WO 2017/123676 A9 20 July 2017 (20.07.2017) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/123676 A9 20 July 2017 (20.07.2017) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) CORRECTED VERSION (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2017/123676 A9 20 July 2017 (20.07.2017) P O P C T (51) International Patent Classification: 16 November 2016 (16. 11.2016) US C12N 9/78 (2006.0 1) C12N 1/00 (2006.0 1) 15/379,445 14 December 20 16 ( 14. 12.20 16) us A61K 35/74 (2015.01) C12N 15/52 (2006.01) 62/434,406 14 December 2016 (14. 12.2016) us A61K 35/741 (2015.01) C12N 15/74 (2006.01) 62/439,820 28 December 2016 (28. 12.2016) us C07K 14/195 (2006.01) 62/439,871 28 December 2016 (28. 12.2016) us PCT/US201 6/069052 (21) International Application Number: 28 December 2016 (28. 12.2016) us PCT/US20 17/0 13074 62/443,639 6 January 2017 (06.01.2017) us (22) International Filing Date: PCT/US201 7/013072 11 January 2017 ( 11.01 .2017) 11 January 2017 ( 11.01 .2017) us (25) Filing Language: English Applicant: SYNLOGIC, INC. [US/US]; 130 Brookline Street, #201, Cambridge, MA 02139 (US). (26) Publication Language: English (72) Inventors: FALB, Dean; 180 Lake Street, Sherborn, MA (30) Priority Data: 01770 (US). KOTULA, Jonathan, W.; 345 Washington 62/277,413 11 January 2016 ( 11.01.2016) US Street, Somerville, MA 02143 (US). ISABELLA, Vin¬ 62/277,450 11 January 2016 ( 11.01.2016) us cent, M.; 465 Putnam Avenue, Unit 1, Cambridge, MA 62/277,455 11 January 2016 ( 11.01.2016) us 02139 (US). MILLER, Paul, F.; 39 Emerald Glen Lane, 62/291,461 4 February 2016 (04.02.2016) us Salem, CT 06420 (US). TUCKER, Alex; 19 Wyatt Street, 62/291,468 4 February 2016 (04.02.2016) us Somerville, MA 02143 (US). MILLET, Yves; 15 Freder 62/291,470 4 February 2016 (04.02.2016) us ick Street, Newton, MA 02460 (US). FISHER, Adam B.; 62/297,778 19 February 2016 (19.02.2016) us 240 Sidney Street, #306, Cambridge, MA 02139 (US). PCT/US2016/020530 2 March 20 16 (02.03.2016) us 62/305,462 8 March 2016 (08.03.2016) us (74) Agents: HANLEY, Elizabeth, A. et al; McCarter & Eng 62/3 13,691 25 March 2016 (25.03.2016) us lish, LLP, 265 Franklin Street, Boston, MA 021 10 (US). 62/3 14,322 28 March 2016 (28.03.2016) us (81) Designated States (unless otherwise indicated, for every 62/335,780 13 May 2016 (13.05.2016) us kind of national protection available): AE, AG, AL, AM, 62/335,940 13 May 2016 (13.05.2016) us AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 62/336,338 13 May 2016 (13.05.2016) us BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, PCT/US2016/032562 13 May 201 6 (13.05.2016) us DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2016/032565 13 May 201 6 (13.05.2016) us HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, 15/154,934 13 May 2016 (13.05.2016) us KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, 62/345,242 3 June 2016 (03.06.2016) us MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, 62/347,508 8 June 2016 (08.06.2016) us NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, 62/347,576 8 June 2016 (08.06.2016) us RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, 62/348,360 10 June 2016 (10.06.2016) us TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, 62/348,620 10 June 2016 (10.06.2016) us ZA, ZM, ZW. PCT/US2016/037098 10 June 201 6 (10.06.2016) us 62/354,682 24 June 2016 (24.06.2016) us (84) Designated States (unless otherwise indicated, for every PCT/US20 16/039444 24 June 201 6 (24.06.2016) us kind of regional protection available): ARIPO (BW, GH, 62/362,954 15 July 2016 (15.07.2016) us GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/385,235 8 September 2016 (08.09.2016) us TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, PCT/US2016/050836 TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 8 September 2016 (08.09.2016) us DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, 15/260,3 19 8 September 2016 (08.09.2016) us LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, 62/423,170 16 November 2016 (16. 