This List Includes All 1276 Individual Or Mixed Mineral Species Recorded In

Total Page:16

File Type:pdf, Size:1020Kb

This List Includes All 1276 Individual Or Mixed Mineral Species Recorded In This list includes all 1276 individual or mixed mineral species recorded in the PME mineral catalogue as of March 26, 2020, with the number of specimens (Qt’y) for each. Use “search” in this document to determine whether our collection contains a specimen that you might be interested in. Then apply that specimen name to the Mineral Catalogue table’s search box. Further details are at the end of this document. Species Qt’y Abelsonite 1 Anhydrite 13 Augite 10 Acanthite 40 Ankerite 7 Aurichalcite 12 Actinolite 35 Annabergite 1 Austinite 1 Adamite 8 Anorthite 4 Autunite 13 Adamite & Conichalcite 1 Anorthoclase 1 Avogadrite 1 Aegerine/Feldspar 1 Anthophyllite 12 Awaruite 3 Aegirine 11 Antigorite 2 Axinite 11 Aenigmatite 2 Antimony 12 Axinite Group 29 Aërinite 1 Antlerite 2 Azurite 39 Aeschynite 2 Apachite 1 Azurite/Malachite 4 Afwillite 3 Apatite 1 Babingtonite 2 Agrellite 1 Apatite Series 32 Babingtonite/Prehnite 2 Aguilarite 1 Apatite/?/Orthoclase 1 Baddeleyite 1 Aikinite 4 Apatite/Actinolite 1 Bahianite 1 Ajoite 4 Apatite/Quartz 1 Bakerite 1 Alabandite 6 Aphthitalite 3 Bandylite 1 Albite 16 Apophyllite 2 Barbosalite 1 Algodonite 1 Apophyllite Series 22 Barite 217 Allactite 1 Apophyllite/Stilbite 1 Barite/Calcite 1 Allanite 25 Aquamarine 5 Barite/Calcite/Sphalerite 1 Allophane 1 Aquamarine/Feldspar 1 Barite/Realgar/Orpiment 1 Alluaudite 1 Aquamarine/Mica 3 Bariumpharmacosiderite 1 Almandine 23 Aquamarine/Schorl 1 Barytocalcite 2 Alstonite 4 Aragonite 60 Bastnaesite 3 Altaite 10 Aramayoite 1 Bastnäsite 10 Aluminum 1 Ardennite 2 Baumhauerite 2 Alunite 11 Arfvedsonite 4 Bauxite (general Term) 23 Alunogen 2 Argentojarosite 1 Bavenite 3 Amarantite 1 Argentopyrite 1 Bayldonite 4 Amber 7 Argyrodite 2 Beaverite 1 Amblygonite 8 Armenite 1 Becquerelite 1 Amesite 2 Arrojadite 2 Bementite 1 Amethyst 10 Arsenic 29 Benitoite 5 Amethyst Scepter 17 Arseniopleite 1 Benstonite 1 Amphibole Group 13 Arseniosiderite 2 Beraunite 2 Analcime 29 Arsenolite 1 Beriethrite/Stibnite/Quartz 1 Anatase 12 Arsenopyrite 58 Bermanite 1 Ancylite 3 Arsenopyrite/Chalcopyrite/P 1 Berthierite 9 Andalusite 24 yrite Bertrandite 5 Andersonite 2 Artinite 2 Beryl 52 Andorite 1 Asbolane 2 Beryl/Feldspar 2 Andradite 19 Astrophyllite 6 Beryl/Fluorite/Feldspar 1 Anglesite 14 Atacamite 10 Beryl/Mica/Tourmaline/Flou 1 Augelite 6 rite Beryl/Quartz 1 Calaverite 8 Chalcopyrite/Galena 1 Beryl/Quartz/Schorl 1 Calciovolborthite 1 Chalcopyrite/Quartz/Sphalerite 1 Beryllonite 2 Calcite 360 Chalcopyrite/Siderite 1 Berzelianite 1 Calcite/Conichalcite 1 Chalcosiderite 5 Berzeliite 2 Calcite/Flourite/Pyrite 1 Chalcostibite 1 Betafite 5 Calcite/Hemimorphite 1 Chambersite 1 