The Mars Project: Avoiding Decompression Sickness on a Distant Planet

Total Page:16

File Type:pdf, Size:1020Kb

The Mars Project: Avoiding Decompression Sickness on a Distant Planet NASA/TM--2000-210188 The Mars Project: Avoiding Decompression Sickness on a Distant Planet Johnny Conkin, Ph.D. National Space Biomedical Research Institute Houston, Texas 77030-3498 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058-3696 May 2000 Acknowledgments The following people provided helpful comments and suggestions: Amrapali M. Shah, Hugh D. Van Liew, James M. Waligora, Joseph P. Dervay, R. Srini Srinivasan, Michael R. Powell, Micheal L. Gernhardt, Karin C. Loftin, and Michael N. Rouen. The National Aeronautics and Space Administration supported part of this work through the NASA Cooperative Agreement NCC 9-58 with the National Space Biomedical Research Institute. The views expressed by the author do not represent official views of the National Aeronautics and Space Administration. Available from: NASA Center for AeroSpace Information National Technical Information Service 7121StandardDrive 5285 Port Royal Road Hanover, MD 21076-1320 Springfield, VA 22161 301-621-0390 703-605-6000 This report is also available in electronic form at http://techreports.larc.nasa.gov/cgi-bin/NTRS Contents Page Acronyms and Nomenclature ................................................................................................ vi Abstract ................................................................................................................................. vii Introduction ........................................................................................................................... 1 Martian Resources ................................................................................................................. i Minimum Oxygen Pressure ................................................................................................... 2 Maximum Oxygen Concentration ......................................................................................... 3 The Mars Habitat ................................................................................................................... 4 Inert Gases: Ar or N 2 in a Binary Gas Mixture ..................................................................... 8 Binary Gas Mixtures in Animal Decompressions ................................................................. 10 Inert Gases: Ar and N 2 in a Trinary Gas Mixture ................................................................. I I Trinary Gas Mixtures in Animal Decompressions ................................................................ 13 Metabolic Gases .................................................................................................................... 14 Tissue Ratio and Hypobaric DCS Risk ................................................................................. 15 DCS Risk Associated With Simple Tissue Ratio .................................................................. 16 Simple Inert Gas Mass Balance ............................................................................................. 18 Oxygen Prebreathing ............................................................................................................. 20 Potential Evolved Gas ........................................................................................................... 24 Best "Guess" for DCS Risk ................................................................................................... 25 Bubble Growth Model ........................................................................................................... 26 Conclusions ........................................................................................................................... 31 References ............................................................................................................................. 35 Appendix A: Computing the N 2 to Ar Pressure Ratio ......................................................... A-i Appendix B: Assumptions and Recommendations .............................................................. B-I iii Contents (continued) Page Tables Table I. Three Options Evaluated for a Martian Habitat Atmosphere .................................. 5 Table II. Metabolic and Inert Gases in Option 1 ................................................................... 6 Table III. Physical Characteristics of Gases .......................................................................... 9 Table IV. A Simple Mass Balance at 8.0 psia ...................................................................... 19 Table V. A Simple Mass Balance After a 100-Min Prebreathe at 9.0 psia .......................... 24 Table VI. Variables in Bubble Model for Low Density Case in Lipid Tissue ..................... 27 Table VII. Simulation Data That Do Not Exceed Flammability Limits But Do Not Constrain the N 2 - Ar Ratio in Two Cases .................................................................... 28 Table VIII. Simulation Data That Do Exceed Flammability Limits But Constrain the N 2 - Ar Ratio ................................................................................................................. 30 Figures Figure I. The normal 0 2 dissociation curve (! A), and extraction of O 2 from the blood under normal and exercise conditions (1B) ................................................................... 3 Figure 2. For a specific saturation dive and relative to N 2 in lipid tissue, a bubble containing Ar would grow larger and last longer in both aqueous and lipid tissue in a simulation of low bubble density ..................................................................................................... 