(12) United States Patent (10) Patent No.: US 8,435,765 B2 Abraham Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8,435,765 B2 Abraham Et Al USOO84357.65B2 (12) United States Patent (10) Patent No.: US 8,435,765 B2 Abraham et al. (45) Date of Patent: *May 7, 2013 (54) POLYPEPTIDES AND BIOSYNTHETIC 5,994,559 A 1 1/1999 Abushanab et al. PATHWAYS FOR THE PRODUCTION OF 3.35 R 3.399 this et al. MONATIN AND ITS PRECURSORS 6,489,1004. W I B1 12/2002 Liaoat Ka et al. 7,064,219 B2 6/2006 Kawahara et al. (75) Inventors: Timothy W. Abraham, Wayzata, MN 7,390,909 B2 6/2008 Kawahara et al. (US); Douglas C. Cameron, Plymouth, 7.534,898 B2 5/2009 Amino et al. MN (US); Paula M. Hicks, Bend, OR 7,572,607 B2 * 8/2009 Hicks et al. ................... 435/121 (US); Sara C. McFarlan, St Paul MN 7,582.455 B2 * 9/2009 Brazean et al. ............... 435/121 s O O s a wo s 7,781,005 B2 8, 2010 Mori (US); James R. Millis, Plymouth, MN 7,888,081 B2 2/2011 Khare et al. (US); John Rosazza, Iowa City, IA 8,003,361 B2 8/2011 Brady et al. (US); David P. Weiner, Del Mar, CA 8,076,107 B2 12/2011 Buddoo et al. (US); Lishan Zhao, Carlsbad, CA (US) 2003/02284.03 A1 12/2003 Amino et al. s s s 2004/0063175 A1 4/2004 Abraham et al. 2005, 0004394 A1 1/2005 Kawahara et al. (73) Assignee: Cargill, Incorporated, Wayzata, MN 2005.0009153 A1 1/2005 Sugiyama et al. (US) 2005/0020508 A1 1/2005 Amino et al. 2005/OO95670 A1 5/2005 Ikeda et al. (*) Notice: Subject to any disclaimer, the term of this 2005/0106305 A1 5/2005 Abraham et al. patent is extended or adjusted under 35 2005/0112260 Al 5/2005 Abraham et al. U.S.C. 154(b) by 715 days 2005/01 18317 A1 6, 2005 Amino et al. M YW- y yS. 2005, 0137246 A1 6/2005 Amino et al. This patent is Subject to a terminal disis- 2005/01700412005/O153405 A1 7/20058/2005 AbrahamSugiyama et et al. al. Ca10. 2005/0221453 A1 10/2005 Takagi et al. 2005/0221455 A1 10, 2005 McFarlanet al. (21) Appl. No.: 12/124,014 2005/0244937 A1 11/2005 Abraham et al. 2005/0244939 A1 1 1/2005 Sugiyama et al. (22) Filed: May 20, 2008 58.8538 A .338 R.E."ckS et al. O O 2006, OOO3411 A1 1/2006 Sugiyama et al. (65) Prior Publication Data 2006/0003426 A1 1/2006 Sugiyama et al. US 2009/01 17625A1 May 7, 2009 38. A 58 SaiO. ca. O O 2006, OO74249 A1 4/2006 Kawahara et al. Related U.S. Application Data 2006, 0083695 A1 4, 2006 Mori et al. (60) Division- - - of application No. 10/979,821, filed on Nov. 2006/01723962006, O154343 A1 7/20068/2006 MoriSugiyama et al. et al. 3, 2004, which is a continuation-in-part of application No. 10/422,366, filed on Apr. 23, 2003, now (Continued) abandoned. FOREIGN PATENT DOCUMENTS (60) Provisional application No. 60/374,831, filed on Apr. EP O 438314 4f1994 23, 2002. EP O736604 10, 1996 (Continued) (51) Int. Cl. CI2N 9/02 (2006.01) OTHER PUBLICATIONS CI2N L/21 (2006.01) Ackerman, "Structure elucidation of and synthetic approaches to CI2P 13/22 (2006.01) - 52) U.S. C monatin, a metabolite from Schlerochiton ilicifolius.” PhD disserta (52) USPG 435/121435/108:435/193435/69.1 tion, University of Stellenbosch, Jul. 1990. 