Molecular Biogeochemistry, Lecture 8

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Biogeochemistry, Lecture 8 12.158 Lecture Pigment-derived Biomarkers (1) Colour, structure, distribution and function (2) Biosynthesis (3) Nomenclature (4) Aromatic carotenoids ● Biomarkers for phototrophic sulfur bacteria ● Alternative biological sources (5) Porphyrins and maleimides Many of the figures in this lecture were kindly provided by Jochen Brocks, RSES ANU 1 Carotenoid pigments ● Carotenoids are usually yellow, orange or red coloured pigments lutein β-carotene 17 18 19 2' 2 4 6 8 3 7 9 16 1 5 lycopenelycopene 2 Structural diversity ● More than 600 different natural structures are known, ● They are derived from the C40 carotenoid lycopene by varied hydrogenation, dehydrogenation, cyclization and oxidation reaction 17 18 19 2' 2 4 6 8 3 7 9 16 1 5 lycopene neurosporene α-carotene γ -carotene spirilloxanthin siphonaxanthin canthaxanthin spheroidenone 3 Structural diversity Purple non-sulfur bacteria peridinin 7,8-didehydroastaxanthin okenone fucoxanthin Biological distribution ● Carotenoids are biosynthesized de novo by all phototrophic bacteria, eukaryotes and halophilic archaea ● They are additionally synthesized by a large variety of non-phototrophs ● Vertebrates and invertebrates have to incorporate carotenoids through the diet, but have often the capacity to structurally modifiy them 4 Carotenoid function (1) Accessory pigments in Light Harvesting Complex (LHC) (annual production by marine phytoplancton alone: 4 million tons) e.g. LH-II Red and blue: protein complex Green: chlorophyll Yellow: lycopene (2) Photoprotection (3) photoreceptors for phototropism and phototaxis Halobacteria in a saltern (carotenoid bacterioruberin) (4) Coloration of plants, fungi and animals (5) Vision 5 6 Carotenoid nomenclature (1) Numbering 20 15 15’ (2) The greek alphabet of hydrocarbon endgroups β,Ψ-carotene (γ-carotene) β β , -carotene (β-carotene) β,ε-carotene (α-carotene) 7 Aromatic Carotenoids 6 1 3 2 isorenieratane chlorobactane 2 3 4 okenane Arylisoprenoids 2,3,6-trimethyl- 2,3,4-trimethyl 8 Arylisoprenoids C19 C C 21 C24 m/z = 133 16 C12, C17, C23, C28, C33 C fragments are not possible C18 22 C20 Monitoring of m/z = 133.1 and 134.1 in GC-MS SIR 9 Aryl isoprenoids present in 7 samples from 4 wells at the H. parvus level of the Montney Fm 100 ABR016 Chevron Crooked Creek 3500ft Aromatic hydrocarbons RI m/z 134.00 isorenieratane β- isorenieratane 20.00 40.00 60.00 80.00 100.00 10 Identification of Isorenieratane in Hovea-3 This image has been removed due to copyright restrictions. Isorenieratane indicative of brown pigmented Green Sulfur Bacteria & H2S 20 -100m from surface Identical Series of Arylisoprenoids and Isorenieratane in Core and Outcrop from Meishan Grice K., Cao C., Bőttcher M.E., Twitchett R.J., Grosjean E., Summons R.E., Turgeon S.C, Dunning W. and Jin Y., 2005. Anaerobic Photosynthesis in an Early Triassic Sea: Sluggish Ocean Circulation in a Greenhouse World. Science 307, 706-709. 11 12 Biogeochemical Proxies at Hovea-3 ppm TOC ppm TOC ppm x 1000 ‰ ‰ mm 0 20 40 0 45 90 0 2.5 5 0 0.4 0.8 -6 0 -4 0 -2 0 -2-3 0 6 -3 1 -2 6 00 100 50 100 1965 1965 A) B) C) C) D) D) E)E) F) G) G) 1970 1970 1975 1975 depthmetresdepthmetres 1980 1980 Changhsingian 1985 1985 1990 1990 C18 C19 V=O V=O Pristane C20 NiNi Phytane 1995 1995 δ34 13 IsorenierataneAryl isoprenoidsPorphyrins (FeD+Fep)/FeT Spyrite δ C Claraia size (mm) 12 Saturated hydrocarbon fraction of the Barney Creek Fm. δ13 TIC� lycopane n-alkanes ( C = -30 to -31‰) Ph B03065S acyclic isoprenoids (δ13C[Pr, Ph] ≈ -32‰) Pr β-carotane squalane lycopane i25 γ-carotane C40i31 carotenoids β-carotane i15 n-C30 n-C12 UCM Baseline MSD; B03065S 20 30 40 50 60 70 80 90 