Brent W. Barbee∗, Paul A. Abelly, Daniel R. Adamoz, Cassandra M. Alberding∗, Daniel D. Mazanekx, Lindley N. Johnsonk, Donald K. Yeomans#, Paul W. Chodas#, Alan B. Chamberlin#, Victoria P. Friedensenk NASA/GSFC∗ / NASA/JSCy / Aerospace Consultantz NASA/LaRCx / NASA/HQk / NASA/JPL# April 16th, 2013 Introduction I Near-Earth Objects (NEOs) are asteroids and comets with perihelion distance < 1.3 AU I Small, usually rocky bodies (occasionally metallic) I Sizes range from a few meters to ≈ 35 kilometers I Near-Earth Asteroids (NEAs) are currently candidate destinations for human space flight missions in the mid-2020s th I As of April 4 , 2013, a total of 9736 NEAs have been discovered, and more are being discovered on a continual basis 2 Motivations for NEA Exploration I Solar system science I NEAs are largely unchanged in composition since the early days of the solar system I Asteroids and comets may have delivered water and even the seeds of life to the young Earth I Planetary defense I NEA characterization I NEA proximity operations I In-Situ Resource Utilization I Could manufacture radiation shielding, propellant, and more I Human Exploration I The most ambitious journey of human discovery since Apollo I NEAs as stepping stones to Mars 3 NHATS Background I NASA's Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) (pron.: /næts/) began in September of 2010 under the auspices of the NASA Headquarters Planetary Science Mission Directorate in cooperation with the Advanced Exploration Systems Division of the Human Exploration and Operations Mission Directorate.
    [Show full text]
  • Uranus Atmospheric Entry Studies Final
    Atmospheric Entry Studies for Uranus Parul Agrawal - ARC Gary Allen - ARC Helen Hwang -ARC Jose Aliaga - ARC Evgeniy Sklyanskiy - JPL MarkMarley - ARC Kathy McGuire - ARC LocHuynh - ARC Joseph Garcia - ARC Robert Moses- LaRC RickWinski - LaRC Funded by NASA In-Space Propulsion Program Questions and feedback : [email protected] Presentation: Outer Planet Assessment Group, Tucson, AZ, January 2014 Outline • Background ₋ Constraints ₋ Science Objectives ₋ Orbital Mechanics ₋ Atmosphere • Direct BallisticEntry • Aerocapture Entry • Conclusions& Recommendations 2 Background • Funded by Entry Vehicle Technology (EVT) project under In-Space Propulsion Technology (ISPT) • Concept studiesto understand the trade space for atmosphericentry, focusing on Venus, Saturn and Uranus ₋ Provide in-depth analysis of mission concepts outlined in the decadal survey for these planets ₋ These studies could be enabling for future Flagship and New Frontier missions designs • The results of this study will be published and presented at IEEE aerospace conference in Big Sky Montana, March 2014 In-Space Propulsion Technology (ISPT) . 3 Study Objectives • Establish a range of probe atmosphericentry environmentsbased on the UranusFlagship mission in the 2013-23 Planetary Science Decadal Survey ₋ Two Launch windows 2021 and 2034 are being considered for this study • Define Uranusentry trade space by performing parametricstudies, by varying ballisticcoefficient (vehicle mass, size) and Entry Flight Path Angle (EFPA) • Investigate entry trajectory options, including
    [Show full text]
  • Up, Up, and Away by James J
    www.astrosociety.org/uitc No. 34 - Spring 1996 © 1996, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. Up, Up, and Away by James J. Secosky, Bloomfield Central School and George Musser, Astronomical Society of the Pacific Want to take a tour of space? Then just flip around the channels on cable TV. Weather Channel forecasts, CNN newscasts, ESPN sportscasts: They all depend on satellites in Earth orbit. Or call your friends on Mauritius, Madagascar, or Maui: A satellite will relay your voice. Worried about the ozone hole over Antarctica or mass graves in Bosnia? Orbital outposts are keeping watch. The challenge these days is finding something that doesn't involve satellites in one way or other. And satellites are just one perk of the Space Age. Farther afield, robotic space probes have examined all the planets except Pluto, leading to a revolution in the Earth sciences -- from studies of plate tectonics to models of global warming -- now that scientists can compare our world to its planetary siblings. Over 300 people from 26 countries have gone into space, including the 24 astronauts who went on or near the Moon. Who knows how many will go in the next hundred years? In short, space travel has become a part of our lives. But what goes on behind the scenes? It turns out that satellites and spaceships depend on some of the most basic concepts of physics. So space travel isn't just fun to think about; it is a firm grounding in many of the principles that govern our world and our universe.