10 Figure 3. Peak bubble volume in aqueous and lipid tissues following a 200- to 100-kPa decompression after saturation with a nomloxic N2-He breathing mixture in a simulation of low bubble density ................................................................................... 12 Figure 4. The P (death in rats) as a function of hyperbaric saturation pressure, expressed as feet sea water, and the concentration of Ar in a trinary breathing mixture that includes N 2 .................................................................................................................... 13 Figure 5. The presence of constant metabolic gas pressures (0 2, CO2, and H20 vapor) and the rapid equilibration of pressure across the tissue-bubble interface means that the fraction of any inert gases, only N 2 in this case, decrease as ambient pressure decreases. 14 Figure 6. The P(DCS) for a given TR360 (TR based on a 360-min half-time compartment) is greater at 3.75 psia compared to 4.3 psia in a simulation where exercise is present during a 6-hr exposure ................................................................................................... 17 iv Contents (continued) Page Figure 7. Estimated total inert gas pressure (solid line) after summing the pressure of N 2 in the 360-rain half-time tissue compartment and the Ar pressure in the 720-min 2O half-time tissue compartment ......................................................................................... Figure 8. Decrease in total inert gas pressure (solid line) as a function of time breathing 22 100% 0 2 before EVA .................................................................................................... Figure 9. Decrease in total inert gas pressure (solid line) as a function of time breathing 23 100% 0 2 before EVA from the 10.0-psia habitat .......................................................... Figure IO. Heuristic risk-to-benefit analysis of Ar as part of the breathing environment in 26 an 8.0-psia habitat before an EVA in a 3.75-psia suit .................................................... Figure 11. A bubble grows rapidly and to a large size in lipid tissue with trinary or binary 29 breathing gases in the Mars habitat ................................................................................ 31 Figure 12. A bubble grows large, but not as large as some in Fig. i I ................................. Acronyms and Nomenclature AF argon BGI bubble growth index ¢F4 carbon tetrafluoride CO2 carbon dioxide DCS decompression sickness EVA extravehicular activity fsw feet sea water He helium kPa kilopascals N2 nitrogen N20 nitrous oxide 02 oxygen psia pounds per square inch SF 6 sulfur hexafluoride tigp total inert gas pressure TR tissue ratio vi Abstract A cost-effective approach for Mars exploration is to use the available resources, such as water and atmospheric gases. Nitrogen (N 2) and argon (Ar) in a concentration ratio of 1.68/I .0 are available and could form the inert gas component of a habitat atmosphere at 8.0, 9.0, or 10.0 pounds per square inch (psia). The habitat and space suit are designed as an integrated system: a comfortable living environment about 85% of the time and a safe working environment about 15% of the time. A goal is to provide a system that permits unrestricted exploration of Mars. However the risk of decompression sickness (DCS) during the extravehicular activity in a 3.75- psia suit, after exposure to any of the three habitat conditions may limit unrestricted exploration. This communication is an evaluation of the risk of DCS since a significant proportion, about 25%, of a trinary breathing gas in the habitat might contain Ar. I draw on past experience and published information to extrapolate into untested, multivariable conditions to evaluate risk. A rigorous assessment of risk as a probability of DCS for each habitat condition
Recommended publications
  • Urinary Problems in Decompression Sickness*
    Paraplegia 23 (1985) 20-25 © 1985 International Medical Society of Paraplegia Urinary Problems in Decompression Sickness* Athanasios Dounis, M.D. and Dionisios Mitropoulos, M.D. The Naval Medical Hyperbaric Center) Piraeus Naval Hospital and Department of Urology) Athens Naval Hospital) Greece Summary The records of 25 patients with type II decompression sickness and urinary problems have been reviewed. Seventeen patients were professionals and 8 were above the age of 40. The disease appeared within the 1st hour of emergence from the water in 70% of the cases and within the first 4 hours in the remaining 30%. Nine patients were diagnosed as paraplegic and two as tetraplegic. All patients had urinary disturbances and 14 were on Foley-catheter drainage during the decompression while 11 were on intermittent catheterisation. Fifteen patients had improved urinary function after recompression) 8 had some difficulty) 2 underwent a sphincterotomy and one a transurethral prostatectomy. The low percentage of complete recovery was due to the delayed arrival at the decompression chamber. Key words: Diving; Decompression sickness; Urinary disturbances. Introduction Diving for sponge fishery is the main professional occupation of the young men in the South-East Aegean islands. Although the use of recompression has decreased the number of decompression sickness victims, patients with remaining neurological problems still present. During the last 20 years, although there is a decrease of the professional divers' accidents there is an increase of the number of patients with decompression sickness. This is due to the continuously increasing numbers of sport divers in Greece. In Greece, the field of underwater medicine is covered mainly by the Naval Medical Service.