435/252.3 (Continued) (58) Field of Classification Search .................. 435/121, 435/108, 193, 69.1, 325, 320.1, 252.3; 536/23.2 Primary Examiner — Chih-Min Kam See application file for complete search history. (56) References Cited (57) ABSTRACT U.S. PATENT DOCUMENTS Methods and compositions that can be used to make monatin from glucose, tryptophan, indole-3-lactic acid, indole-3- 3,002,889 A 10, 1961 Kinoshita et al. 3,128.237 A 4, 1964 Motozaki et al. pyruvate, and 2-hydroxy 2-(indol-3-ylmethyl)-4-keto glu 3,399,114 A 8, 1968 Ohsawa et al. taric acid, are provided. Methods are also disclosed for pro 3,751,458 A 8/1973 Wiley ducing the indole-3-pyruvate and 2-hydroxy 2-(indol-3- 4,371,614 A 2, 1983 Anderson et al. ylmethyl)-4-ketoglutaric acid intermediates. Compositions 4,518,692 A 5, 1985 ROZZell 4,975,298 A 12/1990 VanWyket al. provided include nucleic acid molecules, polypeptides, 5,128,164 A 7/1992 VanWyket al. chemical structures, and cells. Methods include invitro and in 5,128,482 A 7, 1992 Olivier et al. Vivo processes, and the in vitro methods include chemical 5,300,437 A 4/1994 Stirling et al. reactions. 5,360,724 A 11/1994 Matcham et al. 5,728,555 A 3/1998 Fotheringham et al. 5,985,617 A 11/1999 Liao 4 Claims, 10 Drawing Sheets US 8,435,765 B2 Page 2 U.S. PATENT DOCUMENTS Bassoli, “Chemistry-Nature, stillan open match for the discovery of 2006/0252135 A1 11/2006 Brazeau et al. new intensive Sweeteners.” Agro FOOD industry hi-tech, 2004, 2007/0099277 A1 5, 2007 Anderson et al. 15(4):27-29. 2007/0105938 A1 5, 2007 Anderson et al. Bassoli et al., “Design and synthesis of new monatin derivatives.” 2008.0020434 A1 1/2008 Braeau et al. 13th International Symposium on Olfaction and Taste (ISOT XIII) 2008.0020435 A1 1/2008 Burke et al. 14th. European Chemoreception Research Organization Congress 2008.0193984 A1 8/2008 Sugiyama et al. (ECRO XIV), Jul. 20-24, 2000, p. 162, Abstract. 2008/0274518 A1 11, 2008 Hicks et al. Bassoli et al., “General Pseudoreceptor Model for Sweet Com 2009,008.8577 A1 4/2009 Buddoo et al. pounds: A Semiquantitative Prediction of Binding Affinity for Sweet 2009,0130285 A1 5, 2009 Abraham et al. Tasting Molecules,” J. Med. Chem., 2002, 45:4402-4409. 2009/O198072 A1 8, 2009 Khare et al. Bassoli et al., “Monatin and Its Stereoisomers: Chemoenzymatic 2011/002O882 A1 1/2011 de Souza et al. Synthesis and Taste Properties.” Eur: J. Org. Chem., 2005, 8:1652 2011/OO45547 A1 2/2011 de Souza et al. 1658. 