Beta-quartz 2 Calcite/Limonite 1 Chamosite 1 Beudantite 2 Calcite/Quartz 1 Chapmanite 1 Bieberite 1 Calcite/Selenite 1 Charoite 2 Bikitaite 1 Caledonite 3 Childrenite 2 Bindheimite 4 Callaghanite 1 Chlorapatite 2 Biotite 18 Calomel 1 Chlorargyrite 12 Birnessite 1 Calumetite 1 Chlorite Group 23 Bismite 1 Cancrinite 6 Chlorite/Quartz 1 Bismuth 25 Cannizzarite 1 Chloritoid 10 Bismuthinite 21 Carbonate-hydroxylapatite 2 Chloropal 1 Bismutite 8 Carborundum 1 Chondrodite 8 Bismutoferrite 1 Carletonite 1 Chromite 21 Bixbyite 7 Carmeloite 1 Chrysoberyl 12 Bixbyite/Topaz 1 Carminite 1 Chrysocolla 17 Blödite 2 Carnallite 1 Chrysotile 14 Boleite 2 Carnegieite 1 Cimolite 1 Boltwoodite 1 Carnotite 14 Cinnabar 51 Bonattite 1 Carpholite 1 Clarkeite 1 Boracite 2 Carrollite 3 Clausthalite 2 Borax 8 Caryinite 1 Clinochlore 6 Bornite 47 Cassiterite 90 Clinoclase 2 Bornite/Pyrite 1 Cassiterite/Mica 1 Clinoenstatite 1 Botryogen 1 Cassiterite/Siderite 1 Clinohedrite 2 Boulangerite 34 Cassiterite/Siderite/Quartz 1 Clinohumite 1 Bournonite 28 Catapleiite 3 Clinoptilolite 3 Braggite 1 Cattierite 2 Clinozoisite 13 Brandtite 1 Cavansite 3 Clintonite 3 Brannerite 3 Celadonite 2 Cobaltian Calcite 1 Braunite 12 Celestine 46 Cobaltite 27 Bravoite 2 Celestite 1 Coesite 1 Brazilianite 3 Cerite 5 Coffinite 1 Breithauptite 4 Cerrusite 1 Colemanite 14 Brewsterite 9 Cerrussite/Barite/Galena 1 Collinsite 5 Brochantite 4 Cerussite 41 Coloradoite 6 Bromargyrite 2 Cervantite 2 Columbite Series 16 Brookite 5 Cesarolite 1 Colusite 4 Brucite 28 Chabazite 23 Conichalcite 6 Brugnatellite 2 Chalcanthite 3 Connellite 1 Buergerite 1 Chalcedony 3 Cookeite 1 Bultfonteinite 1 Chalcocite 42 Copiapite 1 Burkeite 1 Chalcomenite 2 Copper 125 Bustamite 2 Chalcophanite 2 Copper/Calcite 1 Cacoxenite 4 Chalcophyllite 1 Copper/Malachite 2 Cadmium 1 Chalcopyrite 89 Coquimbite 2 Cordierite 30 Dinosaur Egg 1 Eudialyte 11 Corkite 1 Diopside 43 Eudidymite 1 Cornetite 4 Dioptase 7 Eulytite 1 Cornwallite 1 Dioptase/Shattuckite 1 Euxenite 9 Corundum 49 Diorite 1 Evansite 1 Corvusite 1 Dixenite 1 Fairfieldite 2 Cosalite 19 Dolomite 64 Falkmanite 1 Cotunnite 1 Dolomite/Malachite 2 Famatinite 2 Covellite 11 Dolomite/Quartz 1 Faujasite 3 Cowlesite 7 Doloresite 2 Faustite 1 Crandallite 1 Domeykite 6 Fayalite 6 Crawfordite 1 Doverite 1 Feldmanite CaSiO3 in a 1 Creedite 3 Dravite 3 perovskite crystal lattice Cristobalite 4 Dresserite 1 Feldspar 1 Crocoite 18 Dufrenite 5 Feldspar Group 7 Cronstedtite 2 Dumortierite 15 Feldspar/Fluorite 1 Crossite 1 Dumortierite in Quartz 1 Ferberite 7 Cryolite 4 Dumortierite/Quartz 1 Fergusonite 9 Cryolithionite 1 Dundasite 1 Ferrierite 9 Cubanite 4 Dypingite 1 Ferrihydrite 1 Cummingtonite 1 Dyscrasite 2 Ferrimolybdite 9 Cuprite 46 Eardleyite 1 Ferrinatrite 1 Cuproadamite 1 Ecdemite 1 Ferrisicklerite 1 Cuprosklodowskite 4 Eckermannite 1 Ferritungstite 