    [Show full text]
  • Tailoring of the Controlling and Monitoring Tools for Operations in Shallow Coastal Waters
    Tailoring of the controlling and monitoring tools for operations in shallow coastal waters Ref.: D6.1_V1.1 Date: 08/01/2021 Euro-Argo Research Infrastructure Sustainability and Enhancement Project (EA RISE Project) - 824131 Under EC_review This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 824131. Call INFRADEV-03-2018-2019: Individual support to ESFRI and other world-class research infrastructures Disclaimer: This Deliverable reflects only the author’s views and the European Commission is not responsible for any use that may be made of the information contained therein. 2 Project Euro-Argo RISE - 824131 Deliverable number D6.1 Deliverable title Tailoring of the controlling and monitoring tools for operations in shallow coastal waters Description Report that details the existing Euro-Argo controlling and monitoring tools implemented, developed, tested and tailored for Argo float operations in shallow coastal areas of the Mediterranean, Black and Baltic Seas. Work Package number 6 Work Package title Extension to Marginal Seas Lead Institute OGS Lead authors Giulio Notarstefano Contributors Massimo Pacciaroni, Dimitris Kassis, Atanas Palazov, Violeta Slabakova, Laura Tuomi, Siiriä Simo-Matti, Waldemar Walczowski, Małgorzata Merchel, John Allen, Inmaculada Ruiz, Lara Diaz, Vincent Taillandier, Luca Arduini Plaisant, Romain Cancouët Submission date 08/01/2021 Due date [M18] 30 June 2020 Comments This deliverable was postponed due to Covid-19 pandemic (Article
    [Show full text]
  • A Novel Lipid Screening Platform That Provides a Complete Solution for Lipidomics Research
    A Novel Lipid Screening Platform that Provides a Complete Solution for Lipidomics Research The Lipidyzer™ Platform, powered by Metabolon® Baljit K Ubhi1, Alex Conner1, Eva Duchoslav3, Annie Evans1, Richard Robinson1, Paul RS Baker4 and Steve Watkins1 1SCIEX, CA, USA, 2Metabolon, USA, 3SCIEX, Ontario, Canada and 4SCIEX, MA, USA INTRODUCTION MATERIALS AND METHODS A major challenge in lipid analysis is the many isobaric Applying the kit for simplified sample extraction and preparation, interferences present in highly complex samples that confound a serum matrix was used following the protocols provided. A identification and accurate quantitation. This problem, coupled QTRAP® System with SelexION® DMS Technology (SCIEX) with complicated sample preparation techniques and data was used for targeted profiling of over a thousand lipid species analysis, highlights the need for a complete solution that from 13 different lipid classes (Figure 2) allowing for addresses these difficulties and provides a simplified method for comprehensive coverage. Two methods were used covering analysis. A novel lipidomics platform was developed that thirteen lipid classes using a flow injection analysis (FIA); one includes simplified sample preparation, automated methods, and injection with SelexION® Technology ON and another with the streamlined data processing techniques that enable facile, SelexION® Technology turned OFF. The lipid molecular species quantitative lipid analysis. Herein, serum samples were analyzed were measured using MRM and positive/negative switching. quantitatively using a unique internal standard labeling protocol, Positive ion mode detected the following lipid classes – a novel selectivity tool (differential mobility spectrometry; DMS) SM/DAG/CE/CER/TAG. Negative ion mode detected the and novel lipid data analysis software.
    [Show full text]
  • Dysbarism - Barotrauma
    DYSBARISM - BAROTRAUMA Introduction Dysbarism is the term given to medical complications of exposure to gases at higher than normal atmospheric pressure. It includes barotrauma, decompression illness and nitrogen narcosis. Barotrauma occurs as a consequence of excessive expansion or contraction of gas within enclosed body cavities. Barotrauma principally affects the: 1. Lungs (most importantly): Lung barotrauma may result in: ● Gas embolism ● Pneumomediastinum ● Pneumothorax. 2. Eyes 3. Middle / Inner ear 4. Sinuses 5. Teeth / mandible 6. GIT (rarely) Any illness that develops during or post div.ing must be considered to be diving- related until proven otherwise. Any patient with neurological symptoms in particular needs urgent referral to a specialist in hyperbaric medicine. See also separate document on Dysbarism - Decompression Illness (in Environmental folder). Terminology The term dysbarism encompasses: ● Decompression illness And ● Barotrauma And ● Nitrogen narcosis Decompression illness (DCI) includes: 1. Decompression sickness (DCS) (or in lay terms, the “bends”): ● Type I DCS: ♥ Involves the joints or skin only ● Type II DCS: ♥ Involves all other pain, neurological injury, vestibular and pulmonary symptoms. 2. Arterial gas embolism (AGE): ● Due to pulmonary barotrauma releasing air into the circulation. Epidemiology Diving is generally a safe undertaking. Serious decompression incidents occur approximately only in 1 in 10,000 dives. However, because of high participation rates, there are about 200 - 300 cases of significant decompression illness requiring treatment in Australia each year. It is estimated that 10 times this number of divers experience less severe illness after diving. Physics Boyle’s Law: The air pressure at sea level is 1 atmosphere absolute (ATA). Alternative units used for 1 ATA include: ● 101.3 kPa (SI units) ● 1.013 Bar ● 10 meters of sea water (MSW) ● 760 mm of mercury (mm Hg) ● 14.7 pounds per square inch (PSI) For every 10 meters a diver descends in seawater, the pressure increases by 1 ATA.
