Quick viewing(Text Mode)

Colonization: a Permanent Habitat for the Colonization of Mars

Colonization: a Permanent Habitat for the Colonization of Mars

COLONIZATION

A PERMANENT HABITAT FOR THE OF

A thesis submitted in fulfilment of the requirements of the degree of Master in Engineering Science (Research) in Mechanical Engineering

BY MATTHEW HENDER

THE UNIVERSITY OF AD ELAIDE SCHOOL OF MECHANICAL ENGINEERING

SUPERVISOR S – DR. GERALD SCHNEIDER & COLIN HANSEN

A u g u s t 2 0 0 9 315°E (45°W) 320°E (40°W) 325°E (35°W) 330°E (30°W) 335°E (25°W) 340°E (20°W) 345°E (15°W) 350°E (10°W) 355°E (5°W) 360°E (0°W) 0° 0° . llis Dia-Cau Va vi Ra . Camiling . Rypin Chimbote . Mega . IANI * . v Wicklow Windfall Zulanka Pinglo . . Oglala Tuskegee . Bamba . CHAOS . Bahn . Locana. . Tarata . Spry Manti ARABIA Huancayo . AUREUM . Groves . Vaals . . Conches _ . Berseba . Kaid . Chinju Lachute . Manah Rakke CHAOS . Stobs . Byske -5° . -0 . -5° Butte. Azusa Kong . Quorn Airy

. Creel . Innsbruck XANTHE Wink TERRA TERRA A . Kholm M . Daet S A Ganges .Sfax . Paks H Batoka C . Rincon I Arsinoes . Glide R P A Chaos C I S E R M R I N A E R R F G A I T I A R -10° -10° M Pyrrhae

C H A O S S Chaos E L L A V MARGARITIFER

Eos *

EOS CHASMA -15° -15°

alles V L o i r e

Osuga Eos TERRA Chaos

V a

Jones l l e

s -20° Lorica Polotsk -20° s Sigli . Kimry . Lebu Valle S Kansk . Shambe . . Longa . Gagra am rda a A Glazov . ra Gatico L alles a Himera Peta d . V V o . Aspen a . Grójec n . Nitro l l . Campos e V Guir . Loto s Paraná Golden a . Echt l - . Galu l . Manzi . e Kirsanov . Yegros Bentong s Circle . Bend . . Singa . Va Honda lles . Kita . Gori . Sibu Buta lles . Goba a Cartago . Thule . Karshi Globe V . Ely Murgoo . . . Balta . Kagul Dingo Cluny Falun . Deba Bogra . Cheb . .

. . Boru . Oltis Alga . Irbit Seminole Bigbee Revda Chekalin Inta Kasimov Kantang . Fastov . ra -25° . . Nepa . va -25°

s No i

. Calbe l Bar Dison

l . . _ Timaru a . Kuba

. Noma . . Romny V Omura Flat S Sandila . Rana Ruby a a . Cobalt t . . Lar . m Navan o Tak. Blitta l .Plum a C r Bison . . Jal . . Kirs a Edam V Ostrov a Gardo . Tura .Nan ll e s Er Kashira yth Kaj Pabo . Voo rae . Lamas . a F . o Livny . ssa Mila N . Kanab Nardo Harad Tiwi . . Sangar i r , g V a a R l l l Va s . i u Say s li n l lli a a V s S . Eads ur i ind o a b V z all U es

NOACHIS TERRA Luki -30° -30° 315°E (45°W) 320°E (40°W) 325°E (35°W) 330°E (30°W) 335°E (25°W) 340°E (20°W) 345°E (15°W) 350°E (10°W) 355°E (5°W) 360°E (0°W)

Elevations above 9000 meters -8200 Minimum found only on the larger volcanos. 21229 Maximum 0 5000 7000 9000 1000 3000 -9000 -7000 -5000 -3000 -1000 11000 13000 15000 17000 19000 21000 in meters 0°E (360°W) 5°E (355°W) 10°E (350°W) 15°E (345°W) 20°E (340°W) 25°E (335°W) 30°E (330°W) 35°E (325°W) 40°E (320°W) 45°E (315°W) 0° 0° Teisserenc de Bort

Schiaparelli

Brazos

-5° -5° . Airy-0 V Airy alles

B V

ra a

l

les zo TERRA s

Pollack

Dawes

-10° -10°

Mädler

Evro s Va llis

M o s a V -15° a -15° ll is SABAEA NOACHIS Wislicenus

-20° -20°

Bakhuysen Scopulus

us l Newcomb TERRA pu

Sco

-25° -25°

s

la arybdi h

Scyl C

-30° -30° 0°E (360°W) 5°E (355°W) 10°E (350°W) 15°E (345°W) 20°E (340°W) 25°E (335°W) 30°E (330°W) 35°E (325°W) 40°E (320°W) 45°E (315°W)

Elevations above 9000 meters -8200 Minimum found only on the larger volcanos. 21229 Maximum 0 5000 7000 9000 1000 3000 -9000 -7000 -5000 -3000 -1000 11000 13000 15000 17000 19000 21000 Elevation in meters 45°E (315°W) 50°E (310°W) 55°E (305°W) 60°E (300°W) 65°E (295°W) 70°E (290°W) 75°E (285°W) 80°E (280°W) 85°E (275°W) 90°E (270°W) 0° . 0° Teisserenc de Bort Schroeter

is l l

a

V

o r Oenotria a

-5° N -5°

T Y R R H E N A TERRA Verlaine Jarry- Liris -10° Desloges . -10°

Valles Scopulu s Briault

Valles Tisia

HUYGENS

-15° -15°

-20° -20°

Millochau

SABAEA T E R R A

Schaeberle -25° -25°

Suzhi . Isil . Kasabi

-30° -30° 45°E (315°W) 50°E (310°W) 55°E (305°W) 60°E (300°W) 65°E (295°W) 70°E (290°W) 75°E (285°W) 80°E (280°W) 85°E (275°W) 90°E (270°W)

Elevations above 9000 meters -8200 Minimum found only on the larger volcanos. 21229 Maximum 0 5000 7000 9000 1000 3000 -9000 -7000 -5000 -3000 -1000 11000 13000 15000 17000 19000 21000 Elevation in meters 90°E (270°W) 95°E (265°W) 100°E (260°W) 105°E (255°W) 110°E (250°W) 115°E (245°W) 120°E (240°W) 125°E (235°W) 130°E (230°W) 135°E (225°W) 0° 0° Escalante

L ic u

s

Palos V a l l T i in s

t

o

V

a

l

l

i s -5° -5°

Tag V us alles

TYRRHENA

-10° Briault -10°

TERRA

C C e e rb r e b r e u r s u s

D o D r Herschel o s r a -15° sa -15°

Ulya

Rayadurg HESPERIA TERRA Suata Loon

ia Espino -20° -20° Igol Kamativi Tala Hesper Dorsa Khurli CIMMERIA FossaeTYRRHENA T yrrh PATERA ena

D o r s Piyi . Chefu a

Tyrrhena Tyrrhena PLANUM Mons Faqu -25° Kinkora -25° Kunes

a s Müller r o D

es Solano t a n ri o Wajir e p M s

e

Savich

H

a Bombala Bazas i Torup n o s u A

ea era P vus -30° Ca -30° 90°E (270°W) 95°E (265°W) 100°E (260°W) 105°E (255°W) 110°E (250°W) 115°E (245°W) 120°E (240°W) 125°E (235°W) 130°E (230°W) 135°E (225°W)

Elevations above 9000 meters -8200 Minimum found only on the larger volcanos. 21229 Maximum 0 1000 3000 5000 7000 9000 -9000 -7000 -5000 -3000 -1000 11000 13000 15000 17000 19000 21000 Elevation in meters -5° -30° -15° -25° 0° -10° -20° (180°W) (180°W) 180°E 180°E 180°E

s lu

u LUCUS

p PLANUM

s

i o

l V l

c lci a

S u

S

Galdakao*

pollinaris

A

s ona .

u r m

at i

r M d M a ' New Plymouth* New a a

rt is Apollinaris Ta all Downe* s V . u .

r . rta s Ta pe Ru Apollinaris Patera Crivitz* (185°W) (185°W) . Zutphen* . 175°E Kayne 175°E

es up Zephyria Tholus Cavi R

Avernus Av nus er s s Avernus Cavi u e ri ll

u a

D V

D Mensae

a

o

s

r Zephyria

s

u

n

r

e

v

A

Colles

Avernus

r o

s

a

n r u D s e

v A (190°W) (190°W) de Vaucouleurs 170°E 170°E 170°E (195°W) (195°W)