min 13 Arylisoprenoids in the Barney Creek Formation 2,3,6-trimethyl­ 2,3,4-trimethyl SIR� 22 18 m/z = 134.1 C22 C18 ● 16 24 ● ● ● ● 17 27 ● 23 ● 28 29 32 33 ● 34 C ● 1 40 5 2 3 4 20 30 40 50 60 min 14 C40 Arylisoprenoids 1 3 chlorobactane isorenieratane 4 2 renieratane okenane 5 renierapurpurane 5 1 M+ = 554.5 2 M+ = 546.5 4 3 m/z = 134.1 50 60 min 15 Animals Eucarya Flagellates Microsporidia Plants Fungi Ciliates Slime moulds Diplomonads Bacteria Green non-sulfur bacteria Okenane Gram positive Sulfolobus bacteria Desulfurococcus Purple sulfur bacteria Thermotoga Thermoproteus Pyrodictium Archaea 1.6 Ga Pyrobaculum Cyanobacteria Pyrococcus Methanobacterium Green sulfur Thermoplasma Chlorobactane bacteria Archaeoglobus 1.6 Ga Methanopyrus Halobacterium Methanococcus Isorenieratane Aquifex Methanosarcina rRNA tree modified after Woese 16 Green sulfur bacteria Chlorobiaceae hν Anoxygenic photosynthesis H2S + CO2 O2 ν Green-pigmented h Chlorobiaceae H2S 20 m Brown-pigmented SO 2- Chlorobiaceae 4 + C org 100 m ● require reduced sulfur ● require light sediment ● strictly anaerobic 17 Green sulfur bacteria Chlorobiaceae hν Biomarkers of Chlorobiaceae O2 Green-pigmented Chlorobiaceae H S chlorobactane 2 20 m Brown-pigmented Chlorobiaceae isorenieratane 100 m sediment Summons et at., 1987 18 Green sulfur bacteria Chlorobiaceae hν Summons et at., 1987 Carbon fixation follows the reversed TCA Cycle O2 Green-pigmented Chlorobiaceae chlorobactane H S 2 20 m Brown-pigmented Chlorobiaceae isorenieratane 100 m � Biomarkers are enriched in 13C by ~10‰ relative to oxygenic sediment phototrophs with the same CO2 source 19 Purple sulfur bacteria Family: Chromatiaceae hν (γ-subgroup of Proteobacteria) Similar requirements to Chlorobiaceae O2 Purple sulfur bacteria ● reduced sulfur 12 m ● light H S Green sulfur bacteria 2 20 m ● anoxic conditions 20 Purple sulfur bacteria Family: Chromatiaceae hν (γ-subgroup of Proteobacteria) O2 Purple sulfur bacteria 12 m H S Green sulfur bacteria 2 20 m O OMe okenone okenane 21 Purple sulfur bacteria hν Chromatiaceae As in oxygenic phototrophs, O carbon fixation follows the 2 Calvin Cycle Purple sulfur bacteria Hower, isotopically light CO2 12 m sources might be utilized Green sulfur bacteria H2S 20 m � Biomass is commonly somewhat depleted in 13C relative to oxygenic phototrophs. CO2 22 Interpretations: okenane hν O O Me Okenone max. ~20 m O2 Purple sulfur Purplebacteria sulfur bacteria H2S Okenane Okenane is a new (and the first!) biomarker for purple sulfur bacteria 23 Interpretations: Okenane hν max. ~20 m Okenane O2 Purple sulfur The Barney Creek Formation bacteria H S was deposited in an extremely 2 euxinic basin The oxic-anoxic boundary was – at least episodically – less than 20 m below the water surface 24 Chlorobactane & Isorenieratane hν max. ~20 m Chlorobactane O2 Purple sulfur bacteria H S Green-pigmented Isorenieratane 2 Chlorobiaceae Brown-pigmented Chlorobiaceae Layers below Chromatiaceae were inhabited by Chlorobiaceae Carbon isotopic data is required to confirm this interpretation 25 Aromatic carotenoids in Lake Cadagno, Schweiz Schaeffer et al. (1997), Tetrahedron Lett., 38, p.8413-16 The lake is meromictic, i.e. permanently stratified Carbon isotopic measurement of hydrogenated extracts from the lake sediment Isorenieratane -27‰ Chlorobactane -28‰ β-Isorenieratane -27‰ Okenane -45‰ β-Renieratane -42‰ � Biomass of Chlorobiaceae and Chromatiaceae might be both strongly depleted in 13C by assimilation of CO2 sourced in remineralized OM The lake is 850x430x21m size; meromictic with sufate rich botom waters from leached host rocks & topeed with freshwater; 6 month ice covered at 1920m altitude (Behrens et al (2000) GCA, 64, 3327) 26 Restricted utility of arylisoprenoids