Planned Yet Uncontrolled Re-Entries of the Cluster-Ii Spacecraft
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Onboard Determination of Vehicle Glide Capability for Shuttle Abort Flight Managment (Safm)
Source of Acquisition NASA Johnson Space Center ONBOARD DETERMINATION OF VEHICLE GLIDE CAPABILITY FOR SHUTTLE ABORT FLIGHT MANAGMENT (SAFM) Mark Jackson, Timothy Straube, Thomas Fill, Scott Nemeth, When one or more main engines fail during ascent, the flight crew of the Space Shuttle must make several critical decisions and accurately perform a series of abort procedures. One of the most important decisions for many aborts is the selection ofa landing site. Several factors influence the ability to reach a landing site, including the spacecraft point of atmospheric entry, the energy state at atmospheric entry, the vehicle glide capability from that energy state, and whether one or more suitable landing sites are within the glide capability. Energy assessment is further complicated by the fact that phugoid oscillations in total energy influence glide capability. Once the glide capability is known, the crew must select the "best" site option based upon glide capability and landing site conditions and facilities. Since most of these factors cannot currently be assessed by the crew in flight, extensive planning is required prior to each mission to script a variety of procedures based upon spacecraft velocity at the point of engine failure (or failures). The results of this pre flight planning are expressed in tables and diagrams on mission-specific cockpit checklists. Crew checklist procedures involve leafing through several pages of instructions and navigating a decision tree for site selection and flight procedures - all during a time critical abort situation. With the advent of the Cockpit Avionics Upgrade (CAU), the Shuttle will have increased on-board computational power to help alleviate crew workload during aborts and provide valuable situational awareness during nominal operations. -
Notes on Earth Atmospheric Entry for Mars Sample Return Missions
NASA/TP–2006-213486 Notes on Earth Atmospheric Entry for Mars Sample Return Missions Thomas Rivell Ames Research Center, Moffett Field, California September 2006 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical confer- NASA Scientific and Technical Information (STI) ences, symposia, seminars, or other meetings Program Office plays a key part in helping NASA sponsored or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the Lead Center for projects, and missions, often concerned with NASA’s scientific and technical information. The subjects having substantial public interest. NASA STI Program Office provides access to the NASA STI Database, the largest collection of • TECHNICAL TRANSLATION. English- aeronautical and space science STI in the world. language translations of foreign scientific and The Program Office is also NASA’s institutional technical material pertinent to NASA’s mission. mechanism for disseminating the results of its research and development activities. These results Specialized services that complement the STI are published by NASA in the NASA STI Report Program Office’s diverse offerings include creating Series, which includes the following report types: custom thesauri, building customized databases, organizing and publishing research results . even • TECHNICAL PUBLICATION. Reports of providing videos. completed research or a major significant phase of research that present the results of NASA For more information about the NASA STI programs and include extensive data or theoreti- Program Office, see the following: cal analysis. -
Observation of Pc 3/5 Magnetic Pulsations Around the Cusp at Mid Altitude
1 OBSERVATION OF PC 3/5 MAGNETIC PULSATIONS AROUND THE CUSP AT MID ALTITUDE Liu Yonghua(1), Liu Ruiyuan(1), B. J. Fraser(2), S. T. Ables(2), Xu Zhonghua(1), Zhang Beichen(1), Shi Jiankui(3), Liu Zhenxing(3), Huang Dehong(1), Hu Zejun(1), Chen Zhuotian(1), Wang Xiao(3), Malcolm Dunlop(4), A. Balogh(5) (1) Polar Research Institute of China, 451 Jinqiao Rd., Shanghai 200136, P. R. CHINA, [email protected] (2) The University of Newcastle, University Drive, Callaghan NSW 2308, AUSTRALIA, [email protected] (3)The Center of Space Science & Applied Research, Chinese Academy of Science, Post Box8701, Beijing 100080, jkshi@@center.cssar.ac.cn (4) The Rutherford Appleton Laboratory, Chilton, DIDCOT, Oxfordshire, OX11 0QX, UK, [email protected] (5)Space and Atmospheric Physics Group, Imperial College, London, [email protected] ABSTRACT transmitted straightforwardly from solar wind to the ionosphere (Bolshakova & Troitskaia, 1984). So far most Since launched in year 2000 the Cluster mission has research work on such topic are on basis of observation passed the region around the cusp at mid-altitude (~6Re) at ground or/and data from satellite located in the for many times, where ULF wave activities are rich in. upstream of solar wind or in the magnetosheath. To my From 0800 to 1300UT on October 30 2002 the Cluster knowledge, few authors take a study based on the spacecrafts ran along an orbit of southern cusp- measurement at the mid-altitude of the cusp. It seems plasmasphere-northern cusp that provides an excellent reasonable to assume that such a measurement be a direct observation of ULF waves in dayside magnetosphere. -