1 Cuprotungstite 1 Edenite 1 Ferro-axinite 2 Cuspidine 2 Edingtonite 2 Ferrogedrite 1 Cyanotrichite 4 Eglestonite 1 Fibroferrite 2 Cylindrite 1 Elaterite 1 Finnemanite 1 Dachiardite 2 Elbaite 17 Fizelyite 3 Danalite 5 Elbaite 1 Flourite 1 Danburite 8 Elbaite/Quartz 2 Flourite/Arsenopyrite 1 Darapskite 1 Electrum 9 Flourite/Rhodochrosite/Qua 1 rtz Datolite 12 Ellestadite Series 2 Fluoborite 1 Davidite 6 Elpidite 2 Fluocerite 1 Dawsonite 4 Emmonsite 3 Fluorapatite 26 Deerite 1 Emplectite 1 Fluorite 293 Delafossite 3 Empressite 1 Fluorite 3 Delvauxite 2 Enargite 10 Fluorite/Amethyst 2 Demantoid 1 Enstatite 3 Fluorite/Feldspar 1 Denningite 1 Eosphorite 3 Fluorite/Feldspar/Foitite 1 Desautelsite 1 Epidote 44 Fluorite/Feldspar/Schorl 2 Descloizite 15 Epistilbite 4 Fluorite/Pyrite 1 Diaboleite 1 Epistolite 1 Fluorite/Quartz 34 Diadochite 3 Epsomite 5 Fluorite/Quartz/Schorl 1 Diamond 18 Erionite 5 Fluorite/Rhodochrosite/Quartz 1 Diaphorite 3 Erythrite 17 Fluorite/Selenite/Calcite 1 Diaspore 9 Eskolaite 1 Fluorite/Sphalerite 1 Dickinsonite 1 Ettringite 1 Fluororichterite 1 Dickite 3 Euclase 2 Forsterite 9 Digenite 2 Eudamylite/Epididimite 1 Foshagite 2 Glaucodot (Alloclasite) 1 Hellandite 1 Francevillite 1 Glauconite 1 Hellyerite 1 Franckeite 2 Glaucophane 11 Helvite 5 Franklinite 10 Gmelinite 7 Hematite 124 Freibergite 5 Goethite 29 Hematite/Quartz 3 Freieslebenite 2 Gold 175 Hemimorphite 26 Friedelite 2 Gold/Quartz 2 Hemimorphite/Dolomite 1 Fulgurite 1 Goldfieldite 2 Hercynite 1 Fuschite/Quartz 1 Goldichite 1 Herderite 1 Gadolinite 9 Gonnardite 3 Herschelite 2 Gagarinite 1 Gorceixite 2 Hessite 12 Gahnite 6 Gormanite 1 Hetaerolite 3 Galena 192 Goslarite 2 Heterogenite 4 Galena/Chalcopyrite/Marcas 1 Gowerite 1 Heterosite 1 ite/Dolomite Goyazite 1 Heulandite 29 Galena/Flourite/Sphalerite 1 Graftonite 1 Hewettite 1 Galena/Pyrite 1 Grandidierite 1 Hibonite 2 Galena/Pyrite/? 1 Graphite 21 Hillebrandite 1 Galena/Quartz 2 Gratonite 3 Hinsdalite 2 Galena/Sphalerite/Chalcopy 1 Greenockite 11 Hiortdahlite 2 rite Greigite 1 Hisingerite 6 Galenobismutite 3 Griphite 2 Hodgkinsonite 2 Ganomalite 2 Grossular 38 Högbomite 2 Garnet 11 Groutite 1 Holmquistite 2 Garnet Group 50 Grunerite 4 Homilite 1 Garnet/Diopside 3 Gudmundite 2 Honessite 1 Garnet/Feldspar 3 Gummite (general Term) 5 Hopeite 1 Garnet/Quartz 7 Gunningite 2 Hornblende Series 21 Garnet/Quartz/Feldspar 2 Gustavite 1 Howieite 2 Garnets on Feldspar 1 Gypsum 95 Howlite 9 Garnierite (general Term) 4 Gyrolite 6 Hsianghualite 1 Garronite 1 Häggite 1 Hübnerite 10 Gaspeite 2 Halite 17 Hubnerite/Quartz 1 Gaudefroyite 1 Halloysite 9 Hulsite 1 Gaylussite 1 Halotrichite 1 Hummerite 1 Gearksutite 2 Hambergite 2 Huntite 2 Gedrite 1 Hancockite 2 Hureaulite 3 Gehlenite 5 Hanksite 4 Hurlbutite 1 Geikielite 1 Hardystonite 1 Hutchinsonite/Orpiment/Pyrite 1 Geocronite 2 Harmotome 5 