2011/0300282 Al 12/2011 Brady et al. Bhatnagar et al., “The Broad-specificity, Membrane-bound Lactate 2012,000932.0 A1 1/2012 Evans et al. Dehydrogenase of Neisseria gonorrhoeae: Ties to Aromatic Metabo 2012,0009634 A1 1/2012 Burke et al. lism.” Journal of General Microbiology, 1989, 135:353-360. Bommarius et al., “Some new developments in reductive amination FOREIGN PATENT DOCUMENTS with cofactor regeneration.” Biocatalysis, 1994, 10:37-47. EP 104.5 O29 10, 2000 Bongaerts et al., “Metabolic Engineering for Microbial Production of EP 1445323 8, 2004 Aromatic Amino Acids and Derived Compounds.” Metabolic Engi EP 1449 832 8, 2004 neering, 2001, 3:289-300. EP 1533 376 5, 2005 Brandt and Lindow, "Cloning and characterization of a locus encod EP 1580 268 9, 2005 ing an indolepyruvate decarboxylase involved in indole-3-acetic acid EP 1605 041 12/2005 synthesis in Erwinia herbicola," Appl. Environ. Microbiol. 1996, EP 1350 791 9, 2006 62:4121-4128. EP 1719 758 11, 2006 Buldain et al., “Carbon-13 Nuclear Magnetic Resonance Spectra of JP 2002-060382 8, 2001 the Hydrate, Keto and Enol forms of Oalacetic Acid.” Magn. Res. JP 2003-171365 11, 2001 JP 2001-396471 12/2001 Chem., 1985, 23:478-481. JP 2002-095760 3, 2002 Camargo (Ediclea Cristina Fregonese Camargo), "Preparation of JP 2002-357,043 12/2002 amino acids not proteinogenicos, structurally related to adogante JP 2004-222657 1, 2003 natural Monatina' translated by Google), Jan. 2003, Universidade JP 2004-331644 11, 2003 Estadual de Campinas Instituto de Quimica, Dissertation of Masters. JP 2004-331650 3, 2004 DeLuna et al., “NADP-Glutamate Dehydrogenase Isoenzymes of WO WO 87.01130 2, 1987 Saccharomyces cerevisiae: Purification, Kinetic Properties, and WO WO 89.11212 11, 1989 Physiological Roles,” J. Biol. Chem..., 2001, 276(47):43775-43783. WO WO 99,55877 11, 1999 Eggeling and Sahm, “Amino-acid production: principles of meta WO WOO3,OO913 1, 2003 bolic engineering.” Metabolic Engineering, 1999, Lee & Papoutsakis WO WOO3/45914 6, 2003 eds., Marcel Dekker, Inc., New York. WO WOO3/56026 T 2003 Eikmanns et al., “Cloning, sequence analysis, expression, and inac WO WOO3,598.65 T 2003 WO WOO3,91396 11, 2003 tivation of the Corynebacterium glutamicum iccd gene encoding WO WO 2004/O18672 3, 2004 isocitrate dehydrogenase and biochemical characterization of the WO WO 2004/053.125 6, 2004 enzyme.” J. Bacteriol., 1995, 177:774-782. WO 2004/085624 10, 2004 El-Abyad and Farid, "Optimization of culture conditions for indole WO WO 2005.001105 1, 2005 3-pyruvic acid production by Streptomyces griseoflavus,” Can. J. WO WO 2005/O 14839 2, 2005 Microbiol., 1994, 40:754-760. WO WO 2005/O16022 2, 2005 Flores et al., “Pathway engineering for the production of aromatic WO WO 2005/02O721 3, 2005 compounds in Escherichia coli,' Nature Biotechnology, 1996, WO WO 2005/042756 5, 2005 14:620-623. WO WO 2005/082850 9, 2005 Floydet al., “A Simple Strategy for obtaining both Enantiomers from WO WO 2006/011613 2, 2006 WO WO 2006/113897 10, 2006 an Aldolase Reaction: Preparation of L- and D-4-Hydroxy-2- WO WO 2006/116487 11, 2006 ketoglutarate.” J. Chem. Soc. Perkin Trans. 1, 1992, 1085-1086. WO WO 2007/103389 9, 2007 Fotheringham et al., “The cloning and sequence analysis of the aspC WO WO 2007.1331.83 11, 2007 and tyrB genes from Escherichia coli K12.” Biochem.