11.2016) us SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, PCT/US2016/062369 GW, KM, ML, MR, NE, SN, TD, TG). [Continued on nextpage] (54) Title: RECOMBINANT BACTERIA ENGINEERED TO TREAT DISEASES AND DISORDERS ASSOCIATED WITH AMINO ACID METABOLISM AND METHODS OF USE THEREOF (57) Abstract: The present disclosure provides recombinant bacterial cells that have been engineered with genetic circuitry which al low the recombinant bacterial cells to sense a patient's internal environment and respond by turning an engineered metabolic path - way on or off. When turned on, the recombinant bacterial cells complete all of the steps in a metabolic pathway to achieve a thera - peutic effect in a host subject. These recombinant bacterial cells are designed to drive therapeutic effects throughout the body of a host from a point of origin of the microbiome. Specifically, the present disclosure provides recombinant bacterial cells that comprise an amino acid catabolism enzyme for the treatment of diseases and disorders associated with amino acid metabolism, including can cer, in a subject. The disclosure further provides pharmaceutical compositions and methods of treating disorders associated with amino acid metabolism, such as cancer. w o 2017/123676 1lllll II Hill lllll Hill llll III III Hill Hill Hill lllll lllll llll llll llll llll Declarations under Rule 4.17: (48) Date of publication of this corrected version: — as to applicant's entitlement to apply for and be granted 1 4 September 2017 apatent (Rule 4.1 7(H)) (15) Information about Correction: — as to the applicant's entitlement to claim the priority of see Notice o f 1 4 September 2017 the earlier application (Rule 4.17(Hi)) Published: RECOMBINANT BACTERIA ENGINEERED TO TREAT DISEASES AND DISORDERS ASSOCIATED WITH AMINO ACID METABOLISM AND METHODS OF USE THEREOF Related Applications [01] This application claims priority to U.S. Provisional Application No. 62/277,413, filed on January 11, 2016; U.S. Provisional Application No. 62/335,780, filed on May 13, 2016; and U.S. Provisional Application No. 62/345,242, filed on June 3, 2016, the entire contents of each of which are expressly incorporated herein by reference. Background [02] It has recently been discovered that the microbiome in mammals plays a large role in health and disease (see Cho and Blaser, Nature Rev. Genet., 13:260-270, 2012 and Owyang and Wu, Gastroenterol., 146(6):1433-1436, 2014). Indeed, bacteria-free animals have abnormal gut epithelial and immune function, suggesting that the microbiome in the gut plays a critical role in the mammalian immune system. Specifically, the gut microbiome has been shown to be involved in diseases, including, for example, diseases associated with amino acid metabolism, cancer, immune diseases (such as Inflammatory Bowel Disease), autism, liver disease, food allergy, metabolic diseases (such as urea cycle disorder, phenylketonuria, and maple syrup urine disease), obesity, and infection, among many others. [03] With respect to cancers, it is known that many tumors depend on certain amino acids for survival. For example, it is known that melanomas depend on leucine for survival, and that leucine deprivation causes the apoptotic death of melanoma cells through inhibiting mTORCl, the main repressor of autophagy (Shee et al., Cancer Cell, 19:613-628, 201 1). Furthermore, it is known that arginine is also necessary for mTORCl activation. Other groups have demonstrated that deprivation of the amino acids serine and glycine improve survival in cancer based mouse models, and studies have recommended serine-free diets in cancer patients in order to improve their survival odds (Locasale, Nature Reviews, 13:572-583, 2013). Other tumors have been shown to have a dependence on asparagine, such as leukemia (Amylon et al., Leukemia, 13:335-342, 1999). [04] Moreover, therapeutic administration of isolated recombinant bacterial proteins which catabolize amino acids, such as asparagine, have been approved by the FDA and shown to be therapeutically beneficial and to increase survival for cancer patients (Amylon et al, Leukemia, 13:335-342, 1999). However, patients treated with the isolated amino acid catabolism enzymes have also been shown to develop severe side effects, including an immune response (hypersensitivity) against the asparaginase enzyme (Vrooman et al, Pediatr. Blood Cancer, 54(2):199-205, 2010 and Wetzler, Blood, 124(8): 1206-1207, 2014), and other severe side effects such as coagulopathy, bone marrow suppression, and stroke (Muller, Critical Reviews in Oncology/Hematology, 28(2):97-ll, 1998). Accordingly, a need remains for the development of more effective therapeutic options with fewer side effects for treating diseases associated with amino acid metabolism, such as cancer. Summary [05] The present disclosure provides recombinant bacterial cells that have been engineered with genetic circuitry which allow the recombinant bacterial cells to sense a patient' s internal environment and respond by turning an engineered metabolic pathway on or off.