    [Show full text]
  • 8. Decompression Procedures Diver
    TDI Standards and Procedures Part 2: TDI Diver Standards 8. Decompression Procedures Diver 8.1 Introduction This course examines the theory, methods and procedures of planned stage decompression diving. This program is designed as a stand-alone course or it may be taught in conjunction with TDI Advanced Nitrox, Advanced Wreck, or Full Cave Course. The objective of this course is to train divers how to plan and conduct a standard staged decompression dive not exceeding a maximum depth of 45 metres / 150 feet. The most common equipment requirements, equipment set-up and decompression techniques are presented. Students are permitted to utilize enriched air nitrox (EAN) mixes or oxygen for decompression provided the gas mix is within their current certification level. 8.2 Qualifications of Graduates Upon successful completion of this course, graduates may engage in decompression diving activities without direct supervision provided: 1. The diving activities approximate those of training 2. The areas of activities approximate those of training 3. Environmental conditions approximate those of training Upon successful completion of this course, graduates are qualified to enroll in: 1. TDI Advanced Nitrox Course 2. TDI Extended Range Course 3. TDI Advanced Wreck Course 4. TDI Trimix Course 8.3 Who May Teach Any active TDI Decompression Procedures Instructor may teach this course Version 0221 67 TDI Standards and Procedures Part 2: TDI Diver Standards 8.4 Student to Instructor Ratio Academic 1. Unlimited, so long as adequate facility, supplies and time are provided to ensure comprehensive and complete training of subject matter Confined Water (swimming pool-like conditions) 1.
    [Show full text]
  • Charon Tectonics
    Icarus 287 (2017) 161–174 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Charon tectonics ∗ Ross A. Beyer a,b, , Francis Nimmo c, William B. McKinnon d, Jeffrey M. Moore b, Richard P. Binzel e, Jack W. Conrad c, Andy Cheng f, K. Ennico b, Tod R. Lauer g, C.B. Olkin h, Stuart Robbins h, Paul Schenk i, Kelsi Singer h, John R. Spencer h, S. Alan Stern h, H.A. Weaver f, L.A. Young h, Amanda M. Zangari h a Sagan Center at the SETI Institute, 189 Berndardo Ave, Mountain View, California 94043, USA b NASA Ames Research Center, Moffet Field, CA 94035-0 0 01, USA c University of California, Santa Cruz, CA 95064, USA d Washington University in St. Louis, St Louis, MO 63130-4899, USA e Massachusetts Institute of Technology, Cambridge, MA 02139, USA f Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA g National Optical Astronomy Observatories, Tucson, AZ 85719, USA h Southwest Research Institute, Boulder, CO 80302, USA i Lunar and Planetary Institute, Houston, TX 77058, USA a r t i c l e i n f o a b s t r a c t Article history: New Horizons images of Pluto’s companion Charon show a variety of terrains that display extensional Received 14 April 2016 tectonic features, with relief surprising for this relatively small world. These features suggest a global ex- Revised 8 December 2016 tensional areal strain of order 1% early in Charon’s history. Such extension is consistent with the presence Accepted 12 December 2016 of an ancient global ocean, now frozen.