165°E 165°E 21000

Boeddicker Vallis 19000

21229 Maximum

17000

15000 13000

(200°W)

(200°W)

Al-Qahira 11000

160°E 160°E 160°E 160°E

9000

7000 5000

Elevations above 9000 meters above Elevations 3000

Elevation in meters Elevation found only on the larger volcanos. only on the larger found

1000

0

(205°W) (205°W) -1000

155°E 155°E 155°E 155°E -3000

Graff -5000

-7000 -9000 -8200 Minimum (210°W) (210°W) 150°E 150°E 150°E (215°W) (215°W) 145°E 145°E (220°W) (220°W) Wien 140°E 140°E 140°E 140°E

AEOLIS MENSAE Lasswitz (225°W) (225°W) 0° -5° -10° -15° -20° -25° -30° 135°E 135°E 135°E ° 0 20°W) 3 - (1

°E

240

°

-35

° 0 W) ° 4 - 5 2 1 (

°E 5 ° 23 5

4

- e °

0

5

) a - s

(130°W os °

5

5 F -

230°E

°

0

-6

y

Pickering e s

s ° u (135°W) v 5

e 6 H ) - a

E

° W ° ch 0

0 4 225°E 2

ku 2

o 1

(

D

E

° W)

° 5 5

3

2 2 1 (

k r

a l

C ia ia )

(140°W) E W ° ° 0 0

3 3 ar 2

1

(

220°E c I

)

E Koval'sky W ° ° n 5 5 e 2 3 s 2

n

(1 Na 21000

) 19000

E W

° ° 21229 Maximum

(145°W)

0 0

2 4 17000

2 1

(

215°E 15000

13000

E W)

° °

5 5 1 11000 4

an 2 1

r

(

e

m

l

l

Eudoxus l i 9000

mp

M

ru T 7000

(150°W) 5000 210°E 210°E (150°W)

s Elevations above 9000 meters above Elevations e 3000 210°E ll Elevation in meters Elevation

a volcanos. only on the larger found

V )

Hipparchus

n

r 1000

W

E

a e

F d 0

i a

T -1000 L

155°

20

d

( l

TERRA

ö

i

k -3000

s

r

n

)

e

e

d ip W -5000

SIRENUM E

r

°

°

o

0

0

Ku

6

N

0

1 (155°W)

2 -7000 (

Sirenum Fossae Sirenum

-9000

205°E

)

Ptolemaeus

°W °E

-8200 Minimum

5

5

6

9

1

(1

Newton

)

W

E

170°

190°

(

(160°W)

)

200°E

°W

°E

5

5

7

8

1 (1

s

cu

i

n rn

W)

i

°

E

e s

°

0

p 0 H

8

8

o 1

u

° (

1 i

C 5

L

6 (165°W)

-

195°E 195°E

°

0

6

-

Chaos y

°

5 er

V Gorgonum Gorgonum

-5

(170°W)

° 190°E

0

-5

Sirenum Fossae Sirenum

Magelhaens

°

5

4

-

(175°W)

Chaos

Atlantis Atlantis

-40°

185°E 185°E

-35°

(180°W)

-30° 180°E 180°E )

W °

30 60° - (

E va 0° Prot Valles 30

-35° . i

Ak

S ° 0

-4 5°W) 6 (

k i

295°E V

45° -

BOSPORO

PLANUM ° 0

-5

Kumak

(70°W)

° 5 5 - 290°E

Gari

60° . -

Babakin

° (75°W) 5 6 - E ° 0 W) as ° Mel 0 285°E 0 s 3 Fossae s 6 a ( l

g

u

Voeykov Los Do

CORACIS ) A E R u p e s W 5° ° Pulawy e 29 r 65 y ( g r A

Lampland

* (80°W)

E RR ° W) a 0 ° n 9 0 ta 2 n 7 ( 280°E

Fo

NUM

) A E FOSSAE TE ° W 5 °

l L 8 5

2 l 7 (

P 21000

we

o 19000 E

(85°W) W) 21229 Maximum r 0° °

L

e 8 0 A 17000

2 8

h

(

p

275°E i l 15000

S

) ONI E 13000

° W

° 5

5 7 A 11000

8 2

(

9000 7000

(90°W) 270°E 5000 (90°W)

270°E 270°E Elevations above 9000 meters above Elevations 3000

Elevation in meters Elevation

volcanos. only on the larger found E 1000

SOLIS PLANUM i

W) °

Warrego n i ° 5 0

alles h

5 c

V 6

n -1000

9

2

a

(

i

B

-3000

)

E -5000

°

0°W

OSSAE

(95°W) F

260 -7000

(10

265°E CLARITAS -9000

)

A

W E

° °

-8200 Minimum

5 5

0

5 I

1 2

(

ASIA

THAUM

N

)

O

250°E

(100°W) (110°W

s Sripur

Tugaske s

.

o

Dinorwic

R

A )

260°E 260°E FOSSAE

W

°

E

Wukari 15

45

1

2

(

Virrat

t

n )

mo

°W

a

PLANUM PLANUM

°E

L

0 ICARIA

0

2

4

2

Claritas (1 °

5

6

(105°W) -

r

255°E e

t

r

o

°

P

0

6

-

r

a

e

sh

Bra

55°

-

(110°W)

250°E

°

0

5

-

°

5

4

-

(115°W)

245°E -40°

-35°

(120°W)

-30° 240°E )

° °W 0 0 3 - ( E °

360

° 5 3 -

° 0 4 W) -

(5°

E °

355 5°

-4

° 0 5 -

(10°W)

° 5 5 - 350°E y r r e b n e d d o °

R 0 6 -

Shatskiy

n (15°W) 65° e -

Vogel r °E e 0 re n e 6 °W) 345°E g G * 3 e (0 W

A um s lli a V E ) n ° 5 W 5 ° a 3 5 (

Mena Sisyphi R

Pl o t n

Lohse e ) (20°W) r s E F i l l W

a

V

350°

10°

( 340°E

s a

ER p

o

c

a )

l

l E

a

P

NOACHIS n

oltz

45°

i

3

(15°W

T

21000

Helmh

arw

Arkhangelsky

D ) 19000

E

°

W (25°W)

°

0 21229 Maximum

4 0 s

i l 17000 3 2 l

( a

V

335°E

s a 15000

p

z

o c

s

rt a i l

l l

l

a

i 13000 P

a E

° V W)

W °

5

Foros

5

3 s u 2 11000 3

n (

a

o

D

9000

a

s s

o F 7000 Kakori

. Tarakan m

(30°W) u

d

Dese i

cea n i O 330°E 5000

(30°W)

d

l

Kamloops a

330°E r Elevations above 9000 meters above Elevations 3000 S a Elevation in meters Elevation found only on the larger volcanos. only on the larger found

. M

E )

am

H

Ochakov

. 1000 E uk uk T

.

Bozkir h

.

° a W

Kem'

Sa G

.

°

5 Oodnadatta 0

i s N l 5

al 2

Karpinsk 3 V -1000

. 3 O (

Zilair

s i l l

a

V

go

M is

a l

i l

m

a

N -3000 u em V

r L

s

. a

.

n Albi

r a

i

Kushva o .

s N )

Mo e

H Tabou

. E

-5000

ont W °

M ° 0

e 0

c i 2

(35°W) a 4

a zig

. D 3

v ( z

-7000

hal z

C

e m Valga

u

J s

r

Choctaw . o

D m

m

Satka

u

a

s

i

d

l

h A

325°E

l -9000 i

t

a

n

n

a V

e

e s

Gali

d . c

) B

n

a e

r

o elta

O

e m s

c

I

u

E

l

o s

r

D

M

s i

r W

f

i

a y

o

°

o l

°

g

o i D av

F

-8200 Minimum r

. m 5

u

b Ch

5

s

C

A

r

s z M

o 1

U i

Alitus r a 4

r

D

e

a

3

(

T

h

a

S h

t

i

s o

C w

m a

.

u x

d

s P

r u

A

o

o

E

rvoo

L

D

Sokol s

.

i Po

T t

s

n

.

n

a t

a

YRE n Mo

N en Oc Camiri

a E

h W)

° e g m e m u s o r

o

n D

e

H

° P

. 0

O 0 Wau

i

1

r

5

.

s

(

3

i

Azul

s

t

s

Podor

i (40°W) Vallis

l iu n l

M i r

a

u

Ma

a

v

i m

t V

S

M

a

u

. c

s

Zongo

C

r

rib

O engo s

u o i r

S K D u

R ia . .