Recommended publications
  • Mice Carrying a Human GLUD2 Gene Recapitulate Aspects of Human Transcriptome and Metabolome Development
    Mice carrying a human GLUD2 gene recapitulate aspects of human transcriptome and metabolome development Qian Lia,b,1, Song Guoa,1, Xi Jianga, Jaroslaw Brykc,2, Ronald Naumannd, Wolfgang Enardc,3, Masaru Tomitae, Masahiro Sugimotoe, Philipp Khaitovicha,c,f,4, and Svante Pääboc,4 aChinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; bUniversity of Chinese Academy of Sciences, 100049 Beijing, China; cMax Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; dMax Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany; eInstitute for Advanced Biosciences, Keio University, 997-0035 Tsuruoka, Yamagata, Japan; and fSkolkovo Institute for Science and Technology, 143025 Skolkovo, Russia Edited by Joshua M. Akey, University of Washington, Seattle, WA, and accepted by the Editorial Board April 1, 2016 (received for review September 28, 2015) Whereas all mammals have one glutamate dehydrogenase gene metabolic flux from glucose and glutamine to lipids by way of the (GLUD1), humans and apes carry an additional gene (GLUD2), TCA cycle (12). which encodes an enzyme with distinct biochemical properties. To investigate the physiological role the GLUD2 gene may We inserted a bacterial artificial chromosome containing the human play in human and ape brains, we generated mice transgenic for GLUD2. GLUD2 gene into mice and analyzed the resulting changes in the a genomic region containing human We compared effects transcriptome and metabolome during postnatal brain development. on gene expression and metabolism during postnatal development Effects were most pronounced early postnatally, and predominantly of the frontal cortex of the brain in these mice and their wild-type genes involved in neuronal development were affected.
    [Show full text]
  • O O2 Enzymes Available from Sigma Enzymes Available from Sigma
    COO 2.7.1.15 Ribokinase OXIDOREDUCTASES CONH2 COO 2.7.1.16 Ribulokinase 1.1.1.1 Alcohol dehydrogenase BLOOD GROUP + O O + O O 1.1.1.3 Homoserine dehydrogenase HYALURONIC ACID DERMATAN ALGINATES O-ANTIGENS STARCH GLYCOGEN CH COO N COO 2.7.1.17 Xylulokinase P GLYCOPROTEINS SUBSTANCES 2 OH N + COO 1.1.1.8 Glycerol-3-phosphate dehydrogenase Ribose -O - P - O - P - O- Adenosine(P) Ribose - O - P - O - P - O -Adenosine NICOTINATE 2.7.1.19 Phosphoribulokinase GANGLIOSIDES PEPTIDO- CH OH CH OH N 1 + COO 1.1.1.9 D-Xylulose reductase 2 2 NH .2.1 2.7.1.24 Dephospho-CoA kinase O CHITIN CHONDROITIN PECTIN INULIN CELLULOSE O O NH O O O O Ribose- P 2.4 N N RP 1.1.1.10 l-Xylulose reductase MUCINS GLYCAN 6.3.5.1 2.7.7.18 2.7.1.25 Adenylylsulfate kinase CH2OH HO Indoleacetate Indoxyl + 1.1.1.14 l-Iditol dehydrogenase L O O O Desamino-NAD Nicotinate- Quinolinate- A 2.7.1.28 Triokinase O O 1.1.1.132 HO (Auxin) NAD(P) 6.3.1.5 2.4.2.19 1.1.1.19 Glucuronate reductase CHOH - 2.4.1.68 CH3 OH OH OH nucleotide 2.7.1.30 Glycerol kinase Y - COO nucleotide 2.7.1.31 Glycerate kinase 1.1.1.21 Aldehyde reductase AcNH CHOH COO 6.3.2.7-10 2.4.1.69 O 1.2.3.7 2.4.2.19 R OPPT OH OH + 1.1.1.22 UDPglucose dehydrogenase 2.4.99.7 HO O OPPU HO 2.7.1.32 Choline kinase S CH2OH 6.3.2.13 OH OPPU CH HO CH2CH(NH3)COO HO CH CH NH HO CH2CH2NHCOCH3 CH O CH CH NHCOCH COO 1.1.1.23 Histidinol dehydrogenase OPC 2.4.1.17 3 2.4.1.29 CH CHO 2 2 2 3 2 2 3 O 2.7.1.33 Pantothenate kinase CH3CH NHAC OH OH OH LACTOSE 2 COO 1.1.1.25 Shikimate dehydrogenase A HO HO OPPG CH OH 2.7.1.34 Pantetheine kinase UDP- TDP-Rhamnose 2 NH NH NH NH N M 2.7.1.36 Mevalonate kinase 1.1.1.27 Lactate dehydrogenase HO COO- GDP- 2.4.1.21 O NH NH 4.1.1.28 2.3.1.5 2.1.1.4 1.1.1.29 Glycerate dehydrogenase C UDP-N-Ac-Muramate Iduronate OH 2.4.1.1 2.4.1.11 HO 5-Hydroxy- 5-Hydroxytryptamine N-Acetyl-serotonin N-Acetyl-5-O-methyl-serotonin Quinolinate 2.7.1.39 Homoserine kinase Mannuronate CH3 etc.