North Sea oil This image has been removed due to copyright restrictions. β-isorenieratane Koopmans et at., GCA, 2003 isorenieratane 27 Restricted utility of arylisoprenoids Koopmans et al., GCA, 2003 Laboratory generation of β-isorenieratane by partial hydrogenation with PtO2/H2 and subsequent dehydrogenation with 2,3­ dichloro-5,6-dicyano-1,4-benzoquinone Q: Is this a realistic simulation of a This image has been removed due to copyright restrictions. natural processes? Q: Is there an alternative explanation for the isotopic values in the North Sea oil? How could you test it? Q: Could okenane be generated this way starting with γ-carotene? β-isorenieratene 28 Alternative sources of arylisoprenoids Mediteranean sapropel This image has been removed due to copyright restrictions. Hopmans, Rijpstra, Rohling, Cane, Sinninghe Damste (2003) IMOG Poster ! Isorenieratene also occurs in actinomycetes ( Mycobacterium, Streptomyces). Q: What is the prefered habitat of actinomycetes? Using this additional bit of information, give an alternative explanation for the above data. Q: How could you test the new hypothesis? 29 Alternative sources of arylisoprenoids A variety of aromatic carotenoids also accurs in sponges: isorenieratene, β-isorenieratene, renieratene, renierapurpurine This image has been removed due to copyright restrictions. β-isorenieratene renieratene Reniera fulva (Orangener Polsterschwamm) renierapurpurine Q: What are the possible biosynthetic sources of these carotenoids? Q: How could you test what the source is? 30 Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission. 31 Porphyrins Porphyrins are a ubiquitous class of naturally occurring compounds with many important biological representatives including hemes, chlorophylls, and several others. There are additionally a multitude of synthetic porphyrinoid molecules that have been prepared for purposes ranging from basic research to functional applications in society. All of these molecules share in common the porphyrin macrocyclic substructure. The basic structure of the porphyrin macrocycle consists of four pyrrolic subunits linked by four methine
Recommended publications
  • Basin Geochemical Evolution of the Eagle Ford and Effects On
    BASIN GEOCHEMICAL EVOLUTION OF THE EAGLE FORD AND EFFECTS ON TRACE ELEMENT RELEASE A Thesis by IVAN MAULANA Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Michael Tice Co-chair of Committee, Bruce Herbert Committee Members, Franco Marcantonio Terry Wade Head of Department, Michael Pope May 2016 Major Subject: Geology Copyright 2016 Ivan Maulana ABSTRACT The Ocean Anoxic Event 2 (OAE-2) at the Cenomanian-Turonian boundary is recognized from a carbon isotope excursion (CIE) in the Eagle Ford (EF) Group, and commonly attributed to global anoxic conditions in deeper marine settings. Whereas OAE are typically marked by widespread deposition of organic-rich shales, previous work shows diachroneity between the CIE and the organic-rich Lower EF, as well as anoxia- euxinia in the Western Interior Seaway of North America. We found evidence for periodic photic zone euxinia from an EF core, based on ratios of biomarkers and redox-sensitive trace elements. Sedimentary structures suggest depositional environments above storm wave base. Integration with a sequence-stratigraphic framework emphasizes the role of estuarine-style salinity stratification, subject to redox shifts caused by storm mixing in relatively shallow water depths. Independent zircon ages indicate that transition from the Lower to Upper EF occurs in the south before the north, consistent with a northward migration of this stratification mechanism as sea level rose. This implies that the redox states during deposition of the EF leading up to the CIE were influenced by regionally distinct mechanisms at relatively shallow water depths, instead of global anoxic conditions in deeper marine settings.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • New Structural Insights Into the Extracellular Matrix And