    [Show full text]
  • Leonardo User Manual
    Direction for use Computer Leonardo ENGLISH cressi.com 2 TABLE OF CONTENTS Main specifications page 4 TIME SET mode: General recommendations Date and time adjustment page 31 and safety measures page 5 SYSTEM mode: Introduction page 10 Setting of measurement unit and reset page 31 1 - COMPUTER CONTROL 3 - WHILE DIVING: COMPUTER Operation of the Leonardo computer page 13 FUNCTIONS 2 - BEFORE DIVING Diving within no decompression limits page 36 DIVE SET mode: DIVE AIR function: Setting of dive parameters page 16 Dive with Air page 37 Oxygen partial pressure (PO2) page 16 DIVE NITROX function: Nitrox - Percentage of the oxygen (FO2) page 18 Dive with Nitrox page 37 Dive Safety Factor (SF) page 22 Before a Nitrox dive page 37 Deep Stop page 22 Diving with Nitrox page 40 Altitude page 23 CNS toxicity display page 40 PLAN mode: PO2 alarm page 43 Dive planning page 27 Ascent rate page 45 GAGE mode: Safety Stop page 45 Depth gauge and timer page 27 Decompression forewarning page 46 Deep Stop page 46 3 Diving outside no decompression limits page 50 5 - CARE AND MAINTENANCE Omitted Decompression stage alarm page 51 Battery replacement page 71 GAGE MODE depth gauge and timer) page 52 6 - TECHNICAL SPECIFICATIONS Use of the computer with 7 - WARRANTY poor visibility page 56 4 - ON SURFACE AFTER DIVING Data display and management page 59 Surface interval page 59 PLAN function - Dive plan page 60 LOG BOOK function - Dive log page 61 HISTORY function - Dive history page 65 DIVE PROFILE function - Dive profile page 65 PCLINK function Pc compatible interface page 66 System Reset Reset of the instrument page 70 4 Congratulations on your purchase of your Leo - trox) dive.
    [Show full text]
  • Seasonal Growth and Lipid Storage of the Circumgiobal, Subantarctic Copepod, Neocalanus Tonsus (Brady)
    Deep-Sea Research, Vol. 36, No. 9, pp, 1309-1326, 1989. 0198-0149/89$3.00 + 0.00 Printed in Great Britain. ~) 1989 PergamonPress pie. Seasonal growth and lipid storage of the circumgiobal, subantarctic copepod, Neocalanus tonsus (Brady) MARK D. OHMAN,* JANET M. BRADFORDt and JOHN B. JILLETr~ (Received 20 January 1988; in revised form 14 April 1989; accepted 24 April 1989) Abstraet--Neocalanus tonsus (Brady) was sampled between October 1984 and September 1985 in the upper 1000 m of the water column off southeastern New Zealand. The apparent spring growth increment of copepodid stage V (CV) differed depending upon the constituent con- sidered: dry mass increased 208 Ixg, carbon 162 Ixg, wax esters 143 Itg, but nitrogen only 5 ltg. Sterols and phospholipids remained relatively constant over this interval. Wax esters were consistently the dominant lipid class present in CV's, increasing seasonally from 57 to 90% of total lipids. From spring to winter, total lipid content of CV's increased from 22 to 49% of dry mass. Nitrogen declined from 10.9 to 5.4% of CV dry mass as storage compounds (wax esters) increased in importance relative to structural compounds. Egg lipids were 66% phospholipids. Upon first appearance of males and females in deep water in winter, lipid content and composition did not differ from co-occurring CV's, confirming the importance of lipids rather than particulate food as an energy source for deep winter reproduction of this species. Despite contrasting life histories, N. tonsus and subarctic Pacific Neocalanus plumchrus CV's share high lipid content, a predominance of wax esters over triacylglycerols as storage lipids, and similar wax ester fatty acid and fatty alcohol composition.
    [Show full text]
  • Nitrox Recreational Mode - Perdix
    Nitrox Recreational Mode - Perdix User Manual Shearwater Perdix Nitrox Recreational Mode 8. System Setup+ ...........................................................18 Table of Contents 8�1� Dive Setup ��������������������������������������������������������������������������������������������������������� 18 Mode �������������������������������������������������������������������������������������������������������� 18 Table of Contents �����������������������������������������������������������������������������������������������������2 Salinity ����������������������������������������������������������������������������������������������������� 18 Conventions Used in this Manual �����������������������������������������������������������������������3 8�2� Deco Setup ������������������������������������������������������������������������������������������������������� 19 1. Introduction .................................................................. 4 Conservatism ������������������������������������������������������������������������������������������� 19 1�1� Features ���������������������������������������������������������������������������������������������������������������4 Safety Stop ���������������������������������������������������������������������������������������������� 19 8�3� Bottom Row ����������������������������������������������������������������������������������������������������� 19 2. Modes Covered by this Manual ................................. 5 8�4� Nitrox Gases ����������������������������������������������������������������������������������������������������
    [Show full text]
  • Lipid–Protein and Protein–Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis
    International Journal of Molecular Sciences Review Lipid–Protein and Protein–Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis Olga Cañadas 1,2,Bárbara Olmeda 1,2, Alejandro Alonso 1,2 and Jesús Pérez-Gil 1,2,* 1 Departament of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; [email protected] (O.C.); [email protected] (B.O.); [email protected] (A.A.) 2 Research Institut “Hospital Doce de Octubre (imasdoce)”, 28040 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-913944994 Received: 9 May 2020; Accepted: 22 May 2020; Published: 25 May 2020 Abstract: Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface. Keywords: pulmonary surfactant film; surfactant metabolism; surface tension; respiratory air–liquid interface; inflammation; antimicrobial activity; apoptosis; efferocytosis; tissue repair 1.