Cle U 320°E

Yungay T

E W)

Tombe

. °

°

. ARG

Hooke I

PLANI

5 5 Taza

0

5

(

R 3

u

Kampot

d n

. A

.

a

s

G

s

. e

r H

p

y án

C E W)

C ° ° n

Luga rm

M

o 0

0 á

V

Magadi

0 6 K

( a

U 3

g

a

l

D

65°

(45°W) a -

I r

S

e

g

. E E

.

R .

Labria

315°E

a Talsi

E

r Torsö

o

l N .

. F

Sumgin

60°

-

Turbi Tara

a

r

f Bunge

o

a i

r _

M

if

rn ssau

.

K

a

De Vätö

. S .

.

.

°

5

5 Baltisk

- Kartabo

.

(50°W)

tone

y

Ruza

e

Maids

l

310°E l

°

a

Rupes

0

H

-5

oros oros Bosp

s e

p

Dubki

u

R .

g

y

i

s

g

O

45°

-

(55°W)

Tabor

305°E 305°E -40° -35°

Protva

Valles

(60°W)

-30° 300°E 300°E W) ° ° 0 3 - 300 ( E

60°

-35°

° 0

W) 4 ° -

05 3 (

°E 5 5 5°

-4

pheus les s ° Al a s Col l -50 l o A HELLAS I a

T He

(310°W) I Ch ° 5 N 5 - 50°E A

PL ° 0 6 -

d r a ° 5 rn (315°W) -6 ) a

°E B A °W 0 M 0 45°E 6 s E 0 u a r U (3 e e n t

Pe Pa AN MAL

E W) ° ° PL 5 5

5 0

3 (

s a *

e a

t le r

a

n te

o M

E

(320°W) W)

°

Pa °

M 0 0

5 1

s 3

40°E

e (

t

n

o

p s e l l e H )

E W

° °

5 5

4 1

3

( 21000

) 19000

E W

° ° 21229 Maximum (325°W)

0

20 4 17000

3

(

35°E

Rabe 15000 13000

°W)

°E

5

5

2 3 11000

(3 9000

a 7000

(330°W) us

y 30°E it 5000

P (330°W)

Proctor 30°E 30°E

Elevations above 9000 meters above Elevations 3000

Elevation in meters Elevation found only on the larger volcanos. only on the larger found 1000

pes °W)

u °E

R 5 0

5

3 2

-1000

(3

-3000

)

Rupes W

E -5000

°

0

20°

34 (335°W)

( -7000

RA

25°E

-9000

)

W

E

s -8200 Minimum

15°

Chalcoporo 345°

R

(

)

Kaiser

W

° E

°

0

0

5

1

3

(

(340°W)

l

l

e

s

20°E 20°E )

TE

s

u

°W

5

R °E

5

5

Le Verrier Le

*

(3

M

I

U

H

N

P

°W)

A

0 Y

L

0°E

P (36 IS

S

65°

- (345°W)

NOACHIS 15°E 15°E

60°

r

-

e

d

n

u

Ma

°

5

5 -

.

(350°W)

10°E 10°E

°

0

5

-

°

5

4

-

(355°W)

5°E

-40°

-35°

(360°W)

-30° 0°E 0°E )

°W 0 4 30° - (2

°E 0 2 1

°

-35

W) -40°

45°

(2

°E 5 ° 11 5

-4

° 0 5 -

(250°W)

55° -

110°E

s

i

l

l

a

V °

0

6

-

A

°

(255°W) 65 e

- )

c E ° W

a ° l 0 l

l 2 0 l

105°E u 1 4 e a 2

(

R n

PROMETHEI W

ei

nl

) Hei

E ° W ERR 5 ° 1 5 Euripus 4 Mons* 1 2 (

hov

k

i

T T

*

s i l l

a

V (260°W)

E

t ° W) o °

Gunnison* 0 i

0 v 1 5

e 1 T 2 ( 100°E Ausonia Mensa

s i l i l )

Sebec a h V °E W Hellas Montes ° c 5 5 0

Ausonia 5 Cavus c 1

(2

h l 21000 l c y i Negele u Se e v W) e

xl

R ) 19000

Hu E

htofo W s ° s °

(265°

e 0 21229 Maximum

t ri 0

n 0 Gander K 6 o 17000 M 1 2 (

s

95°E i i

Nazca l C r

l enta u

15000 a

V A

Cue

)

13000

s W

E

i °

l °

l

5

PATERA 5 Thom

a

6

V 9 HADRIAC 11000

2

i

(

r

d

Ayr

Daan e

e

g

9000 i

R

N s

Vallis i

h

k

a

m

7000 r

Cañas a

H

(270°W) .

90°E

Quines 5000

(270°W)

Apia

90°E 90°E

Coronae Coronae Mons

Elevations above 9000 meters above Elevations 3000

l

Spallanzani

l

Tungla

Elevation in meters Elevation

Mliba

volcanos. only on the larger found

)

Santaca

edhi

l 1000 W

E

°

°

G

5 0

5

Dao Dao

Poti 7

Anseris Mons 8

Tignish 2 -1000

.

(

Taejin -3000

Peraea Mons

)

Njesko W

E -5000

°

°

0

0

8

8

2 (275°W)

( -7000

85°E

-9000

W)

E ° °

-8200 Minimum

5 5

a s 8

l i 7

2 Ze Val (

a s r Mad o

D

)

W

° E

M °

0

0

9

U

7

2

(

N

(280°W)

A

L

80°E

US )

I P W

AX °

°E 5

5

9

6 A

S (2 E E L

L A L

V

A

)

S

W M

E E

T

I

R

60° 300° A

T

(

°

I

R d

r

5 E H

a

T 6 P

-

n A

M

r (285°W)

P

A a

B 75°E

S

60° -

CHAO

PLANITIA

°

HELLAS 5

5 -

S (290°W)

LA

L 70°E

HE

50°

-

°

5

4 Scopulus

- (295°W)

Coronae

Colles

65°E

-40°

Alpheus

-35°

(300°W)

-30° 60°E 60°E )

°

-30 (180°W

180°E

°

35 -

) ° 0

-4 5°W

18

(

° 175°E 5 m 4 - u

en

ir ae

S s ° 0

s e -5

Fos s

Ariadn Colle

(190°W) ° 5 5 -

170°E

° 0 6 -

Bjerknes

° 5 (195°W) 6 - E W) °

165°E 180° y 180 b ( s

s

o

R

)

s E

e ° W

l

l IA 5 °

a

va 5

V 7 a

r 1 8 D 1 (

ll

e

Cruls b ) R p

(200°W) E m W

a

C

170° 190°

160°E (

E

)

E ° W ° 5 5 6

el 9 1

1

( end 21000

M M ) 19000

E

W °

(205°W) ° 21229 Maximum

TERRA 0 0 s 6 17000

0

in 1

2

g (

g

u 155°E 15000

H

) 13000

E

IM 11000

155°

(205°W

9000 C 7000

(210°W) 5000

150°E

s (210°W)

u

l

u 9000 meters above Elevations 3000 150°E p

Elevation in meters Elevation

o volcanos. only on the larger found

c y

k

S

)

1000

E W

ads

r

0

ahe

r

B

-1000

145°

215° inog

ho ho (

M

V c

y

a U

T i

-3000 I

n

a

N

d

i

r

E

-5000

E W)

° ° HRO

0 0

C

4 2

(215°W)

1 -7000 2

(

Martz

-9000

M M

145 E E 145

)

NU

W E

A

°

° -8200 Minimum

L

5 5

P 2 3

2

1 s

(

Kepler u

l

u

p

o

c

S

W)

E

°

a

i

230°

n

130

( (220°W) a

d

i

r

rd

E

y

B

140°E 140°E

W)

E

°

°

y

5

5

e

l

3

t 2

2

1

( es

Pri

e

)

n

a

d

E

°W l

a 0

0

H 4

2

1

(2 °

5

s

6

(225°W) l

l -

e

W

135°E 135°E

60°

-

y

o y

t

e

s

l x

e o

l

T

A

55°

-

(230°W)

s

e

p

u

130°E 130°E °

0

R

5

-

s

o

e

h

Arrhenius

p

r -45° o

M

(235°W)