    [Show full text]
  • Planned Yet Uncontrolled Re-Entries of the Cluster-Ii Spacecraft
    PLANNED YET UNCONTROLLED RE-ENTRIES OF THE CLUSTER-II SPACECRAFT Stijn Lemmens(1), Klaus Merz(1), Quirin Funke(1) , Benoit Bonvoisin(2), Stefan Löhle(3), Henrik Simon(1) (1) European Space Agency, Space Debris Office, Robert-Bosch-Straße 5, 64293 Darmstadt, Germany, Email:[email protected] (2) European Space Agency, Materials & Processes Section, Keplerlaan 1, 2201 AZ Noordwijk, Netherlands (3) Universität Stuttgart, Institut für Raumfahrtsysteme, Pfaffenwaldring 29, 70569 Stuttgart, Germany ABSTRACT investigate the physical connection between the Sun and Earth. Flying in a tetrahedral formation, the four After an in-depth mission analysis review the European spacecraft collect detailed data on small-scale changes Space Agency’s (ESA) four Cluster II spacecraft in near-Earth space and the interaction between the performed manoeuvres during 2015 aimed at ensuring a charged particles of the solar wind and Earth's re-entry for all of them between 2024 and 2027. This atmosphere. In order to explore the magnetosphere was done to contain any debris from the re-entry event Cluster II spacecraft occupy HEOs with initial near- to southern latitudes and hence minimise the risk for polar with orbital period of 57 hours at a perigee altitude people on ground, which was enabled by the relative of 19 000 km and apogee altitude of 119 000 km. The stability of the orbit under third body perturbations. four spacecraft have a cylindrical shape completed by Small differences in the highly eccentric orbits of the four long flagpole antennas. The diameter of the four spacecraft will lead to various different spacecraft is 2.9 m with a height of 1.3 m.
    [Show full text]
  • Magnetoshell Aerocapture: Advances Toward Concept Feasibility
    Magnetoshell Aerocapture: Advances Toward Concept Feasibility Charles L. Kelly A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics & Astronautics University of Washington 2018 Committee: Uri Shumlak, Chair Justin Little Program Authorized to Offer Degree: Aeronautics & Astronautics c Copyright 2018 Charles L. Kelly University of Washington Abstract Magnetoshell Aerocapture: Advances Toward Concept Feasibility Charles L. Kelly Chair of the Supervisory Committee: Professor Uri Shumlak Aeronautics & Astronautics Magnetoshell Aerocapture (MAC) is a novel technology that proposes to use drag on a dipole plasma in planetary atmospheres as an orbit insertion technique. It aims to augment the benefits of traditional aerocapture by trapping particles over a much larger area than physical structures can reach. This enables aerocapture at higher altitudes, greatly reducing the heat load and dynamic pressure on spacecraft surfaces. The technology is in its early stages of development, and has yet to demonstrate feasibility in an orbit-representative envi- ronment. The lack of a proof-of-concept stems mainly from the unavailability of large-scale, high-velocity test facilities that can accurately simulate the aerocapture environment. In this thesis, several avenues are identified that can bring MAC closer to a successful demonstration of concept feasibility. A custom orbit code that dynamically couples magnetoshell physics with trajectory prop- agation is developed and benchmarked. The code is used to simulate MAC maneuvers for a 60 ton payload at Mars and a 1 ton payload at Neptune, both proposed NASA mis- sions that are not possible with modern flight-ready technology. In both simulations, MAC successfully completes the maneuver and is shown to produce low dynamic pressures and continuously-variable drag characteristics.
    [Show full text]
  • Defense Intelligence Digest (DID), Vol. VII, No. 7
    SECRET . DECLASSIFIED UNDER AUTHORITY OF THE INTERAGENCY SECURITY CLASSIFICATION APPEALS PANEL, E.0.13526, SECTION 5.3(b)(3) ISCAP APPEAL NO. 2009-068, document no. 279 DECLASSIFICATION DATE: May 14,2015 July 1969 • Volume '7 • Number 7 2 4 9 12 Portion identified as non- I 15 I responsive to the appeal 16 19 24 28 Ef'fed1 of Zond Vehicle Re-entry on Soviet Space Program . 30 34 Portion identified as non­ 37 responsive to the appeal 41 44 FOREWORD MISSION: The mLSSton of the terest on significant developments roonthly Defense lntelligmce Digest is and trends in the rr1ilitary capabili­ to provide all components of the ties and vulnerabilities of foreign Department of Defense and other nations. Emphasis is placed pri­ United States agencies with timely marily, on nations and forces within intelligence of wide professional in- the.Communist World. WARNING: This publication is clas­ marked "No Foreign Dissemination," sified secret beca.use it reflects intelli­ certain articles arc releasable tp gence collection efforts of the United fordgn governments; however, such States, and contains information af­ release is controlled by the Defense fecting the national defense of the Inte.Uigence Agency. United States within the meaning of the Espionage Laws, Title 18 U~S.C., Section 793 and S·ection 794. Its transmission or the revelation of its ~~~ contents in any manner to an un­ JOSEPH F. CA.RROLL authorized person is prohibited by Lt General, USAF Jaw. Althongh the publication is Director Overall classiAcation of this document is-sECREl Two Jmportcmt vehicles l•a<"f the Sovid$ cle>ser to.
    [Show full text]
  • Orbital Fueling Architectures Leveraging Commercial Launch Vehicles for More Affordable Human Exploration
    ORBITAL FUELING ARCHITECTURES LEVERAGING COMMERCIAL LAUNCH VEHICLES FOR MORE AFFORDABLE HUMAN EXPLORATION by DANIEL J TIFFIN Submitted in partial fulfillment of the requirements for the degree of: Master of Science Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY January, 2020 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of DANIEL JOSEPH TIFFIN Candidate for the degree of Master of Science*. Committee Chair Paul Barnhart, PhD Committee Member Sunniva Collins, PhD Committee Member Yasuhiro Kamotani, PhD Date of Defense 21 November, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Table of Contents List of Tables................................................................................................................... 5 List of Figures ................................................................................................................. 6 List of Abbreviations ....................................................................................................... 8 1. Introduction and Background.................................................................................. 14 1.1 Human Exploration Campaigns ....................................................................... 21 1.1.1. Previous Mars Architectures ..................................................................... 21 1.1.2. Latest Mars Architecture .........................................................................
    [Show full text]