Hyalite/Tourmaline/Quartz 1 Germanite 3 Hastingsite 1 Hyalophane 1 Gersdorffite 7 Hauchecornite 1 Hydroboracite 1 Gerstleyite 1 Hauerite 1 Hydrocalumite 1 Gibbsite 3 Hausmannite 4 Hydrocarbon 2 Gilalite 1 Hauyne 5 Hydrocerussite 2 Gillespite 3 Hawleyite 3 Hydrogrossular Series 1 Gilsonite 1 Hectorite 1 Hydromagnesite 7 Gismondine 3 Hedenbergite 5 Hydrotalcite 5 Glauberite 4 Hedleyite 5 Hydrotroilite 1 Glaucodot 2 Hedyphane 3 Hydrozincite 7 Idrialite 2 Kossmatite 1 Livingstonite 3 Ikunolite 1 Kotoite 3 Löllingite 12 Illite 2 Köttigite 1 Lopezite 1 Ilmenite 16 Krausite 1 Lorandite 1 Ilmenorutile 1 Krennerite 2 Lorenzenite 1 Ilsemannite 3 Kröhnkite 2 Loughlinite 2 Ilvaite 17 Kryzhanovskite 1 Ludlamite 5 Ilvaite/Hedenbergite 1 Kulanite 1 Ludwigite 7 Inderite 3 Kunzite 1 Luzonite 2 Indicolite 2 Kunzite/Indicolite 2 Macdonaldite 1 Indicolite/Lepidoloite 1 Kurnakovite 3 Mackayite 2 Indicolite/Quartz 1 Kutnohorite 1 Maghemite 2 Inesite 4 Kyanite 31 Magnesite 16 Iodargyrite 6 Labradorite 10 Magnesium 2 Iridosmine 2 Laitakarite 1 Magnesium- 1 Iriginite 1 Lamprophyllite 2 chlorophoenicite Iron 1 Langite 2 Magnetite 75 Magnetite/Epidote/Clinochlore Jacobsite 3 Lanthanite 1 1 Jadeite 11 Larsenite 1 Magnetoplumbite 1 Jagowerite
Recommended publications
  • US Geological Survey
    UNITED STATES DEPARTMENT OF THE INTERIOR *"! ' 5, GEOLOGICAL SURVEI PEGMATITE GEOLOGY OF THE SHELBY DISTRICT NORTH CAROLINA by \ Wallace R. Griffitts > \ I ,' -* U. S. Geological Survey ' ' OPEN FILE REPORT 5 Ihis report is preliminary and has not been edited or reviewed for conformity with Geological Suj'V*-'/ standards or nomenclature. COHTEHTS _ _ - Page Abstract Introduction. ........................... 1 Location and physical features ................ 1 Field work and acknowledgments ................ 2 Geology .............................. k Metamorphic rocks....................... h- Carolina gneiss ..................... Ij- General features .................. ^4- Lithology. ..................... k Biotite gneiss member. ............... 6 Battleground schist ................... 9 General features .................. 9 Lithology. ..................... 9 Hornblende schist and gneiss. .............. 11 General features .................. 11 Gabbroic rocks ................... 11 Hornblende schists ................. 13 Pyroxenite and associated rocks. .......... 13 Schist and granite complex. ................ 14- Igneous rocks. ........................ 15 Toluca quartz monzonite ................. 15 . : .r *- General features .................. 15 ^ c Lithology. ..................... 16 Yorkville granite .................... 19 General features .................. 19 Lithology. ..................... 20 Page CherryvlUe quartz monzonite. ............. 20 General features ................. 20 Relations to enclosing rocks ........... 23 Lithology.