    NEW STRUCTURAL INSIGHTS INTO THE EXTRACELLULAR MATRIX AND HYDROCARBON DIVERSITY OF Botryococcus Braunii RACE B A Dissertation by MEHMET TATLI Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Timothy P. Devarenne Committee Members, Jaan Laane Vladislav M. Panin Paul A. Lindahl Head of Department, Gregory D. Reinhart May 2018 Major Subject: Biochemistry Copyright 2018 Mehmet Tatli ABSTRACT Botryococcus braunii is a colonial green microalga that can produce large amounts of liquid isoprenoid hydrocarbons known as botryococcenes, which can be easily converted into conventional combustion engine fuels. B. braunii colony cells are held together by a complex extracellular matrix (ECM). ECM serves as a storage unit for liquid hydrocarbons, and contains a retaining wall and a polysaccharide fibrillar sheath. Analysis of “shells” revealed a single protein. Here we use peptide mass fingerprinting and bioinformatics to identify this protein called polysaccharide associated protein (PSAP). PSAP does not show similarity to any protein in databases, and contains several hydroxyproline domains and a predicted sugar binding domain. Staining studies confirm PSAP as a glycoprotein, and mass spectrometry analysis identified ten N-linked glycosylation sites comprising seven different glycans containing mostly mannose and N- acetylglucosamine with fucose and arabinose. Additionally, four hydroxyproline residues have short O-linked glycans of mainly arabinose and galactose, with 6-deoxyhexose. PSAP secretion and localization to shell material is confirmed using western blot analysis and microscopy. These studies indicate PSAP contains unique glycans and suggest its involvement in ECM polysaccharide fiber biosynthesis.
    [Show full text]
  • Coupled Reductive and Oxidative Sulfur Cycling in the Phototrophic Plate of a Meromictic Lake T
    Geobiology (2014), 12, 451–468 DOI: 10.1111/gbi.12092 Coupled reductive and oxidative sulfur cycling in the phototrophic plate of a meromictic lake T. L. HAMILTON,1 R. J. BOVEE,2 V. THIEL,3 S. R. SATTIN,2 W. MOHR,2 I. SCHAPERDOTH,1 K. VOGL,3 W. P. GILHOOLY III,4 T. W. LYONS,5 L. P. TOMSHO,3 S. C. SCHUSTER,3,6 J. OVERMANN,7 D. A. BRYANT,3,6,8 A. PEARSON2 AND J. L. MACALADY1 1Department of Geosciences, Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA 2Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 3Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 4Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA 5Department of Earth Sciences, University of California, Riverside, CA, USA 6Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Nanyang, Singapore 7Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany 8Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA ABSTRACT Mahoney Lake represents an extreme meromictic model system and is a valuable site for examining the organisms and processes that sustain photic zone euxinia (PZE). A single population of purple sulfur bacte- ria (PSB) living in a dense phototrophic plate in the chemocline is responsible for most of the primary pro- duction in Mahoney Lake. Here, we present metagenomic data from this phototrophic plate – including the genome of the major PSB, as obtained from both a highly enriched culture and from the metagenomic data – as well as evidence for multiple other taxa that contribute to the oxidative sulfur cycle and to sulfate reduction.
    [Show full text]
  • Paleomineralogy of the Hadean Eon: What Minerals Were Present at Life’S Origins?