-40° 125°E

-35°

(240°W)

-30° 120°E 0°E (0°W) 10°E (10°W) -65° (350°W) 350°E

20°E (20°W) (340 °W) 340°E

30°E (30°W) NOACHIS (330°W)

330°E SISYPHI PLANUM* SISYPHI

Pityusa MONTES

-70° 4 Rupes 0°E 0°W) (320°W) (4 SISYPHI 320°E Pityusa

Patera* MONTES

SISYPHI CAVI 5 0 Phillips °E

(3 (50°W) 1 0 °W 310°E )

-75° Dana TERRA 6 0 ° E ( 3 (60°W) 0 0 ° W ) 300°E Du Toit MALEA

Joly

DORSA ARGENTEA D O

-80° R

70° S

E A ( 290°W (70°W)

PLANUM

* P L A N U M Australe Montes* )

290°E E A E N T A R G

. Sarn

P R O M Australis E T . Patera . Dunhuang H E I Cavi

. McMurdo B _ 80° Frigores -85° R R E

U E Lomela ( P 280° (80°W) E V S

. W) I

280°E A * AVI

C . M Dzeng - P

U TI R N S O

A UM M T L GU Angusta . E P N Patera NGUS T A A

H

E NUM PLANUM A I L P

l e

270°E (90°W) a 90°E (270°W) AONIA r t A s A u

E

m a T s C h a P

PA L R A Heaviside VA N

U

M ARGEN

P * L A N U 260°E M ) TERRA *

W

°

PROMETHEI 0 S 6 ( 2 100°W) E (

Lau P °E U -85° 0 R 10

I E H T E AUSTRALE M O Playfair R Rayleigh P

25 TERRA ) 0°E W

0° (110°W) 5

(2

° 0 11 -80°

24 ) 0°E W Rupes °

0 s 4

(1 2 e ( 20°W

p E les °

u 0 ) 2 Chamberlin R 1

Thy

Reynolds

-75°

Stoney

2

3 )

0

° °W

E 0

3

(1

3 (2

0

° °E W 0

) 3

1 s

Richardson e

l

y

h T A 2 T 2 ERRA R ) 0 R °W °E E 0 2 (1 T 2 4 ( 0 s ° s e °E W e p 0 u 4 ) l -70° 1 l R

C a h V

i c

o

s

Charlier i

SIREN x

y l

2 U

1 0 W) ° UM E (1 (210° 50 °W E ) I A 150° E R M M 20 I ) 0°E C 0°W (1 (20 60°W °E ) 160

19 ) 0°E (1 190°W 70°W) -65° 170°E 180°E (180°W)

Elevations above 9000 meters -8200 Minimum found only on the larger volcanos. 21229 Maximum 0 1000 3000 5000 7000 9000 -9000 -7000 -5000 -3000 -1000 11000 13000 15000 17000 19000 21000 Elevation in meters

APPENDIX B – ELEMENTAL COMPOSITION MAPS OF THE SURFACE

Some of the maps of the elemental composition of the Mars surface layer are included below (more are expected to become available in the future). They are created from data acquired by the Gamma-ray Spectrometer (GRS) aboard the orbiter. The GRS instrument is a collaboration between the University of Arizona‟s Lunar and Planetary Laboratory, the Los Alamos National Laboratory and ‟s Space Research Institute. The GRS consists of three instruments, a gamma-ray spectrometer, a neutron spectrometer and a high energy neutron detector.

Each map represents the fully corrected, CO2 free elemental concentrations. Data for all non-radioactive species have been masked to exclude polar regions where it is not currently possible to adequately deal with dilution by the large amounts of water .

The letters on the maps indicate the landing sites of various landers (V1 and V2 – the Viking landers; PF – Pathfinder; M – , at Meridiani; and G – , at Gustev Crater).

Water

149

Iron

Silicon

Chlorine

150

Thorium

Potassium

151

GLOSSARY

Albedo – The fraction of incident Optical Depth – A measure of how solar reflected into much light is absorbed in travelling space without absorption. through a medium, such as the

Aphelion – The point of a ‟s atmosphere of a star, from the source of orbit at which it is furthest from the light to a given point. A completely . transparent medium has an optical depth of zero. >1 indicates opacity. C3 – A grouping of plants that produce a molecule containing three Rectenna – a rectifying antenna, a carbon atoms as the first product of special type of antenna used to convert . microwave energy into electricity.

C4 – A grouping of plants that rem – The measure of radiation used produce a molecule containing four in the of America (100 rem carbon atoms as the first product of equals one Sievert). photosynthesis. Rhizosphere – the region of soil in the

Diurnal Temperature Range – The vicinity of plant roots. temperature range over an average Smectite – a type of clay characterised day. by their one-directional swelling with

Extra Vehicular Activity (EVA) – changes in moisture content. activities undertaken in the external Specific Impulse (Isp) – a measure of environment to the vehicle or habitat the acceleration of a rocket or other (such as in space or on engine. surface). Sievert (Sv) – The SI unit for the ISRU – in-situ resource utilisation measure of radiation dose (one Sievert – the use of local resources (typically equals 100 rem). as opposed to importing resources Perihelion – The point of a planet‟s from elsewhere). orbit at which it is closest to the sun. Opposition – when two are on opposite sides of the sun.

152

Descriptions of nomenclature used in describing features, including some examples and locations.

ALBEDO feature Geographic area distinguished by amount of reflected light

ARCUS Arc-shaped feature

ASTRUM Radial-patterned features on

CATENA . Mostly not secondary impact craters but rather features which resemble collapsed tubes. Acheron Catena (38ºN, 101ºW)

CAVUS Irregular, steep-sided depressions not of impact origin. Cavi Augusti (4ºS, 187ºW)

CHAOS Distinctively broken or jumbled terrain. (4ºS, 27ºW)

CHASMA A steep-walled trough or a large canyon. Condor Chasma (6ºS, 71ºW)

COLLIS Hill or knob. Scandia Colles (65ºN, 153ºW)

CORONA Ovoid-shaped feature

CRATER A circular depression

DORSUM A ridge or other elongate, raised structure. Dorsa (16ºS, 255ºW)

FACULA Bright spot

FARRUM Pancake-like structure, or a row of such structures

FLEXUS A low curvilinear ridge with a scalloped pattern

FLUCTUS Terrain which resembles flows. Only Galaxias Fluctus (32ºN, 217ºW)

FOSSA Long, narrow, shallow depression or a narrow linear trench, ditch. Tatalus Fossae (44ºN, 102ºW)

LABES Landslide. Coprates Labes, Melas Labes in the Vallis Marineris complex

153

LABYRINTHUS , intersecting canyons. (7ºS, 101ºW)

LINEA A dark or bright elongate marking, may be curved or straight

LINGULA Extension of plateau having rounded lobate or tongue-like boundaries

MACULA Dark spot, may be irregular

MARE "Sea"; large circular plain

MENSA Flat-topped, steep-sided elevated feature. (3ºS, 218ºW)

MONS Mountain. Highlands surrounding impact basin (; 41ºS, 43ºW), ridges in or large volcanoes (; 18ºN, 133ºW)

PALUS "Swamp"; small plain

PATERA Shallow crater with scalloped complex walls or edges. Either craters which don‟t resemble impact craters (; 14ºN, 181ºW) or those of volcanic origin (Tyrrhena Patera; 21ºS, 253ºW)

PLANITIA Low plain or large level lowlands without features. Elysium Planitia (20ºN, 230ºW)

PLANUM Large high plateau. Sinai Planum (15ºS, 87ºW)

REGIO A large area marked by reflectivity or colour distinctions from adjacent areas, or a broad geographic region

RIMA Fissure

RUPES Linear scarp or cliff face. Bosporos Rupes (42ºS, 58ºW)

SCOPULUS Irregular scarp or cliff. Coronae Scopulus (33ºS, 295ºW)

SINUS "Bay"; small plain

SULCUS Parallel furrows and ridges which make up wrinkled terrain, semi- parallel ridges and troughs. Memnonia Sulci (5ºS, 176ºW)

TERRA Heavily cratered highlands. (35ºS, 335ºW)

154

TESSERA Tile-like, polygonal terrain

THOLUS Isolated somical mountain or hill, usually of volcanic origin. Tholus (14ºN, 91ºW)

UNDA Undulatory features. Only Abalos Undae (81ºN, 83ºW) and Hyperboreae Undae (77ºN, 46ºW)

VALLIS Basically a valley, but on Mars a variety of shapes. From gigantic Valles Marineris to topographically ill-defined Simud Vallis. Large ones named after names of Mars in other languages, smaller ones named after terrestrial rivers.