    [Show full text]
  • Xrd and Tem Studies on Nanophase Manganese
    Clays and Clay Minerals, Vol. 64, No. 5, 488–501, 2016. 1 1 2 2 3 XRD AND TEM STUDIES ON NANOPHASE MANGANESE OXIDES IN 3 4 FRESHWATER FERROMANGANESE NODULES FROM GREEN BAY, 4 5 5 6 LAKE MICHIGAN 6 7 7 8 8 S EUNGYEOL L EE AND H UIFANG X U* 9 9 NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin Madison, Madison, 10 À 10 1215 West Dayton Street, A352 Weeks Hall, Wisconsin 53706 11 11 12 12 13 Abstract—Freshwater ferromanganese nodules (FFN) from Green Bay, Lake Michigan have been 13 14 investigated by X-ray powder diffraction (XRD), micro X-ray fluorescence (XRF), scanning electron 14 microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and scanning 15 transmission electron microscopy (STEM). The samples can be divided into three types: Mn-rich 15 16 nodules, Fe-Mn nodules, and Fe-rich nodules. The manganese-bearing phases are todorokite, birnessite, 16 17 and buserite. The iron-bearing phases are feroxyhyte, goethite, 2-line ferrihydrite, and proto-goethite 17 18 (intermediate phase between feroxyhyte and goethite). The XRD patterns from a nodule cross section 18 19 suggest the transformation of birnessite to todorokite. The TEM-EDS spectra show that todorokite is 19 associated with Ba, Co, Ni, and Zn; birnessite is associated with Ca and Na; and buserite is associated with 20 2+ +2 3+ 20 Ca. The todorokite has an average chemical formula of Ba0.28(Zn0.14Co0.05 21 2+ 4+ 3+ 3+ 3+ 2+ 21 Ni0.02)(Mn4.99Mn0.82Fe0.12Co0.05Ni0.02)O12·nH2O.
    [Show full text]
  • Redalyc.Mineralogical Study of the La Hueca Cretaceous Iron-Manganese
    Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 [email protected] Universidad Nacional Autónoma de México México Corona Esquivel, Rodolfo; Ortega Gutiérrez, Fernando; Reyes Salas, Margarita; Lozano Santacruz, Rufino; Miranda Gasca, Miguel Angel Mineralogical study of the La Hueca Cretaceous Iron-Manganese deposit, Michoacán, south-western Mexico Revista Mexicana de Ciencias Geológicas, vol. 17, núm. 2, 2000, pp. 142-151 Universidad Nacional Autónoma de México Querétaro, México Available in: http://www.redalyc.org/articulo.oa?id=57217206 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Ciencias Geológicas, volumen 17, número 2, 143 2000, p. 143- 153 Universidad Nacional Autónoma de México, Instituto de Geología, México, D.F MINERALOGICAL STUDY OF THE LA HUECA CRETACEOUS IRON- MANGANESE DEPOSIT, MICHOACÁN, SOUTHWESTERN MEXICO Rodolfo Corona-Esquivel1, Fernando Ortega-Gutiérrez1, Margarita Reyes-Salas1, Rufino Lozano-Santacruz1, and Miguel Angel Miranda-Gasca2 ABSTRACT In this work we describe for the first time the mineralogy and very briefly the possible origin of a banded Fe-Mn deposit associated with a Cretaceous volcanosedimentary sequence of the southern Guerrero terrane, near the sulfide massive volcanogenic deposit of La Minita. The deposit is confined within a felsic tuff unit; about 10 meters thick where sampled for chemical analysis. Using XRF, EDS and XRD techniques, we found besides todorokite, cryptomelane, quartz, romanechite (psilomelane), birnessite, illite-muscovite, cristobalite, chlorite, barite, halloysite, woodruffite, nacrite or kaolinite, and possibly hollandite-ferrian, as well as an amorphous material and two unknown manganese phases.
    [Show full text]
  • Rhodochrosite Gems Unstable Colouration of Padparadscha-Like
    Volume 36 / No. 4 / 2018 Effect of Blue Fluorescence on the Colour Appearance of Diamonds Rhodochrosite Gems The Hope Diamond Unstable Colouration of in London Padparadscha-like Sapphires Volume 36 / No. 4 / 2018 Cover photo: Rhodochrosite is prized as both mineral specimens and faceted stones, which are represented here by ‘The Snail’ (5.5 × 8.6 cm, COLUMNS from N’Chwaning, South Africa) and a 40.14 ct square-cut gemstone from the Sweet Home mine, Colorado, USA. For more on rhodochrosite, see What’s New 275 the article on pp. 332–345 of this issue. Specimens courtesy of Bill Larson J-Smart | SciAps Handheld (Pala International/The Collector, Fallbrook, California, USA); photo by LIBS Unit | SYNTHdetect XL | Ben DeCamp. Bursztynisko, The Amber Magazine | CIBJO 2018 Special Reports | De Beers Diamond ARTICLES Insight Report 2018 | Diamonds — Source to Use 2018 The Effect of Blue Fluorescence on the Colour 298 Proceedings | Gem Testing Appearance of Round-Brilliant-Cut Diamonds Laboratory (Jaipur, India) By Marleen Bouman, Ans Anthonis, John Chapman, Newsletter | IMA List of Gem Stefan Smans and Katrien De Corte Materials Updated | Journal of Jewellery Research | ‘The Curse Out of the Blue: The Hope Diamond in London 316 of the Hope Diamond’ Podcast | By Jack M. Ogden New Diamond Museum in Antwerp Rhodochrosite Gems: Properties and Provenance 332 278 By J. C. (Hanco) Zwaan, Regina Mertz-Kraus, Nathan D. Renfro, Shane F. McClure and Brendan M. Laurs Unstable Colouration of Padparadscha-like Sapphires 346 By Michael S. Krzemnicki, Alexander Klumb and Judith Braun 323 333 © DIVA, Antwerp Home of Diamonds Gem Notes 280 W.