    [Show full text]
  • Michigan State University
    ..____ LIEMRY Michigan State University ———— OVERDUE FINES: 25¢ per day per ite- RETURNING LIBRARY MATERIALS: Place in book return to remove charge from c1 rcuht1on records BRAIN IRON'IN THE RAT: DISTRIBUTION, SEX DIFFERENCES, AND EFFECTS OF SEX HORMONES By Joanna Marie Hill A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Zoology 1981 ABSTRACT BRAIN IRON IN THE RAT: DISTRIBUTION, SEX DIFFERENCES, AND EFFECTS OF SEX HORMONES By Joanna Marie Hill Although the brain contains relatively large amounts of iron, and iron deficiency alters behavior, little is known about those factors which affect brain iron or the role of n J .r iron in the brain. Sex hormones are responsible for sex r’ ’7 differences in many aspects of iron metabolism throughout ,l' .3 I the body. 6// The purposes of this study were to: (l) localize iron deposits in the rat brain; (2) determine if a sex difference exists in brain iron stores; (3) determine the effects on brain iron levels of natural events in which sex hormones fluctuate (e.g. estrous cycle and pregnancy); and (4) determine if exogenous estrogen alters the effects of ovari- ectomy and castration on brain iron levels. Brain iron was localized by histochemical methods and direct measurement of iron concentrations of high-iron areas (pooled globus pallidus and substantia nigra) and lower iron areas (cortex) of the brain, as well as the serum and liver were made by spectr0photometry. This study has determined that brain iron: is unevenly distributed in the rat brain; occurs in different cellular and extracellular compartments in different parts of the Joanna Marie Hill brain; and increases with age.
    [Show full text]
  • Natural Product Biosyntheses in Cyanobacteria: a Treasure Trove of Unique Enzymes
    Natural product biosyntheses in cyanobacteria: A treasure trove of unique enzymes Jan-Christoph Kehr, Douglas Gatte Picchi and Elke Dittmann* Review Open Access Address: Beilstein J. Org. Chem. 2011, 7, 1622–1635. University of Potsdam, Institute for Biochemistry and Biology, doi:10.3762/bjoc.7.191 Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany Received: 22 July 2011 Email: Accepted: 19 September 2011 Jan-Christoph Kehr - [email protected]; Douglas Gatte Picchi - Published: 05 December 2011 [email protected]; Elke Dittmann* - [email protected] This article is part of the Thematic Series "Biosynthesis and function of * Corresponding author secondary metabolites". Keywords: Guest Editor: J. S. Dickschat cyanobacteria; natural products; NRPS; PKS; ribosomal peptides © 2011 Kehr et al; licensee Beilstein-Institut. License and terms: see end of document. Abstract Cyanobacteria are prolific producers of natural products. Investigations into the biochemistry responsible for the formation of these compounds have revealed fascinating mechanisms that are not, or only rarely, found in other microorganisms. In this article, we survey the biosynthetic pathways of cyanobacteria isolated from freshwater, marine and terrestrial habitats. We especially empha- size modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) pathways and highlight the unique enzyme mechanisms that were elucidated or can be anticipated for the individual products. We further include ribosomal natural products and UV-absorbing pigments from cyanobacteria. Mechanistic insights obtained from the biochemical studies of cyanobacterial pathways can inspire the development of concepts for the design of bioactive compounds by synthetic-biology approaches in the future. Introduction The role of cyanobacteria in natural product research Cyanobacteria flourish in diverse ecosystems and play an enor- [2] (Figure 1).