FCC-20-54A1.Pdf
Federal Communications Commission FCC 20-54 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Mitigation of Orbital Debris in the New Space Age ) IB Docket No. 18-313 ) REPORT AND ORDER AND FURTHER NOTICE OF PROPOSED RULEMAKING Adopted: April 23, 2020 Released: April 24, 2020 By the Commission: Chairman Pai and Commissioners O’Rielly, Carr, and Starks issuing separate statements; Commissioner Rosenworcel concurring and issuing a statement. Comment Date: (45 days after date of publication in the Federal Register). Reply Comment Date: (75 days after date of publication in the Federal Register). TABLE OF CONTENTS Heading Paragraph # I. INTRODUCTION .................................................................................................................................. 1 II. BACKGROUND .................................................................................................................................... 3 III. DISCUSSION ...................................................................................................................................... 14 A. Regulatory Approach to Mitigation of Orbital Debris ................................................................... 15 1. FCC Statutory Authority Regarding Orbital Debris ................................................................ 15 2. Relationship with Other U.S. Government Activities ............................................................. 20 3. Economic Considerations ....................................................................................................... -
A Feasibility Study for Using Commercial Off the Shelf (COTS)
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2011 A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2 Chad Lee Davis University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerodynamics and Fluid Mechanics Commons, Other Aerospace Engineering Commons, and the Space Vehicles Commons Recommended Citation Davis, Chad Lee, "A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2. " Master's Thesis, University of Tennessee, 2011. https://trace.tennessee.edu/utk_gradthes/965 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Chad Lee Davis entitled "A Feasibility Study for Using Commercial Off The Shelf (COTS) Hardware for Meeting NASA’s Need for a Commercial Orbital Transportation Services (COTS) to the International Space Station - [COTS]2." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aerospace Engineering. -
Astronomy & Astrophysics a Hipparcos Study of the Hyades
A&A 367, 111–147 (2001) Astronomy DOI: 10.1051/0004-6361:20000410 & c ESO 2001 Astrophysics A Hipparcos study of the Hyades open cluster Improved colour-absolute magnitude and Hertzsprung{Russell diagrams J. H. J. de Bruijne, R. Hoogerwerf, and P. T. de Zeeuw Sterrewacht Leiden, Postbus 9513, 2300 RA Leiden, The Netherlands Received 13 June 2000 / Accepted 24 November 2000 Abstract. Hipparcos parallaxes fix distances to individual stars in the Hyades cluster with an accuracy of ∼6per- cent. We use the Hipparcos proper motions, which have a larger relative precision than the trigonometric paral- laxes, to derive ∼3 times more precise distance estimates, by assuming that all members share the same space motion. An investigation of the available kinematic data confirms that the Hyades velocity field does not contain significant structure in the form of rotation and/or shear, but is fully consistent with a common space motion plus a (one-dimensional) internal velocity dispersion of ∼0.30 km s−1. The improved parallaxes as a set are statistically consistent with the Hipparcos parallaxes. The maximum expected systematic error in the proper motion-based parallaxes for stars in the outer regions of the cluster (i.e., beyond ∼2 tidal radii ∼20 pc) is ∼<0.30 mas. The new parallaxes confirm that the Hipparcos measurements are correlated on small angular scales, consistent with the limits specified in the Hipparcos Catalogue, though with significantly smaller “amplitudes” than claimed by Narayanan & Gould. We use the Tycho–2 long time-baseline astrometric catalogue to derive a set of independent proper motion-based parallaxes for the Hipparcos members. -
An Ongoing Effort to Identify Near-Earth Asteroid Destination