VASTITAS Extensive plain, widespread lowlands. Only .

VIRGA A streak or stripe of color

155

REFERENCES

Allen, G.A. 1993, “Colonizing Mars, The New Bents, D.J., McKissock, B.I., Withrow, C.A. 1991, Human Migration,” Spaceflight, Vol. 35, “Comparison of Dynamic Isotope Power Systems for September. Distributed Planetary Surface Applications,” American Institute of Physics. Allen, G.A 1995, “An Interplanetary Transportation System for Delivering Large Bernold, L.E. 1991, “Experimental Studies on Groups of People to Mars,” Journal of the British Mechanics of Lunar Excavation,” Journal of Aerospace Interplanetary Society, Vol. 48, No. 9. Engineering, Vol. 4, No. 1. Angelo, J.A. Jr., Buden, D. 1985, “Power Billingham, J. 1989, “An Overview of Selected Requirements for the Conquest of Mars,” Biomedical Aspects of Mars Missions,” AAS 87-189 in AAS 84-177 in McKay, C.P. (ed.) Case for Mars II, Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science Vol. 62, Science and Technology Series of the and Technology Series of the American Astronautical American Astronautical Society, Univelt. Society, Univelt. Ash, R.L., Werne, J.A., Haywood, M.B. 1989, Bluem, V., Paris, F. 2001, “Aquatic Food Production “Design of a Mars Processor,” AAS Modules in Bio-regenerative Life Support Systems Bases 87-263 in Stoker, C.R. (ed.) Case for Mars III, Vol. on Higher Plants,” Advanced Space Research, Vol. 27, 74-75, Science and Technology Series of the No. 9. American Astronautical Society, Univelt. Boston, P.J. 1981, “Low-Pressure Greenhouses and Atkinson, D.H., Gwynne, O. 1992, “Design Plants for a Manned Research Station on Mars,” Journal Considerations for a Mars System,” of the British Interplanetary Society, Vol. 34. Journal of the British Interplanetary Society, Vol. 45, No. 5. Boston, P.J. 1981, “Life Support Workshop Summary,” AAS 81-241 in Boston, P.J. (ed.) Case for Mars I, Vol. 57, Banin, A. 1989, “Mars Soil – A Sterile Regolith or a Science and Technology Series of the American Medium for Plant Growth?” AAS 87-215 in Astronautical Society, Univelt. Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Boston, P.J. 1985, “Critical Life Science Issues for a Astronautical Society, Univelt. Mars Base,” AAS 84-167 in McKay, C.P. (ed.) Case for Mars II, Vol. 62, Science and Technology Series of the Banin A., , B.C., Wänke, H. 1992, “Surface American Astronautical Society, Univelt. Chemistry and Mineralogy,” in Kieffer, H.H., Jakosky, B.M., Snyder, C.W., Matthews, M.S. (eds.) Boston, P.J. 1988, “Mars Mission Life Support,” AAS Mars, Space Science Series, The University of 86-177 in Reiber, D.B. (ed.) The NASA Mars Conference, Arizona Press. Vol. 71, Science and Technology Series of the American Astronautical Society, Univelt. Baker, D.A., Zubrin, R.M. 1990, “: Combining Near-Term Technologies to Achieve a Boston, P.J. 1995, “Moving in on Mars: The Hitchikers‟ Two-Launch Manned Mars Mission,” Journal of Guide to Martian Life Support,” AAS 95-487, in Stoker, the British Interplanetary Society, Vol. 43, No. 11. C.R. and Emmart, C. (eds.) Strategies for Mars: A Guide to Human Exploration, Vol. 86, Science and Technology Bamberger, J.A., Coomes, E.P., Segna, D.R. 1991, Series of the American Astronautical Society, Univelt. “Exploration Mission Enhancements Possible with Power Beaming,” American Institute of Physics, Boyd, R.C., Thompson, P.S., Clark, B.C. 1989, Conference Proceedings No. 217, part 2. “Duricrete and Composites Construction on Mars,” AAS 87-213 in Stoker, C.R. (ed.) Case for Mars III, Vol. Beattie, R.M. Jr. 1989, “Fire Protection for a 74-75, Science and Technology Series of the American Martian Colony,” AAS 87-218 in Stoker, C.R. (ed.) Astronautical Society, Univelt. Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Brazell, J.W., Williams, W.M. Jr. 1997, “Omnidirectional Society, Univelt. Platform for Unstructured Surfaces,” AAS 90-254, in Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science Beaty, D.W., Snook, K., Allen, C.C., Eppler, D., and Technology Series of the American Astronautical Farrell, W.M., Heldmann, J., Metzger, P., Peach, L., Society, Univelt. Wagner, S.A., and Zeitlin, C. 2005, “An Analysis of the Precursor Measurements of Mars Needed to Breedlove, B.K., Ferrence, G.M., Washington, J., Reduce the Risk of the First Human Missions to Kubiak, C.P. 2001, “A Photoelectrochemical Approach Mars,” Unpublished white paper, posted June, 2005 to Splitting for a Manned Mission to by the Analysis Group Mars,” Materials and Design, Vol. 22. at http://mepag.jpl.nasa.gov/reports/index.html.