    [Show full text]
  • X-Ray Rietveld and 57Fe Mössbauer Study of Babingtonite from Kouragahana, Shimane Peninsula, Japan
    Journal of MineralogicalBabingtonite and from Petrological Kouragahana, Sciences, Shimane Volume Peninsula, 108, pageJapan 121─ 130, 2013 121 X-ray Rietveld and 57Fe Mössbauer study of babingtonite from Kouragahana, Shimane Peninsula, Japan * * ** Masahide AKASAKA , Takehiko KIMURA and Mariko NAGASHIMA *Department of Geoscience, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan **Department of Earth Science, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan Babingtonite from Kouragahana, Shimane Peninsula, Japan, was investigated using electron microprobe, X-ray Rietveld, and 57Fe Mössbauer spectral analyses to characterize its chemical compositions, crystal structure, oxi- dation state of Fe, and distribution of Fe between two crystallographically independent octahedral Fe1 and Fe2 sites. _ The_ Kouragahana babingtonite occurs as single parallelohedrons with {100}, {001}, {001}, {111}, {110}, and {101} and sometimes shows penetration twinning. Both normal and sector-zoned crystals occur. Babing- tonite crystals with sector zoning consist of sectors relatively enriched in Fe and of sectors enriched in Mg, Mn, and Al. Babingtonite also shows compositional zoning with higher Fe2+ and Al core and higher Fe3+ and Mn 2+ rim. The average Fe content of the babingtonite without sector zoning is similar to the Fe -rich sector of the sector-zoned babingtonite. The chemical formula based on the average composition of all analytical data (n = 2+ 3+ - 193) is [Na0.01(2)Ca2.01(2)] [Mg0.11(4)Mn0.09(3)Fe0.76(7)Fe_ 0.93(5)Ti0.01(1)Al0.06(5)]Si5.01(4)O14(OH). X ray Rietveld refinement was carried out using a model of space group P1.
    [Show full text]
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • L. Jahnsite, Segelerite, and Robertsite, Three New Transition Metal Phosphate Species Ll. Redefinition of Overite, an Lsotype Of
    American Mineralogist, Volume 59, pages 48-59, 1974 l. Jahnsite,Segelerite, and Robertsite,Three New TransitionMetal PhosphateSpecies ll. Redefinitionof Overite,an lsotypeof Segelerite Pnur BnnN Moone Thc Departmcntof the GeophysicalSciences, The Uniuersityof Chicago, Chicago,Illinois 60637 ilt. lsotypyof Robertsite,Mitridatite, and Arseniosiderite Peur BmaN Moonp With Two Chemical Analvsesbv JUN Iro Deryrtrnent of GeologicalSciences, Haraard Uniuersity, Cambridge, Massrchusetts 02 I 38 Abstract Three new species,-jahnsite, segelerite, and robertsite,-occur in moderate abundance as late stage products in corroded triphylite-heterosite-ferrisicklerite-rockbridgeite masses, associated with leucophosphite,hureaulite, collinsite, laueite, etc.Type specimensare from the Tip Top pegmatite, near Custer, South Dakota. Jahnsite, caMn2+Mgr(Hro)aFe3+z(oH)rlPC)oln,a 14.94(2),b 7.14(l), c 9.93(1)A, p 110.16(8)", P2/a, Z : 2, specific gavity 2.71, biaxial (-), 2V large, e 1.640,p 1.658,t l.6lo, occurs abundantly as striated short to long prismatic crystals, nut brown, yellow, yellow-orange to greenish-yellowin color.Formsarec{001},a{100},il2oll, jl2}ll,ft[iol],/tolll,nt110],andz{itt}. Segeierite,CaMg(HrO)rFes+(OH)[POdz, a 14.826{5),b 18.751(4),c7.30(1)A, Pcca, Z : 8, specific gaavity2.67, biaxial (-), 2Ylarge,a 1.618,p 1.6t5, z 1.650,occurs sparingly as striated yellow'green prismaticcrystals, with c[00], r{010}, nlll0l and qll2l } with perfect {010} cleavage'It is the Feg+-analogueofoverite; a restudy on type overite revealsthe spacegroup Pcca and the ideal formula CaMg(HrO)dl(OH)[POr]r. Robertsite,carMna+r(oH)o(Hro){Ponlr, a 17.36,b lg.53,c 11.30A,p 96.0o,A2/a, Z: 8, specific gravity3.l,T,cleavage[l00] good,biaxial(-) a1.775,8 *t - 1.82,2V-8o,pleochroismextreme (Y, Z = deep reddish brown; 17 : pale reddish-pink), @curs as fibrous massesand small wedge- shapedcrystals showing c[001 f , a{1@}, qt031}.