The Near-Earth Object Human Space Flight Accessible Targets Study: An Ongoing Effort to Identify Near-Earth Asteroid Destinations for Human Explorers Presented to the 2013 IAA Planetary Defense Conference Brent W. Barbee∗, Paul A. Abelly, Daniel R. Adamoz, Cassandra M. Alberding∗, Daniel D. Mazanekx, Lindley N. Johnsonk, Donald K. Yeomans#, Paul W. Chodas#, Alan B. Chamberlin#, Victoria P. Friedensenk NASA/GSFC∗ / NASA/JSCy / Aerospace Consultantz NASA/LaRCx / NASA/HQk / NASA/JPL# April 16th, 2013 Introduction I Near-Earth Objects (NEOs) are asteroids and comets with perihelion distance < 1.3 AU I Small, usually rocky bodies (occasionally metallic) I Sizes range from a few meters to ≈ 35 kilometers I Near-Earth Asteroids (NEAs) are currently candidate destinations for human space flight missions in the mid-2020s th I As of April 4 , 2013, a total of 9736 NEAs have been discovered, and more are being discovered on a continual basis 2 Motivations for NEA Exploration I Solar system science I NEAs are largely unchanged in composition since the early days of the solar system I Asteroids and comets may have delivered water and even the seeds of life to the young Earth I Planetary defense I NEA characterization I NEA proximity operations I In-Situ Resource Utilization I Could manufacture radiation shielding, propellant, and more I Human Exploration I The most ambitious journey of human discovery since Apollo I NEAs as stepping stones to Mars 3 NHATS Background I NASA's Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) (pron.: /næts/) began in September of 2010 under the auspices of the NASA Headquarters Planetary Science Mission Directorate in cooperation with the Advanced Exploration Systems Division of the Human Exploration and Operations Mission Directorate. -
Uranus Atmospheric Entry Studies Final
Atmospheric Entry Studies for Uranus Parul Agrawal - ARC Gary Allen - ARC Helen Hwang -ARC Jose Aliaga - ARC Evgeniy Sklyanskiy - JPL MarkMarley - ARC Kathy McGuire - ARC LocHuynh - ARC Joseph Garcia - ARC Robert Moses- LaRC RickWinski - LaRC Funded by NASA In-Space Propulsion Program Questions and feedback : [email protected] Presentation: Outer Planet Assessment Group, Tucson, AZ, January 2014 Outline • Background ₋ Constraints ₋ Science Objectives ₋ Orbital Mechanics ₋ Atmosphere • Direct BallisticEntry • Aerocapture Entry • Conclusions& Recommendations 2 Background • Funded by Entry Vehicle Technology (EVT) project under In-Space Propulsion Technology (ISPT) • Concept studiesto understand the trade space for atmosphericentry, focusing on Venus, Saturn and Uranus ₋ Provide in-depth analysis of mission concepts outlined in the decadal survey for these planets ₋ These studies could be enabling for future Flagship and New Frontier missions designs • The results of this study will be published and presented at IEEE aerospace conference in Big Sky Montana, March 2014 In-Space Propulsion Technology (ISPT) . 3 Study Objectives • Establish a range of probe atmosphericentry environmentsbased on the UranusFlagship mission in the 2013-23 Planetary Science Decadal Survey ₋ Two Launch windows 2021 and 2034 are being considered for this study • Define Uranusentry trade space by performing parametricstudies, by varying ballisticcoefficient (vehicle mass, size) and Entry Flight Path Angle (EFPA) • Investigate entry trajectory options, including -
Rumba, Salsa, Smaba and Tango in the Magnetosphere
ESCOUBET 24-08-2001 13:29 Page 2 r bulletin 107 — august 2001 42 ESCOUBET 24-08-2001 13:29 Page 3 the cluster quartet’s first year in space Rumba, Salsa, Samba and Tango in the Magnetosphere - The Cluster Quartet’s First Year in Space C.P. Escoubet & M. Fehringer Solar System Division, Space Science Department, ESA Directorate of Scientific Programmes, Noordwijk, The Netherlands P. Bond Cranleigh, Surrey, United Kingdom Introduction Launch and commissioning phase Cluster is one of the two missions – the other When the first Soyuz blasted off from the being the Solar and Heliospheric Observatory Baikonur Cosmodrome on 16 July 2000, we (SOHO) – constituting the Solar Terrestrial knew that Cluster was well on the way to Science Programme (STSP), the first recovery from the previous launch setback. ‘Cornerstone’ of ESA’s Horizon 2000 However, it was not until the second launch on Programme. The Cluster mission was first 9 August 2000 and the proper injection of the proposed in November 1982 in response to an second pair of spacecraft into orbit that we ESA Call for Proposals for the next series of knew that the Cluster mission was truly back scientific missions. on track (Fig. 1). In fact, the experimenters said that they knew they had an ideal mission only The four Cluster spacecraft were successfully launched in pairs by after switching on their last instruments on the two Russian Soyuz rockets on 16 July and 9 August 2000. On 14 fourth spacecraft. August, the second pair joined the first pair in highly eccentric polar orbits, with an apogee of 19.6 Earth radii and a perigee of 4 Earth radii. -
Chapter 1 Introduction