156

Brierley, G.S., Neely, D.B., Newkirk, M.T. 1997, Clearwater, Y.A., Harrison, A.A. 1990, “Crew Support “A Remotely Deployable Martian Habitat,” AAS for an Initial Mars Expedition,” Journal of the British 90-258, in Meyer, T.R. (ed.) Case for Mars IV, Vol. Interplanetary Society, Vol. 43, No. 11. 89-90, Science and Technology Series of the American Astronautical Society, Univelt. Cockell, C.S. 1995, “The Polar ,” Journal of the British Interplanetary Society, Vol. 48, Bula, R.J., Morrow, R.C., Mankamyer, M. 1997, No. 8. “Biomass Production Model for a Bio-regenerative Life Support System,” AAS 90-278, in Meyer, T.R. Cockell, C.S. 2001a, “The Martian and Extraterrestrial (ed.) Case for Mars IV, Vol. 89-90, Science and UV Radiation Environment Part II: Further Technology Series of the American Astronautical Considerations on Materials and Design Criteria for Society, Univelt. Artificial Ecosystems,” Acta Astronautica, Vol. 49, No. 11. Cadogan, D., Stein, J., Grahne, M. 1999, “Inflatable Composite Habitat Structures for Lunar and Mars Cockell, C.S. 2001b, “Martian Polar Expeditions: Exploration,” Acta Astronautica, Vol. 44, No. 7. Problems and Solutions,” Acta Astronautica, Vol. 49, No. 12. Capps, S., Case, C. 1993, “A New Approach for a Lunar Airlock Structure,” AIAA 93-0994, Cockell, C.S., Andrady, A.L. 1999, “The Martian and Aerospace Design Conference, Irvine, CA, USA, Extraterrestrial UV Radiation Environment–I. Biological Feb 16-19. and Closed-loop Ecosystem Considerations,” Acta Astronautica, Vol. 44, No. 1. Caudill, T.R. 1985, “Mass-Balance Model for a Controlled Ecological Life Support System on Cohen, M.M., 1995, “First Mars Outpost Habitation Mars,” AAS 84-184 in McKay, C.P. (ed.) Case for Strategy,” AAS 95-491, in Stoker, C.R. and Emmart, C. Mars II, Vol. 62, Science and Technology Series of (eds.) Strategies for Mars: A Guide to Human Exploration, the American Astronautical Society, Univelt. Vol. 86, Science and Technology Series of the American Astronautical Society, Univelt. Christensen, P.R., Moore, H.J. 1992, “The Martian Surface Layer,” in Kieffer, H.H., Jakosky, B.M., Connerney, J., Acuña, M., Ness, N., Kletetschka, G., Snyder, C.W., Matthews, M.S. (eds.) Mars, Space Mitchell, D., Lin, R., Rème, H. 2005, Proceedings of the Science Series, The University of Arizona Press. National Academy of Sciences, Vol. 102, Iss. 42, pp. 14970-14975, 18 Oct 2005 Clapp, W.M. 1985, “Water Supply for a Manned Mars Base,” AAS 84-181 in McKay, C.P. (ed.) Case Connors, M.M., Harrison, A.A. 1995, “The Human Side for Mars II, Vol. 62, Science and Technology Series of Marsflight: A Review of Human Factor Issues,” AAS of the American Astronautical Society, Univelt. 95-484, in Stoker, C.R. and Emmart, C. (eds.) Strategies for Mars: A Guide to Human Exploration, Vol. 86, Science and Clapp, W.M. 1985, “Water Supply for a Manned Technology Series of the American Astronautical Mars Base,” AAS 84-181 in McKay, C.P. (ed.) Case Society, Univelt. for Mars II, Vol. 62, Science and Technology Series of the American Astronautical Society, Univelt. Cordell, B.M. 1985, “A Preliminary Assessment of Martian Natural Resource Potential,” AAS 84-185 in Clapp, W.M., Scardera, M.P. 1989, “Applications of McKay, C.P. (ed.) Case for Mars II, Vol. 62, Science and In-Situ – Oxygen Propellent Technology Series of the American Astronautical Production at Mars,” AAS 87-212 in Stoker, C.R. Society, Univelt. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Criswell, D.R. 2000, “Lunar System: Review Society, Univelt. of the Technology Base of an Operational LSP System,” Acta Astronautica, Vol. 46, No. 8. Clark, B.C. 1981, “Chemistry of the Martian Surface: Resources for the Manned Exploration of De Young, R.J., Conway, E.J., Meador, W.E., Humes, Mars,” AAS 81-243 in Boston, P.J. (ed.) Case for D.H. 1989, “Laser Power Transmission Concepts for Mars I, Vol. 57, Science and Technology Series of Martian Applications,” AAS 87-225 in Stoker, C.R. (ed.) the American Astronautical Society, Univelt. Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt. Clark, B.C. 1985, “The H-Atom Resource on Mars,” AAS 84-179 in McKay, C.P. (ed.) Case for Drake, B.G. (ed.). 1998, “Reference Mission Version Mars II, Vol. 62, Science and Technology Series of 3.0. Addendum to the Human Exploration of Mars: The the American Astronautical Society, Univelt. Reference Mission of the NASA Mars Exploration Study Team,” NASA. Clark, B.C. 1989, “Survival and Prosperity Using Regolith Resources on Mars,” Journal of the British Drake, R.M., Richter, P.J. 1992, “Concept Evaluation Interplanetary Society, Vol. 42, No. 2. Methodology for Extraterrestrial Habitats,” Journal of Aerospace Engineering, Vol. 5, No. 3. Clark, B.C., , D.R. 1989, “The Hydrogen Peroxide Economy on Mars,” AAS 87-214 in Esposito, P.B., Banerdt, W.B., Lindal, G.F., Sjogren, Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, W.L., Slade, M.A., Bills, B.G., Smith, D.E., Balmino, G. Science and Technology Series of the American 1992, “Gravity and Topography,” in Kieffer, H.H., Astronautical Society, Univelt. Jakosky, B.M., Snyder, C.W., Matthews, M.S. (eds.) Mars, Space Science Series, The University of Arizona Press.

157

Fanale, F.P., Salvail, J.R., Zent, A.P., Postawko, Grymes, R.A., Wade, C.E., Vernikos, J. 1995, S.E. 1986, “Global Distribution and Migration of “Biomedical Issues in the Exploration of Mars,” AAS Subsurface Ice on Mars,” Journal of the British 95-483, in Stoker, C.R. and Emmart, C. (eds.) Strategies for Interplanetary Society, Vol. 67, No. 1. Mars: A Guide to Human Exploration, Vol. 86, Science and Technology Series of the American Astronautical Farrier, J. 2000, “On ,” Civil Society, Univelt. Engineering, Vol. 70, No. 4. Gwynne, O., McKay, C.P. 1997, “Extracting Water from Finn, J.E., Sridhar, K.R., McKay, C.P. 1996, the Martian Soil Using Microwaves,” AAS 90-297, in “Utilization of Martian Atmospheric Constituents Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science by Temperature-Swing Adsorption,” Journal of the and Technology Series of the American Astronautical British Interplanetary Society, Vol. 49, No. 11. Society, Univelt. Fogg, M.J. 1995, “Exploration of the Future Haberle, R.M., McKay, C.P., , J.B., Gwynne, Habitability of Mars,” Journal of the British O.E., Atkinson, D.H., Appelbaum, J., Landis, G.A., Interplanetary Society, Vol. 48, No. 7. Flood, D.J. 1993, “Atmospheric Effects on the Utility of Fogg, M.J. 1996, “The Utility of Geothermal Solar Power on Mars,” in Lewis, J., Matthews, M.S., Energy on Mars,” Journal of the British Guerrieri, M.L. (eds.) Resources of Near- Space, Space Interplanetary Society, Vol. 49, No. 11. Science Series, The University of Arizona Press. French, J.R. 1989a, “Mission Strategy Workshop Hagen, J. 1989, “Considerations for the Living Areas Summary,” AAS 87-276 in Stoker, C.R. (ed.) Case Within Space Settlements,” AAS 87-242 in Stoker, C.R. for Mars III, Vol. 74-75, Science and Technology (ed.) Case for Mars III, Vol. 74-75, Science and Series of the American Astronautical Society, Technology Series of the American Astronautical Univelt. Society, Univelt. French, J.R. 1989b, “Rocket Propellants from Harrison, A.A., Struthers, N.J., Putz, B.J. 1991, “Mission Martian Resources,” Journal of the British Destination, Mission Duration, Gender, and Student Interplanetary Society, Vol. 42, No. 4. Perceptions of Acceptability,” Environment and Behaviour, Vol. 23, No. 2. Friedman, L. (moderator). 1981, “Should Human be the Next Major Goal of Hart, H.M. 1985, “Extraction of Water from the Mars the Space Program?” Summary of a Panel Atmosphere: Passive Constriction of Wind Flow,” Discussion, AAS 81-252 in Boston, P.J. (ed.) Case AAS 84-183 in McKay, C.P. (ed.) Case for Mars II, Vol. for Mars I, Vol. 57, Science and Technology Series 62, Science and Technology Series of the American of the American Astronautical Society, Univelt. Astronautical Society, Univelt. Gaines, M. 2000, “Radiation and Risk,” New Haslach, Jr. H.W. 1989, “Wind Energy: A Resource for Scientist, No. 2230, March. A Human ,” Journal of the British Interplanetary Society, Vol. 42, No. 4. Geels, S., Miller, J.B., Clark, B.C. 1989, “Feasibility of Using Solar Power on Mars: Effects of Helleckson, B. 1997, “A Conceptual Design for an Storms on Incident Solar Radiation,” AAS 87-266 Interface Between Habitable Volumes and Life Support in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Facilities,” AAS 90-279, in Meyer, T.R. (ed.) Case for Mars Science and Technology Series of the American IV, Vol. 89-90, Science and Technology Series of the Astronautical Society, Univelt. American Astronautical Society, Univelt. Giudici, B. 1989, “A Get Started Approach for Hemmat, A., Nguyen, C., Singh, B., Wylie, K. 1999, Resource Processing,” AAS 87-262 in Stoker, C.R. “Conceptual Design of a Martian Power Generating (ed.) Case for Mars III, Vol. 74-75, Science and System Utilizing Solar and Wind Energy,” University of Technology Series of the American Astronautical Houston. Society, Univelt. Hender, M. 2007, “Suitability of Martian Environmental Goldman, M. 1996, “Cancer Risk of Low-level Conditions for Crop Growth on Mars,” J Agronomy & Exposure,” Science, Vol. 271, No. 5257. Crop Science, Vol. 193, No. 5. Goldman, N.C. 1981, “Legal and Political Higuchi, S. 2002, “Living Environments and Human Implications of Colonizing Mars,” AAS 81-248 in Biological Rhythms,” Interdisciplinary Symposium on Boston, P.J. (ed.) Case for Mars I, Vol. 57, Science 'Human Beings and Environments': Approaches from and Technology Series of the American Biological Anthropology, Social Anthropology and Astronautical Society, Univelt. Developmental Psychology, Cambridge, UK, 25 August 2002. Goodyear Aerospace Corp. 1982, “Innovative Structures for Space Applications,” NASA Report Isenberg, L., Heller, A. 1989, “The SP-100 Space GAC 19-1563. Reactor as a Power Source for Mars Exploration Missions,” AAS 87-217 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Society, Univelt.