    [Show full text]
  • Production of Monatin and Monatin Precursors Herstellung Von Monatin Und Monatinvorläufer Production De Monatine Et Précurseurs De Monatine
    (19) TZZ ¥Z Z_T (11) EP 2 302 067 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12P 13/04 (2006.01) C12N 9/88 (2006.01) 05.03.2014 Bulletin 2014/10 C12N 9/10 (2006.01) C12N 1/21 (2006.01) (21) Application number: 10009952.2 (22) Date of filing: 21.10.2004 (54) Production of monatin and monatin precursors Herstellung von Monatin und Monatinvorläufer Production de monatine et précurseurs de monatine (84) Designated Contracting States: • Sanchez-Riera, Fernando A. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Eden Prairie, MN 55346 (US) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Cameron, Douglas C. Plymouth, MN 55447 (US) (30) Priority: 21.10.2003 US 513406 P • Desouza, Mervyn L. Plymouth, MN 55441 (US) (43) Date of publication of application: • Rosazza, Jack 30.03.2011 Bulletin 2011/13 Iowa City, IA 55240 (US) • Gort, Steven J. (62) Document number(s) of the earlier application(s) in Brooklyn Center, MN 55429 (US) accordance with Art. 76 EPC: • Abraham, Timothy W. 04795689.1 / 1 678 313 Minnetonka, MN 55345 (US) (73) Proprietor: Cargill, Incorporated (74) Representative: Wibbelmann, Jobst Wayzata, MN 55391-5624 (US) Wuesthoff & Wuesthoff Patent- und Rechtsanwälte (72) Inventors: Schweigerstrasse 2 • McFarlan, Sara C. 81541 München (DE) St.Paul, MN 55116 (US) • Hicks, Paula M. (56) References cited: Bend, Oregon 97702 (US) WO-A-03/056026 WO-A-2005/016022 • Zidwick, Mary Jo WO-A-2005/020721 WO-A2-03/091396 Wayzata, MN 55391 (US) WO-A2-2005/014839 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • WO 2017/123676 A9 20 July 2017 (20.07.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) CORRECTED VERSION (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2017/123676 A9 20 July 2017 (20.07.2017) P O P C T (51) International Patent Classification: 16 November 2016 (16. 11.2016) US C12N 9/78 (2006.0 1) C12N 1/00 (2006.0 1) 15/379,445 14 December 20 16 ( 14. 12.20 16) us A61K 35/74 (2015.01) C12N 15/52 (2006.01) 62/434,406 14 December 2016 (14. 12.2016) us A61K 35/741 (2015.01) C12N 15/74 (2006.01) 62/439,820 28 December 2016 (28. 12.2016) us C07K 14/195 (2006.01) 62/439,871 28 December 2016 (28. 12.2016) us PCT/US201 6/069052 (21) International Application Number: 28 December 2016 (28. 12.2016) us PCT/US20 17/0 13074 62/443,639 6 January 2017 (06.01.2017) us (22) International Filing Date: PCT/US201 7/013072 11 January 2017 ( 11.01 .2017) 11 January 2017 ( 11.01 .2017) us (25) Filing Language: English Applicant: SYNLOGIC, INC. [US/US]; 130 Brookline Street, #201, Cambridge, MA 02139 (US). (26) Publication Language: English (72) Inventors: FALB, Dean; 180 Lake Street, Sherborn, MA (30) Priority Data: 01770 (US). KOTULA, Jonathan, W.; 345 Washington 62/277,413 11 January 2016 ( 11.01.2016) US Street, Somerville, MA 02143 (US). ISABELLA, Vin¬ 62/277,450 11 January 2016 ( 11.01.2016) us cent, M.; 465 Putnam Avenue, Unit 1, Cambridge, MA 62/277,455 11 January 2016 ( 11.01.2016) us 02139 (US).