Chapter 1 Introduction The magnetosheath lies between the bow shock and the magnetopause and is formed by the deflected, heated, and decelerated solar wind with a minor magnetospheric plasma component. The terrestrial magnetosheath field and flow structure have been extensively studied because they affect the transfer of mass, momentum, and energy between the solar wind and the Earth’s magnetosphere. When magnetic shear across the magnetopause is high and dayside reconnection is occurring, the coupling between the solar wind and the magnetosphere is substantially enhanced relative to periods when there is no reconnection [ Paschmann et al ., 1979; Sonnerup et al ., 1981]. The magnetosphere becomes energized leading to phenomena such as the aurora. When the terrestrial magnetosphere is closed, or when the solar wind dynamic pressure is sufficiently high, magnetic field lines pile up near the magnetopause forcing out the normally resident plasma leading to the formation of a plasma depletion layer. Because of the limited amount of available data, the Jovian magnetosheath has been less extensively studied than the Earth’s magnetosheath. Factors that control the size, shape, and rigidity of the magnetosheath are much different at Jupiter and the Earth. At Jupiter the solar wind dynamic pressure is down by more than an order of magnitude and the Alfvén Mach number is nearly double the mean values observed near Earth. Furthermore, at Jupiter the force balance at the magnetopause is not well approximated by balancing the contributions of the external solar wind dynamic pressure against the internal magnetic pressure. Magnetospheric energetic particles, thermal plasma, and dynamic pressure associated with the rapid rotation of Jupiter provide non-negligible contributions to the internal pressure [ Smith et al ., 1974]. -
ASTRONOMY and ASTROPHYSICS Seismology of Δ Scuti Stars in the Praesepe Cluster II
Astron. Astrophys. 338, 511–520 (1998) ASTRONOMY AND ASTROPHYSICS Seismology of δ Scuti stars in the Praesepe cluster II. Identification of radial modes and their associated stellar parameters M.M. Hernandez´ 1?,F.Perez´ Hernandez´ 1, E. Michel2, J.A. Belmonte1, M.J. Goupil2, and Y. Lebreton2 1 Instituto de Astrof´ısica de Canarias, E-38200 La Laguna, Tenerife, Spain 2 DASGAL, URA CNRS 335, Observatoire de Paris, F-92195 Meudon, France Received 5 January 1998 / Accepted 20 July 1998 Abstract. An analysis based on a comparison between obser- Several attempts have been made to obtain stellar informa- vations and stellar models has been carried out to identify radial tion from δ Scuti stars (e.g. Mangeney et al. 1991; Goupil et modes of oscillations in several multi-periodic δ Scuti stars of al. 1993; Perez´ Hernandez´ et al. 1995; Guzik & Bradley 1995). the Praesepe cluster (BU, BN, BW and BS Cnc). The assump- All have had to face the absence of the greater part of the the- tion that all the stars considered have common parameters, such oretical modes in the observed spectrum. Noise level, selection as metallicity, distance or age, is imposed as a constraint. Even mechanisms, geometrical effects and also mutual interference so, there is a large number of possible solutions, partially caused between very close modes (as recently illustrated by Belmonte by the rotational effects on the pulsation frequencies and on the et al. 1997) contribute towards explaining this phenomenon. stars’ positions in the HR diagram, which need to be parame- Even in the case of a large number of detected modes, such as terized. -
Ariane 501 Incident at Three Levels of Description
Launch Failures! December 1, 1994! Ariane 501 Incident " Ariane 4 ! 70th flight! at Three Levels of Description! February 19, 1996! Long March 3B ! 1st flight! 501 Report Dates! 501 Launch Events! June 4, 1996! 0 seconds! Ariane 501 ! June 4-6, 1996! H0 - main cryogenic ! 1st flight! Initial reports of the ! engine ignition! incident! 7 seconds! August 12, 1998! Liftoff! Titan 4A ! 36.7 seconds! Backup inertial reference ! 20th flight! June 6 - July 19, 1996! system inoperative due to ! Intermediate reports! numerical overflow in ! August 26, 1998! horizontal velocity! Delta 3 ! 37.2 seconds! Primary inertial reference ! 1st flight ! July 19, 1996! system inoperative due to ! Inquiry Board Report! numerical overflow in ! horizontal velocity! Time! (months)! 37-38 seconds! July 20-26, 1996! Booster and main engine ! Reports based on ! nozzles swivel, rocket veers ! off course and breaks up ! inquiry findings! from aerodynamic loads ! July 27 - September, 1996! 39 seconds! Automatic self-destruct ! Comprehensive reports ! 45 seconds! Time! Time! Range safety officer destruct ! (days)! (secs.)! “High Profit” Documents! Ariane 5 Flight 501 Failure: Report by the Inquiry Board (July 19, 1996)! Inertial Reference Software Error Blamed for Ariane 5 Failure; Defense !Daily (July 24, 1996) ! !!! Software Design Flaw Destroyed Ariane 5; next flight in 1997; ! !Aerospace Daily (July 24, 1996) ! !! Ariane 5 Rocket Faces More Delay; The Financial Times Limited ! !(July 24, 1996) ! Flying Blind: Inadequate Testing led to the Software Breakdown that !Doomed Ariane