158

Ishikawa, Y., Ohkita, T., Amemiya, Y. 1990, “Mars Landis, G.A., Scheiman, D., Baraona, C., Brinker, D. Habitation 2057: Concept Design of a Mars 1997, “Exploring PV on the Red Planet: Mars Array Settlement in the Year 2057,” Journal of the British Technology Experiment and Dust Accumulation and Interplanetary Society, Vol. 43. Removal Technology,” Photovoltaics Research and Technology Conference, Cleveland, OH, USA, June Ishikawa, Y., Ohkita, T., Amemiya, Y. 1997, 10-12. “Constructing a Mars Base – Mars Habitation 2057 Concept,” AAS 90-251, in Meyer, T.R. (ed.) Case for Littman, F. 1993, “First Mars Outpost Power Systems,” Mars IV, Vol. 89-90, Science and Technology IEEE Aerospace and Electronics System Magazine, Vol. Series of the American Astronautical Society, 8, No. 12. Univelt. Longhi, J., Knittle, E., Holloway, J.R., Wänke, H. 1992, Jahshan, S.N., Bennett, R.G. 1992, “A Modular “The Bulk Composition, Mineralogy and Internal Reactor for Lunar and Planetary Base Service,” Structure of Mars,” in Kieffer, H.H., Jakosky, B.M., American Institute of Physics. Snyder, C.W., Matthews, M.S. (eds.) Mars, Space Science Series, The University of Arizona Press. Johnson, R.D., Holbrow, C. (eds.) 1975, “Space Settlements: A Design Study,” NASA, SP-413, MacCallum, T., Nelson, M., Allen, J.P., Leigh, L., Alling, Scientific and Technical. A., Alverez-Romo, N. 1997, “The Biosphere 2 Project: Applications for and Mars Johnson, S.W., Leonard, R.S. 1989, “Manned Mars Settlement,” AAS 90-281, in Meyer, T.R. (ed.) Case for Missions and Extraterrestrial Resource Engineering Mars IV, Vol. 89-90, Science and Technology Series of Test and Evaluation,” AAS 87-261 in Stoker, C.R. the American Astronautical Society, Univelt. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Astronautical Mackenzie, B.A. 1989, “Building Mars Habitats Using Society, Univelt. Local Materials,” AAS 87-216 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series , D., Webb, C.F., LaPointe, M.R., Hart, H.M., of the American Astronautical Society, Univelt. Larson, A. 1985, “The Retrieval, Storage, and Recycling of Water for a Manned Base on Mars,” Mackenzie, B.A. Dunand, D.C. 1997, “Plant-Rated AAS 84-180 in McKay, C.P. (ed.) Case for Mars II, Greenhouses,” AAS 90-257, in Meyer, T.R. (ed.) Case for Vol. 62, Science and Technology Series of the Mars IV, Vol. 89-90, Science and Technology Series of American Astronautical Society, Univelt. the American Astronautical Society, Univelt. Kahn, R.A., Martin, T.Z., Zurek, R.W., Lee, S.W. Mandell, H.C. Jr. 1981, “The Cost of Landing Man on 1992, “The Martian Dust Cycle,” in Kieffer, H.H., Mars,” AAS 81-251 in Boston, P.J. (ed.) Case for Mars I, Jakosky, B.M., Snyder, C.W., Matthews, M.S. (eds.) Vol. 57, Science and Technology Series of the American Mars, Space Science Series, The University of Astronautical Society, Univelt. Arizona Press. Masariki, J., and Reedyz, R.C. 1997, “Production of Keller, T.S., Strauss, A.M. 1993, “Predicting Carbon-C14 in Martian Soil Nitrogen,” 28th Lunar and Skeletal Adaptation in Altered Gravity,” Journal of Planetary Science Conference, Huston, USA, 17-21 the British Interplanetary Society, Vol. 46. March 1997. Kieffer, H.H., Jakosky, B.M., Snyder, C.W. 1992, Mason, L.S., Cataldo, R.L. 1993, “Nuclear Power “The Planet Mars: From Antiquity to the Present,” Systems for the First Lunar Outpost,” American in Kieffer, H.H., Jakosky, B.M., Snyder, C.W., Institute of Physics. Matthews, M.S. (eds.) Mars, Space Science Series, The University of Arizona Press. Meyer, T.R., McKay, C.P. 1989, “The Resources of Mars for Human Settlement,” Journal of the British Klingler, J.M., Mancinelli, R.L., White, M.R. 1989, Interplanetary Society, Vol. 42, No. 4. “Biological Nitrogen Fixation Under Primordial Martian Partial Pressures of Dinitrogen,” Advanced Meyer, T.R., McKay, C.P. 1981, “The Atmosphere of Space Resources, Vol. 9, No. 6. Mars – Resources for the Exploration and Settlement of Mars,” AAS 81-244 in Boston, P.J. (ed.) Case for Mars I, Kuznetz, L.H., Gwynne, O. 1992, “Space Suit and Vol. 57, Science and Technology Series of the American Life Support Systems for the Exploration of Mars,” Astronautical Society, Univelt. Journal of the British Interplanetary Society, Vol. 45, No. 5. Meyer, T.R., McKay, C.P. 1995, “Using the Resources of Mars for Human Settlement,” AAS 95-489, in Stoker, Landis, G.A. 1997, “Novel Propellants Derived C.R. and Emmart, C. (eds.) Strategies for Mars: A Guide to from Atmospheric CO2 on Mars,” AAS 90-320, in Human Exploration, Vol. 86, Science and Technology Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Series of the American Astronautical Society, Univelt. Science and Technology Series of the American Astronautical Society, Univelt. McKay, C. 1988, “Living and Working on Mars,” AAS 86-178 in Reiber, D.B. (ed.) The NASA Mars Conference, Landis, G.A., Appelbaum, J. 1997, “Photovoltaic Vol. 71, Science and Technology Series of the American Power System Operation on Mars,” AAS 90-247, in Astronautical Society, Univelt. Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Science and Technology Series of the American Astronautical Society, Univelt.