    [Show full text]
  • Optical-Spectroscopy.Pdf
    Reviews in Mineralogy & Geochemistry Vol. 78 pp. 371-398, 2014 9 Copyright© Mineralogical Society of America Optical Spectroscopy George R. Rossman Division of Geological and Planetary Sciences California Institute of Technology Pasadena, California 91125-2500, U.S.A. grr@ gps.caltech.edu INTRODUCTION Optical spectroscopy is concerned with the measurement of the absorption, reflection and emission of light in the near-ultraviolet (-250 nm) through the mid-infrared ( -3000 nm) portions of the spectrum. The human interface to the geological and mineralogical world is primarily visual. Optical spectroscopy is, in particular, well suited to investigating the origin of color in minerals. The reflection spectroscopy of minerals has been motivated to a large extent by interest in remote sensing. Emission spectra are usually studied in reference to luminescence phenomena. Studies of mineral color, metal ion site occupancy, oxidation states and concentrations have generally been done with absorption spectroscopy. This chapter concentrates on single crystal absorption spectroscopy. Absorption of light by crystals can occur for a number of reasons. For many minerals, the presence of ions of transition elements (e.g., Ti, V, Cr, Mn, Fe, Co, Ni, Cu) in their various oxidation states is the cause of light absorption. In some minerals, the individual ions cause the light absorption while in others it is the interaction between ions such as between Fe2+ and Fe3+ that causes color. In some minerals, rare-earth elements are an important source of color. 2 Some minerals are colored by small molecular units involving metal ions (UOl+, Cr04 -) or anions (S 3- in sodalites). Many sulfide minerals such as cinnabar (HgS) and realgar (As4S4) owe their color to band gaps in the semiconducting sulfides.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Cavansite, a Calcium and Vanadium Silicate of Formula Ca(VO)(Si4o1o
    .. ,., Cavansite, a calcium and vanadium silicate of formula Ca(VO)(Si4O1o).4H.P, occurs as sky-blue to greenish-blue radiating prismatic rosettes up to~mm in size associated with its dimorph, pentagonite, in a roadcut near Lake Owyhee State Park in Malheur County, Oregon. Discovery of these two minerals is attributed to Mr. and Mrs. Leslie Perrigo of Fruitland, Idaho, (at this locality in 1961), and to Dr. John Cowles at the Goble locality in 1963 (see below). Associated with the cavansite and pentagonite are abundant colorless analcime, stilbite, chabazite, thomsonite and heulandite, as well as colorless to pale yellow calcite, and rare green or colorless apophyllite. This occurence and a similar emplacement (of cavansite only) near Goble, Columbia County, Oregon (co-type localities), represent the only known deposits of these two minerals in the United States. As determined by X-ray fluorescense and crystal stfiucture analysis, cavansite is orthorhombic, conforms to space group Pcmn (D2h 6), has a unit cell with a=lO.298(4), b=l3.999(7), c=9.6O1(2) Angstroms, contains four formula units, is optically biaxial positive and strongly pleochroic. Pentagonite, the dimorph, occurs as prismatic crystals twinned to form fivelings with a star­ shaped cross section. Also orthorhombic, it belongs to space group 12 Ccm21(C2v ), and has a unit cell with a=lO.298(4), b=13.999(7), and c=B.891(2) Angstroms, and also contains ··four formula units. The pentagonite crystals are optically very similar to cavansite, but are biaxially negative. The cell dimensions given tend to vary· to a small degree, presumably because of varying zeolitic water content.