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Open Full Article
    BIOLOGIA PLANTARUM (PRAHA) 33 (5):395-407, 1991 Proposed Enzymes of Auxin Biosynthesis and Their Regulation II. Tryptophan Dehydrogenase Activity in Plants. M. KUT/~t~EK and SULTANA TERZIIVANOVA-DIMOVA* Institute of Experimental Botany, Czechoslovak Academy of Sciences, Ke dvoru 15, 166 30 Praha 6, Czechoslovakia *Institute of Plant Physiology "M. Popov", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria Abstract. In pea, maize and tomato plants a hitherto undescribed L-tryptophan dehydrogenase activity (TDH) has been detected. This enzyme catalyzes the reversible formation of indolepyruvic acid (IPyA) from L-tryptophan (L-trp). TDH and L-glutamate dehydrogenase (GDH), related enzymes in their mode of action, could be separated by gel chromatography. Enzymatic activity of TDH was sustained by both pyridine coenzymes NAD/NADP. With pea TDH the coenzyme NAD displays, at optimum pH 8.5 and at room temperature, only about 40-70 % of the activity of NADP. The amination of IPyA is catalysed more actively than the deamination of L-trp. L-trp/IPyA, L-glu/ketoglutarate, L-ala/pyruvate reacted as dehydrogenase substrates; L-phe/phenylpyruvate, D-trp and D-phe did not react with pea enzyme extracts. A considerable similarity between the active centres of TDH and GDH has been found using inhibitors: absence of heavy metals, presence of a carbonyl group, indispensibility of bivalent ions for the enzyme activity. Pea TDH and GDH were distinctly inhibited by sodium azide. For the activity of TDH the presence of SH groups is less important than for GDH. The TDH activity in the investigated plants was lower than the GDH activity.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0112260 A1 Abraham Et Al
    US 2005O112260A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0112260 A1 Abraham et al. (43) Pub. Date: May 26, 2005 (54) MONATIN TABLETOPSWEETENER (21) Appl. No.: 10/903,582 COMPOSITIONS AND METHODS OF MAKING SAME (22) Filed: Aug. 2, 2004 (75) Inventors: Timothy W. Abraham, Minnetonka, Related U.S. Application Data MN (US); Douglas C. Cameron, Plymouth, MN (US); Melanie J. (60) Provisional application No. 60/492,014, filed on Aug. Goulson, Dayton, MN (US); Paula M. 1, 2003. Hicks, Eden Prairie, MN (US); Michael O O G. Lindley, Crowthorne (GB); Sara C. Publication Classification McFarlan, St.Paul, MN (US); James 7 R. Millis, Plymouth, MN (US); John s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A: Rosazza, Iowa City, IA (US); Lishan ( 2) O O - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - /5 Zhao, Carlsbad, CA (US); David P. Weiner, Del Mar, CA (US) (57) ABSTRACT Correspondence Address: The present invention relates to novel Sweetener composi CARGILL, INCORPORATED tions comprising monatin and methods for making Such LAW/24 compositions. The present invention also relates to Sweet 15407 MCGINTY ROAD WEST ener compositions comprising Specific monatin Stereoiso WAYZATA, MN 55391 (US) mers, Specific blends of monatin Stereoisomers, and/or monatin produced via a biosynthetic pathway in Vivo (e.g., (73) Assignee: Cargill, Inc. inside cells) or in vitro. -- re Tryptophan Indole-3-lactic
    [Show full text]
  • Crystal Structure of L-Tryptophan Dehydrogenase
    Photon Factory Activity Report 2018 #36 (2019) AR-NE3A/2017G010 Crystal structure of L-tryptophan dehydrogenase Taisuke Wakamatsu 1, *, Haruhiko Sakuraba 2, *, Megumi Kitamura 1, Yuichi Hakumai1, Kenji Fukui 3, Kouhei Ohnishi 4, Makoto Ashiuchi 1, and Toshihisa Ohshima 5 1 Agricultural Science, Graduate School of Integrated Arts and Sciences, Kochi University, Kochi, Japan 2 Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan 3 Department of Biochemistry, Osaka Medical College, Osaka, Japan 4 Research Institute of Molecular Genetics, Kochi University, Kochi, Japan 5 Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan 1 Introduction preferred substrate, whereas phenylpyruvate, the 2-oxo NAD(P)-dependent L-amino acid dehydrogenases (EC analog of L-Phe, was inert as a substrate. Despite these 1.4.1.x) catalyze reversible oxidative deamination of L- interesting observations, there exists no structural amino acids to their corresponding 2-oxo acids and information on TrpDH. Thus, we employed X-ray ammonia in the presence of NAD(P). So far, more than crystallography to solve the apo-structure of NpTrpDH, fifteen types of L-amino acid dehydrogenases have been identified from various organisms and characterized 2 Experiment extensively. In particular, detailed structure and function Data were collected under cryo conditions at the analyses of L-Glu/L-Leu/L-Phe dehydrogenases have led to Beamline AR-NE3A at Photon Factory in Japan. The the elucidation of their catalytic mechanisms. crystal structure of LeuDH from Sporosarcina Consequently, several L-amino acid dehydrogenases have psychrophila (SpLeuDH, PDB ID: 3VPX, amino acid been successfully used for the syntheses for chiral amino sequence identity: 49%) was applied as a search model, acids and their analogs, for developing biosensors for L- and the program PHENIX was used for molecular amino acids.