159

Morley, N.J., El-Genk, M.S., Cataldo, R., Phillips, L. 1985, “Utilizing the Permafrost on Mars,” Bloomfield, H. 1991, “Estimates of Power AAS 84-182 in McKay, C.P. (ed.) Case for Mars II, Vol. Requirements for a Manned by a 62, Science and Technology Series of the American Nuclear Reactor,” American Institute of Physics. Astronautical Society, Univelt. Nagem, R., Bon, R., Sandri, G., Weaver, M. 1991, Portree, D.S.F. 2001. Humans to Mars: Fifty Years of “Pneumatic Structures for Lunar and Martian Mission Planning, 1950–2000. Monographs in Aerospace Habitats,” Building Research and Information, History Series, Number 21, NASA publication SP-2001- Vol. 19, No. 1. 4521. NASA. 1989, “Report of the 90-Day Study on Powell, F.T. 1989, “Life Support System Considerations Human Exploration of the and Mars,” and Characteristics for a Manned Mars Mission,” AAS National Aeronautics and Space Administration, 87-188 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Washington DC. Science and Technology Series of the American Astronautical Society, Univelt. NASA. 1995, “Man-Systems Integration Standard, Volume I,” NASA-STD-3000, Revision B, Powell, J., Maise, G., Paniagua, J., Powell, J.R. 2000, National Aeronautics and Space Administration, “Development of Self-Sustaining Mars Colonies Washington DC. Utilising the North Polar Cap and the Martian Atmosphere,” Final Report, NIAC Research Grant NASA, Mineralogy and Geochemistry Science 07600-053. Operations Group. 1998, “Analysis of Martian Samples by the Alpha Proton X-Ray Spectrometer: Ponomarev-Stepnoi, N.N., Pavshook V.A., Usov, V.A. Preliminary Results,” posted by NASA at 1992, “NPS Options for Lunar Bases Power Supply,” http://mpfwww.jpl.nasa.gov/MPF/science/apxs_ American Institute of Physics Conference 920104. comparison.html. Quattrone, P.D. 1981, “Extended Mission Life Support NASA, Toxicology Group. 1999, “Spacecraft Systems,” AAS 81-237 in Boston, P.J. (ed.) Case for Maximum Allowable Concentrations for Airborne Mars I, Vol. 57, Science and Technology Series of the Contaminants,” NASA-STD-3000, Revision B, American Astronautical Society, Univelt. National Aeronautics and Space Administration, Washington DC. Rieder, R., Economou, T., Wänke, H., Turkevich, A., Crisp, J., Brückner, J., Dreibus, G., McSween Jr. H.Y. National Research Council, Committee on 1997, “The Chemical Composition of Martian Soil and Toxicology. 1984, “Emergency and Continuous Rocks Returned by the Mobile Alpha Proton X-ray Exposure Limits For Selected Airborne Spectrometer: Preliminary Results from the X-ray Contaminants, Volume 1,” Board on Toxicology Mode,” Science, Vol. 278. and Environmental Health Hazards, Commission on Life Sciences, NRC, National Academy Press, Rieder, R., Gellert, R., , R.C., Brückner, J., Washington D.C. Clark, B.C., Dreibus, G., Economou, T., Klingelhöfer, G., Lugmair, G.W., Ming, D.W., Squyres, S.W., d‟Uston, Nelson, M., Dempster, W.F. 1995, “Living in C., Wänke, H., Yen, A., Zipfel, J. 2004a, “Chemistry of Space: Results from Biosphere 2‟s Initial Closure, Rocks and Soils at Meridiani Planum from the Alpha An Early Testbed for Closed Ecological Systems Particle X-ray Spectrometer,” Science, Vol 306. on Mars,” AAS 95-488, in Stoker, C.R. and Emmart, C. (eds.) Strategies for Mars: A Guide to Rieder, R., Gellert, R., Brückner, J., Clark, B.C., Dreibus, Human Exploration, Vol. 86, Science and G., d‟Uston, C. , Economou, T., Klingelhöfer, G., Technology Series of the American Astronautical Lugmair, G.W., Wänke, H., Yen, A., Zipfel, J., Squyres, Society, Univelt. S.W. 2004b, “APXS on Mars: Analyses of Soils and Rocks at Gusev Crater and Meridiani Planum,” 35th Nitta K. 2005, “The Mini-Earth facility and present Lunar and Planetary Science Conference, Huston, USA, status of habitation experiment program,” 15-19 March 2004. Advanced Space Research, Vol. 35, No. 9. Roberts, M. 1989, “The Use of Inflatable Habitation on Nitta, K., Otsubo, K., Ashida, A. 2000, “Integrated the Moon and Mars,” AAS 87-217 in Stoker, C.R. (ed.) Test Project of CEEF – A Test Bed for Closed Case for Mars III, Vol. 74-75, Science and Technology Ecological Life Support Systems,” Advanced Space Series of the American Astronautical Society, Univelt. Research, Vol. 26, No. 2. Rosenberg, S.D. 1992, “Weight and Power Requirements Owen, T. 1992, “Composition and Early History of for a Lunar Oxygen Plant,” AIChE Symposium Series, the Atmosphere,” in Kieffer, H.H., Jakosky, B.M., 28th National Heat Transfer Conference, San Diego, CA, Snyder, C.W., Matthews, M.S. (eds.) Mars, Space USA, Aug 9-12, 1992. Science Series, The University of Arizona Press. Ryan, W.G., Samarin, A. (eds.). 1992, Australian Concrete Peercy, R.L. Jr., Raasch, R.F., Rockoff, L.A. 1985, Technology, Longman Cheshire. “ Crew Safety Alternatives Study– Final Report: Volume 1–Final Summary Report,” Saha, P.R. Trumbo, P.R. 1996, “The Nutritional NASA report CR-3854, NASA Scientific and Adequacy of a Limited Vegan Diet for a Controlled Technical Information Branch. Ecological Life-Support System,” Advanced Space Research, Vol. 18, No. 4/5.

160

Salerno, L.J., Kittel, P. 1999, “Cryogenics and the Taylor, R.L.S. 1993, “The Effects of Prolonged Human Exploration of Mars,” Cryogenics, Vol. 39. and Reduced Gravity Environments on Presented at the Space Cryogenics Workshop, Human Survival,” Journal of the British Interplanetary Eugene, OR, USA, Aug 4-5, 1997. Society, Vol. 46. , G., Solomon, S.C., Turcotte, D.L., Thangavelu, M. (Faculty Advisor). 1999, “The Drake, M.J., Sleep, N.H. 1992, “Origin and Exploration of Mars: Crew Surface Activities,” Thermal Evolution of Mars,” in Kieffer, H.H., Department of Aerospace Engineering, University of Jakosky, B.M., Snyder, C.W., Matthews, M.S. (eds.) Southern California, Los Angeles. Mars, Space Science Series, The University of Arizona Press. Thomson, R.E. 1989, “Mars Base Design Projects at the University of Wisconsin,” AAS 87-183 in Stoker, C.R. Siegfried, W.H. 1999, “Lunar Base Development (ed.) Case for Mars III, Vol. 74-75, Science and Missions,” Acta Astronautica, Vol. 44, No. 7-12. Technology Series of the American Astronautical Society, Univelt. Smernoff, D.T., MacElroy, R.D. 1989, “Use of Martian Resources in a Controlled Ecological Life Thornton, M.G. 1989, “Tool and Equipment Support System (CELSS),” Journal of the British Requirements for Human Habitation of Mars,” AAS 87- Interplanetary Society, Vol. 42, No. 4. 219 in Stoker, C.R. (ed.) Case for Mars III, Vol. 74-75, Science and Technology Series of the American Spiero, F., Dunand, D.C. 1997, “Simulation of Astronautical Society, Univelt. Martian Materials and Resources Exploitation on a Variable Gravity Research Facility,” AAS 90-300, in Tillotson, B. 1997, “Regolith as Propellant for Mars Meyer, T.R. (ed.) Case for Mars IV, Vol. 89-90, Missions,” AAS 90-204, in Meyer, T.R. (ed.) Case for Mars Science and Technology Series of the American IV, Vol. 89-90, Science and Technology Series of the Astronautical Society, Univelt. American Astronautical Society, Univelt. Stanford, M., Jones, J.A. 1999, “Space Radiation University of Arizona. 2004, “Potassium and Thorium Concerns for Manned Exploration,” Acta Tell an Interesting Story,” posted July, 2004 by the Astronautica, Vol. 45, No. 1. University of Arizona‟s Lunar and Planetary Lab at http://grs.lpl.arizona.edu/latestresults.jsp?lrid=14. Stoker, C.R., Moore, J.M., Grossman, R.L. Boston, P.J. 1985, “Scientific Program for a Mars Base,” University of Texas. 2001, “Mars Advanced AAS 84-166 in McKay, C.P. (ed.) Case for Mars II, Greenhouse Integrated Complex,” University of Texas, Vol. 62, Science and Technology Series of the San Antonio, Texas, USA. American Astronautical Society, Univelt. Wänke, H., Brückner, J., Dreibus, G. 2000, “The Stoker, C.R., Gooding, J.L., Roush, T., Banin, A., Chemical Composition of the Martian Surface as Burt, D., Clark, B.C., Flynn, G., Gwynne, O. 1993, Derived from APXS on Pathfinder,” 33rd COSPAR “The Physical and Chemical Properties of and Scientific Assembly, Warsaw, Poland, 16-23 July 2000 Resource Potential of Martian Surface Soils,” in Lewis, J., Matthews, M.S., Guerrieri, M.L. (eds.) Walkinshaw, C.H. 1986, “Space Greenhouses Could Resources of Near-Earth Space, Space Science Series, Operate Efficiently at Low Pressures if Fungi are The University of Arizona Press. Controlled,” Phytopathology, Vol. 76. Sullivan, T.A., Koenig, E., Knudsen, C.W., Gibson, Williams, J.D., Coons, S.C., Bruckner, A.P. 1995, M.A. 1994, “Pneumatic Coveying of Materials at “Design of a Water Vapour Adsorption Reactor for Partial Gravity,” Journal of Aerospace Engineering, Martian In Situ Resource Utilization,” Journal of the Vol. 7, No. 2. British Interplanetary Society, Vol. 48, No. 8. Tamponnet, C. 1996, “Life Support Systems for Wittwer, S.H. 1992, “Rising Carbon Dioxide is Great for Lunar Missions,” Advanced Space Research, Vol. Plants,” Policy Review. 18, No. 11. Zubrin, R.M. 1989, “Indigenous Martian Propellant,” Aerospace America, August. Zubrin, R.M. 1997, : the plan to settle the red planet and why we must. The Free Press.

161