    Paleomineralogy of the Hadean Eon: What Minerals Were Present at Life’s Origins? Robert M. Hazen—Geophysical Lab 1st ELSI International Symposium Tokyo Institute of Technology March 30, 2013 CONCLUSIONS As many as 90% of the 4700 known mineral species were not present on Earth prior to the origins of life before ~4.0 billion years ago. Origins-of-life models that rely on minerals for catalysis, selection, concentration, protection, or other processes must employ plausible prebiotic mineral species. List of 420 Mineral Species R. M. Hazen (2013) “Paleomineralogy of the Hadean Eon: A Preliminary List” American Journal of Science, in press. What Is Mineral Evolution? A change over time in: • The diversity of mineral species • The relative abundances of minerals • The compositional ranges of minerals • The grain sizes and morphologies of minerals “Ur”-Mineralogy Pre-solar grains contain about a dozen micro- and nano-mineral phases: • Diamond/Lonsdaleite • Graphite (C) • Moissanite (SiC) • Osbornite (TiN) • Nierite (Si3N4) • Rutile (TiO2) • Corundum (Al O ) 2 3 • Spinel (MgAl2O4) • Hibbonite (CaAl12O19) • Forsterite (Mg2SiO4) • Nano-particles of TiC, ZrC, MoC, FeC, Fe-Ni metal within graphite. • GEMS (silicate glass with embedded metal and sulfide). Mineral Evolution: How did we get from a dozen minerals to >4700 on Earth today? What minerals were not present at the origin of life (~4.0 Ga), and why? Mineral Evolution What Drives Mineral Evolution? Deterministic and stochastic processes that occur on any terrestrial body: 1. The progressive separation and concentration of chemical elements from their original uniform distribution. What Drives Mineral Evolution? Deterministic and stochastic processes that occur on any terrestrial body: 1.
    [Show full text]
  • Application of CSIA of Light Oils and Utility of Carotenoid Biomarkers in Resource Plays of North America J
    Application of CSIA of Light Oils and Utility of Carotenoid Biomarkers in Resource Plays of North America J. E. Zumberge1, C. D. Barrie1, J. B. Curtis*1, R. E. Summons2; 1. GeoMark Research, Ltd., Houston, TX, USA; 2. Massachusetts Institute of Technology, Cambridge, MA, USA. Abstract Here we examine the value in crude oil correlations and source rock depositional environment predictions based on non-standard compound-specific isotope analysis and carotenoid biomarker data. Results from various unconventional plays (e.g., Late Devonian Bakken and Woodford Fms from the Williston and Anadarko Basins; Cretaceous Second White Specks, Niobrara, Mowry and Eagle Ford Fms in the Western Interior Seaway) are discussed and compared. These data provide new insights into resource plays using novel and relatively rapid analytical methods. Molecular isotopic data and carotenoid biomarker distributions of petroleum systems tend to be distinct so that, in combination with commonly used sterane and hopane biomarkers, oil-oil and oil-source correlations can be made with much greater fidelity. Statement of the background This paper addresses novel application of compound-specific isotope analysis and carotenoid hydrocarbon characterization to better understand, and perhaps predict the productivity of hydrocarbons from source-rock reservoirs. This work provides new and detailed insight into resource play petroleum systems. Aims and Objectives Stable isotope analysis is a powerful tool in understanding the generation, history and correlation of hydrocarbons. Compound-specific δ13C measurements of oils allow detailed comparison of individual compound groupings; however, most studies separate and isolate individual fractions based on the chemistries of particular compound groups, potentially losing or corrupting valuable data.