    [Show full text]
  • Targeting Glutamine Addiction in Gliomas
    cancers Review Targeting Glutamine Addiction in Gliomas Marta Obara-Michlewska and Monika Szeliga * Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawi´nskiegoStreet, 02-106 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-22-608-6416 Received: 20 December 2019; Accepted: 27 January 2020; Published: 29 January 2020 Abstract: The most common malignant brain tumors are those of astrocytic origin, gliomas, with the most aggressive glioblastoma (WHO grade IV) among them. Despite efforts, medicine has not made progress in terms of the prognosis and life expectancy of glioma patients. Behind the malignant phenotype of gliomas lies multiple genetic mutations leading to reprogramming of their metabolism, which gives those highly proliferating cells an advantage over healthy ones. The so-called glutamine addiction is a metabolic adaptation that supplements oxidative glycolysis in order to secure neoplastic cells with nutrients and energy in unfavorable conditions of hypoxia. The present review aims at presenting the research and clinical attempts targeting the different metabolic pathways involved in glutamine metabolism in gliomas. A brief description of the biochemistry of glutamine transport, synthesis, and glutaminolysis, etc. will forego a detailed comparison of the therapeutic strategies undertaken to inhibit glutamine utilization by gliomas. Keywords: glioma; glutamine; glutamate; glutaminase; glutamine synthetase; glutamate dehydrogenase; therapy 1. Introduction The metabolism of neoplasms has evolved to meet the demands of their high proliferative activity and growth in adverse conditions of hypoxia, nutrient shortage, and immunological pressure of the host. The reprogrammed metabolism of neoplasms, eventually adapting them to specific growth requirements and conditions, involves addiction to glucose (the Warburg effect, oxidative glycolysis) and/or glutamine.
    [Show full text]
  • Springer Handbook of Enzymes
    Dietmar Schomburg Ida Schomburg (Eds.) Springer Handbook of Enzymes Alphabetical Name Index 1 23 © Springer-Verlag Berlin Heidelberg New York 2010 This work is subject to copyright. All rights reserved, whether in whole or part of the material con- cerned, specifically the right of translation, printing and reprinting, reproduction and storage in data- bases. The publisher cannot assume any legal responsibility for given data. Commercial distribution is only permitted with the publishers written consent. Springer Handbook of Enzymes, Vols. 1–39 + Supplements 1–7, Name Index 2.4.1.60 abequosyltransferase, Vol. 31, p. 468 2.7.1.157 N-acetylgalactosamine kinase, Vol. S2, p. 268 4.2.3.18 abietadiene synthase, Vol. S7,p.276 3.1.6.12 N-acetylgalactosamine-4-sulfatase, Vol. 11, p. 300 1.14.13.93 (+)-abscisic acid 8’-hydroxylase, Vol. S1, p. 602 3.1.6.4 N-acetylgalactosamine-6-sulfatase, Vol. 11, p. 267 1.2.3.14 abscisic-aldehyde oxidase, Vol. S1, p. 176 3.2.1.49 a-N-acetylgalactosaminidase, Vol. 13,p.10 1.2.1.10 acetaldehyde dehydrogenase (acetylating), Vol. 20, 3.2.1.53 b-N-acetylgalactosaminidase, Vol. 13,p.91 p. 115 2.4.99.3 a-N-acetylgalactosaminide a-2,6-sialyltransferase, 3.5.1.63 4-acetamidobutyrate deacetylase, Vol. 14,p.528 Vol. 33,p.335 3.5.1.51 4-acetamidobutyryl-CoA deacetylase, Vol. 14, 2.4.1.147 acetylgalactosaminyl-O-glycosyl-glycoprotein b- p. 482 1,3-N-acetylglucosaminyltransferase, Vol. 32, 3.5.1.29 2-(acetamidomethylene)succinate hydrolase, p. 287 Vol.
    [Show full text]