    [Show full text]
  • Molecular Biogeochemistry, Lecture 8
    12.158 Lecture Pigment-derived Biomarkers (1) Colour, structure, distribution and function (2) Biosynthesis (3) Nomenclature (4) Aromatic carotenoids ● Biomarkers for phototrophic sulfur bacteria ● Alternative biological sources (5) Porphyrins and maleimides Many of the figures in this lecture were kindly provided by Jochen Brocks, RSES ANU 1 Carotenoid pigments ● Carotenoids are usually yellow, orange or red coloured pigments lutein β-carotene 17 18 19 2' 2 4 6 8 3 7 9 16 1 5 lycopenelycopene 2 Structural diversity ● More than 600 different natural structures are known, ● They are derived from the C40 carotenoid lycopene by varied hydrogenation, dehydrogenation, cyclization and oxidation reaction 17 18 19 2' 2 4 6 8 3 7 9 16 1 5 lycopene neurosporene α-carotene γ -carotene spirilloxanthin siphonaxanthin canthaxanthin spheroidenone 3 Structural diversity Purple non-sulfur bacteria peridinin 7,8-didehydroastaxanthin okenone fucoxanthin Biological distribution ● Carotenoids are biosynthesized de novo by all phototrophic bacteria, eukaryotes and halophilic archaea ● They are additionally synthesized by a large variety of non-phototrophs ● Vertebrates and invertebrates have to incorporate carotenoids through the diet, but have often the capacity to structurally modifiy them 4 Carotenoid function (1) Accessory pigments in Light Harvesting Complex (LHC) (annual production by marine phytoplancton alone: 4 million tons) e.g. LH-II Red and blue: protein complex Green: chlorophyll Yellow: lycopene (2) Photoprotection (3) photoreceptors for phototropism
    [Show full text]
  • Alphab Etical Index
    ALPHAB ETICAL INDEX Names of authors are printed in SMALLCAPITALS, subjects in lower-case roman, and localities in italics; book reviews are placed at the end. ABDUL-SAMAD, F. A., THOMAS, J. H., WILLIAMS, P. A., BLASI, A., tetrahedral A1 in alkali feldspar, 465 and SYMES, R. F., lanarkite, 499 BORTNIKOV, N. S., see BRESKOVSKA, V. V., 357 AEGEAN SEA, Santorini I., iron oxide mineralogy, 89 Boulangerite, 360 Aegirine, Scotland, in trachyte, 399 BRAITHWAITE, R. S. W., and COOPER, B. V., childrenite, /~kKERBLOM, G. V., see WILSON, M. R., 233 119 ALDERTON, D. H. M., see RANKIN, A. H., 179 Braunite, mineralogy and genesis, 506 Allanite, Scotland, 445 BRESKOVSKA, V. V., MOZGOVA, N. N., BORTNIKOV, N. S., Aluminosilicate-sodalites, X-ray study, 459 GORSHKOV, A. I., and TSEPIN, A. I., ardaite, 357 Amphibole, microstructures and phase transformations, BROOKS, R. R., see WATTERS, W. A., 510 395; Greenland, 283 BULGARIA, Madjarovo deposit, ardaite, 357 Andradite, in banded iron-formation assemblage, 127 ANGUS, N. S., AND KANARIS-SOTIRIOU, R., autometa- Calcite, atomic arrangement on twin boundaries, 265 somatic gneisses, 411 CANADA, SASKATCHEWAN, uranium occurrences in Cree Anthophyllite, asbestiform, morphology and alteration, Lake Zone, 163 77 CANTERFORD, J. H., see HILL, R. J., 453 Aragonite, atomic arrangements on twin boundaries, Carbonatite, evolution and nomenclature, 13 265 CARPENTER, M. A., amphibole microstructures, 395 Ardaite, Bulgaria, new mineral, 357 Cassiterite, SW England, U content, 211 Arfvedsonite, Scotland, in trachyte, 399 Cebollite, in kimberlite, correction, 274 ARVlN, M., pumpellyite in basic igneous rocks, 427 CHANNEL ISLANDS, Guernsey, meladiorite layers, 301; ASCENSION ISLAND, RE-rich eudialyte, 421 Jersey, wollastonite and epistilbite, 504; mineralization A TKINS, F.
    [Show full text]