    [Show full text]
  • Since Nitrogen Is at Least 5 Times More Soluble in Fat Than In
    STUDIES ON DYSBARISM I. DEVELOPMENT OF DECOMPRESSION SYNDROME IN GENETICALLY OBESE MICE WILLIAM ANTOPOL, M.D.; JOHN KALBERER, JR., M.S.; SAMUEL KOOPERSTEIN, M.D.; STEPHEN SUGAAR, M.D., AND CHRYSSANTHOS CHRYSSANTHOU, M.D. From the Joseph and Helen Yeamans Levy Laboratories, Beth Israel Hospital, and the Medical Department of the Port of New York Authority, New York, N.Y. Since nitrogen is at least 5 times more soluble in fat than in other tissues,l" the proportion of adipose tissue in the body influences the amount and rate of nitrogen released into the bloodstream after rapid decompression from high atmospheric pressure.5 It was the purpose of this investigation to find a modality in which the decompression syndrome could be produced regularly in small ani- mals, so that a great number of them could be exposed simultaneously to pressure. In view of the influence of adipose tissue in the decompres- sion syndrome, genetically obese mice were employed in these studies. Decompression illness ("bends") could be produced in the obese mice but not in their normal nonobese siblings or other strains of normal mice. These facts are especially significant in the light of recent reports cor- relating air crew obesity with fatal cases of dysbarism.8 MATERIAL AND METHODS Hereditary obese hyperglycemic mice of both sexes, 3 to 6 months of age were used. There were 2 weight ranges, 2I to 38 gm. (average 32 gm.) and 38 to 65 gm. (average 54 gm.), and, in addition, corresponding thin siblings weighing I7 to 27 gm. (average I9 gm.). The mice were obtained from the Roscoe B.
    [Show full text]
  • Project Title
    CAREER: Multimedia Analysis and Retrieval System (MARS) Sharad Mehrotra Department of Information and Computer Science, University of California at Irvine Contact Information Sharad Mehrotra, 424 Computer Science, University of California at Irvine, Irvine, CA 92697-3425 Phone: (949) 824 5975 Fax: (949) 824 4012 Email: [email protected] URL: http://www.ics.uci.edu/~sharad Project URL: http://www-mars.ics.uci.edu/ Project Award Information • Award Number: IIS: 9734300 • Duration: 4 years, (June 1st 1998 – May 30th 2002) • Current Year: 3rd year • Title of the project : CAREER: Multimedia Analysis and Retrieval System Keywords Multimedia analysis, Multimedia information retrieval, relevance feedback, query refinement, multidimensional indexing, uncertainty in databases, dimensionality curse, query processing. Project Summary The goals of the MARS project are to design and develop an integrated multimedia information retrieval and database management infrastructure, entitled Multimedia Analysis and Retrieval System (MARS), that supports multimedia information as first-class objects suited for storage and retrieval based on their content. Specifically, research in the MARS project is categorized into the following four sub-areas each of which contribute to the development of the integrated infrastructure. (1) Multimedia Content Representation: extraction of multimedia content and content-based representation of multimedia objects in databases. (2) Multimedia Information Retrieval: content-based multimedia retrieval techniques including multimedia retrieval models and interactive query refinement techniques. (3) Multimedia Feature Indexing: that overcomes the high-dimensionality and non-Euclidean nature of feature data to efficiently support retrieval based on feature similarity. (4) Multimedia Database Management: techniques to effectively and efficiently incorporate content-based retrieval of multimedia information into structured database processing.
    [Show full text]