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume 63
    33. GEOCHEMISTRY OF TETRAPYRROLE, CAROTENOID, AND PERYLENE PIGMENTS IN SEDIMENTS FROM THE SAN MIGUEL GAP (SITE 467) AND BAJA CALIFORNIA BORDERLAND (SITE 471), DEEP SEA DRILLING PROJECT LEG 631 J. William Louda and Earl W. Baker, Organic Geochemistry Group, College of Science, Florida Atlantic University, Boca Raton, Florida INTRODUCTION for perylene, and homologues, is proposed: the role of diagenetic-geothermal history indicator. That is, as Twenty-one core samples from DSDP/IPOD Leg 63 depth of burial and in situ sediment temperature in- were analyzed for products of chlorophyll diagenesis. In creased, the proportion of C-21, C-22, and C-23 alkyl- addition to the tetrapyrrole pigments, perylene and ated derivatives of perylene (C-20) increased. On the carotenoid pigments were isolated and identified. basis of sediment depth and thermal profiles, the alkyl- The 16 core samples from the San Miguel Gap site perylenes were found to be generated prior to the ap- (467) and the five from the Baja California borderland pearance of nickel porphyrin homologues above C-32 location (471) afforded the unique opportunity of exam- and the release or formation of the vanadyl pigments. ining tetrapyrrole diagenesis in clay-rich marine sedi- Alkylation of perylene within DSDP/IPOD sample ments that are very high in total organic matter. suites has previously been mentioned (Brassell et al., The chelation reaction, whereby free-base porphyrins 1980). give rise to metalloporphyrins (viz., nickel), is well ß-Carotene was found to be present in Site 467 upper documented within the downhole sequence of sediments Pliocene and Quaternary sections (viz., 467-18-5 and from the San Miguel Gap (Site 467).
    [Show full text]
  • Lipidomic and Genomic Investigation of Mahoney Lake, B.C
    Lipidomic and Genomic Investigation of Mahoney Lake, B.C. The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bovee, Roderick. 2014. Lipidomic and Genomic Investigation of Mahoney Lake, B.C.. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11745724 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Lipidomic and Genomic Investigation of Mahoney Lake, B.C. A dissertation presented by Roderick Bovee to The Department of Earth and Planetary Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Earth and Planetary Sciences Harvard University Cambridge, Massachusetts December, 2013 © 2013 – Roderick Bovee All rights reserved. Dissertation Adviser: Professor Ann Pearson Roderick Bovee Lipidomic and Genomic Investigation of Mahoney Lake, B.C. Abstract Photic-zone euxinia (PZE) is associated with several times in Earth's history including Phanerozoic extinction events and long parts of the Proterozoic. One of the best modern analogues for extreme PZE is Mahoney Lake in British Columbia, Canada where a dense layer of purple sulfur bacteria separate the oxic mixolimnion from one of the most sulfidic monimolimnions in the world. These purple sulfur bacteria are known to produce the carotenoid okenone. Okenone's diagenetic product, okenane, has potential as a biomarker for photic-zone euxinia, so understanding its production and transport is important for interpreting the geologic record.
    [Show full text]
  • Carbon Mineral Ecology: Predicting the Undiscovered Minerals of Carbon
    American Mineralogist, Volume 101, pages 889–906, 2016 Carbon mineral ecology: Predicting the undiscovered minerals of carbon ROBERT M. HAZEN1,*, DANIEL R. HUMMER1, GRETHE HYSTAD2, ROBERT T. DOWNS3, AND JOSHUA J. GOLDEN3 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Calumet, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. ABSTRACT Studies in mineral ecology exploit mineralogical databases to document diversity-distribution rela- tionships of minerals—relationships that are integral to characterizing “Earth-like” planets. As carbon is the most crucial element to life on Earth, as well as one of the defining constituents of a planet’s near-surface mineralogy, we focus here on the diversity and distribution of carbon-bearing minerals. We applied a Large Number of Rare Events (LNRE) model to the 403 known minerals of carbon, using 82 922 mineral species/locality data tabulated in http://mindat.org (as of 1 January 2015). We find that all carbon-bearing minerals, as well as subsets containing C with O, H, Ca, or Na, conform to LNRE distributions. Our model predicts that at least 548 C minerals exist on Earth today, indicating that at least 145 carbon-bearing mineral species have yet to be discovered. Furthermore, by analyzing subsets of the most common additional elements in carbon-bearing minerals (i.e., 378 C + O species; 282 C + H species; 133 C + Ca species; and 100 C + Na species), we predict that approximately 129 of these missing carbon minerals contain oxygen, 118 contain hydrogen, 52 contain calcium, and more than 60 contain sodium.
    [Show full text]
  • Gas Chromatographic-Mass Spectrometric Investigation of Seep
    RICE UNIVERSITY GAS CHROHATOGRAP! 11 C-i IASS SPECTROMCTRIC iriVESTIGATION OF SEEP OIL ISOPRENOID ALKANES by' David James Curry A THESIS SUBMITTED III PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS Thesis Director's' signature ■ficCt rfc Houston, Texas August, 1072 TABLE OF COKTENTS ACSC'IOMLEDGEMEHTS ' 1 ABSTRACT... 2 INTRODUCTION TO GEOCHEMISTRY 4. ISOPRENOID ALKANES. 10 SAMPLE DESCRIPTION ....1C EXPERIMENTAL METHODS.-. ;...20 INTERPRETATION AND DISCUSSION OF RESULTS.......20 SUMMARY. .01 POSSIBILITIES FOR FUTURE STUDY ........64 TABLES.'..... ........SO CHROMATOGRAMS 71 FOOTNOTES..... 74 SELECTED BIBLIOGRAPHY. 76 MASS SPECTRA MS 1 (Phytane) 15,43 I IS 2 (Authenti c Pri s tane)..... .. .25 MS 3 (Pristane).' 26,40 I IS 4 (Au then ti c P r.i s tane) . ...27 MS 5 (C^ Isoprenoid) ...31 OO MS 6 (3-,7-,ll-trin;ethyl tetradecana) • • « sJsJ MS 7 (C1? Unknown) ... 33 MS 8 (C10 Isoorenoid) ...36 MS 9 (Pristane) ,38 MS 18 (Ci Unknown) 41 MS 11 (C22 Isoprenoicl) 44 MS 12 (C23 Isoprenoid),. 46 IIS 13- (C2* Isoprenoicl) 48 MS 14 (C2g Isoprenoicl) 50 MS 15 (C2Q Iscprenoid)...: 51 MS 15 (COQ Isoprenoid) MS 17 (Proposed C2C Isoprenoid) 64 CHROMATOGRAMS GC I (Total Branched alkane-cycloalkane Fraction) 71 GC II (Still Residue Branched Alkane-cycloalkane Fraction)72 GC III (Total, normal Alkane Fraction) 73 (GC I,II,III were taken on 3% SE-30 phase) TABLES I: Composition of Distillation and 56 Column'Chromatography Fractions II: Approximate Relative and Absoluts 67 Amounts of Isoprenoid Components III: Off Scale Intensities of Mass..... !...68 Spectrometric Peaks IV: Initial Separatory Gas Chroma- _ 69 tographic Conditions V: .
    [Show full text]
  • This Article Was Published in an Elsevier Journal. the Attached Copy
    This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 72 (2008) 1396–1414 www.elsevier.com/locate/gca Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation Jochen J. Brocks a,*, Philippe Schaeffer b a Research School of Earth Sciences and Centre for Macroevolution and Macroecology, The Australian National University, Canberra, ACT 0200, Australia b Laboratoire de Ge´ochimie Bio-organique, CNRS UMR 7177, Ecole Europe´enne de Chimie, Polyme`res et Mate´riaux, 25 rue Becquerel, 67200 Strasbourg, France Received 20 June 2007; accepted in revised form 12 December 2007; available online 23 December 2007 Abstract Carbonates of the 1640 million years (Ma) old Barney Creek Formation (BCF), McArthur Basin, Australia, contain more than 22 different C40 carotenoid derivatives including lycopane, c-carotane, b-carotane, chlorobactane, isorenieratane, b-iso- renieratane, renieratane, b-renierapurpurane, renierapurpurane and the monoaromatic carotenoid okenane.
    [Show full text]
  • Environmental Speciation and Monitoring Needs for Trace Metal -Contai Ni Ng Substances from Energy-Related Processes
    STAND NATL iNST OF AU107 1=17^05 NBS 1>l PUBLICATIONS z CO NBS SPECIAL PUBLICATION * / Of U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards -QC 100 .U57 NO. 618 1981 c. 2 NATIONAL BUREAU QF STANDARDS The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes
    [Show full text]