Recommended publications
  • The Journal of Nutrition 1968 Volume 95 No.1
    THE JOURNAL OF NUTRITION* OFFICIAL ORGAN OF THE AMERICAN INSTITUTE OF NUTRITION R i c h a r d H . B a r n e s , Editor Graduate School of Nutrition Cornell University, Savage Hall Ithaca, New York H a r o l d H . W i l l i a m s E. N e i g e T o d h u n t e r Associate Editor Biographical Editor EDITORIAL BOARD S a m u e l J . F o m o n W i l l i a m N. P e a r s o n M . K . H o r w i t t P a u l M . N e w b e r n e F. H. K r a t z e r K e n d a l l W . K i n g B o y d L. O’D e l l H. N. M u n r o H e r b e r t P . S a r e t t H. E. S a u b e r l i c h D o r i s H o w e s C a l l o w a y G e o r g e G . G r a h a m R o s l y n B . A l f i n -S l a t e r J . M . B e l l W i l l i a m G . H o e k s t r a G e o r g e H .
    [Show full text]
  • Phosphine Stabilizers for Oxidoreductase Enzymes
    Europäisches Patentamt *EP001181356B1* (19) European Patent Office Office européen des brevets (11) EP 1 181 356 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12N 9/02, C12P 7/00, of the grant of the patent: C12P 13/02, C12P 1/00 07.12.2005 Bulletin 2005/49 (86) International application number: (21) Application number: 00917839.3 PCT/US2000/006300 (22) Date of filing: 10.03.2000 (87) International publication number: WO 2000/053731 (14.09.2000 Gazette 2000/37) (54) Phosphine stabilizers for oxidoreductase enzymes Phosphine Stabilisatoren für oxidoreduktase Enzymen Phosphines stabilisateurs des enzymes ayant une activité comme oxidoreducase (84) Designated Contracting States: (56) References cited: DE FR GB NL US-A- 5 777 008 (30) Priority: 11.03.1999 US 123833 P • ABRIL O ET AL.: "Hybrid organometallic/enzymatic catalyst systems: (43) Date of publication of application: Regeneration of NADH using dihydrogen" 27.02.2002 Bulletin 2002/09 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 104, no. 6, 1982, pages 1552-1554, (60) Divisional application: XP002148357 DC US cited in the application 05021016.0 • BHADURI S ET AL: "Coupling of catalysis by carbonyl clusters and dehydrigenases: (73) Proprietor: EASTMAN CHEMICAL COMPANY Redution of pyruvate to L-lactate by dihydrogen" Kingsport, TN 37660 (US) JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 120, no. 49, 11 October 1998 (72) Inventors: (1998-10-11), pages 12127-12128, XP002148358 • HEMBRE, Robert, T. DC US cited in the application Johnson City, TN 37601 (US) • OTSUKA K: "Regeneration of NADH and ketone • WAGENKNECHT, Paul, S. hydrogenation by hydrogen with the San Jose, CA 95129 (US) combination of hydrogenase and alcohol • PENNEY, Jonathan, M.
    [Show full text]
  • H-Dependent Enzymes for Reductive Amination
    NAD(P)H-Dependent Enzymes for Reductive Amination: Active Site Description and Carbonyl-Containing Compound Spectrum Laurine Ducrot, Megan Bennett, Gideon Grogan, Carine Vergne-Vaxelaire To cite this version: Laurine Ducrot, Megan Bennett, Gideon Grogan, Carine Vergne-Vaxelaire. NAD(P)H-Dependent En- zymes for Reductive Amination: Active Site Description and Carbonyl-Containing Compound Spec- trum. Advanced Synthesis and Catalysis, Wiley-VCH Verlag, In press, 10.1002/adsc.202000870. hal-02945508 HAL Id: hal-02945508 https://hal.archives-ouvertes.fr/hal-02945508 Submitted on 22 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW DOI: 10.1002/adsc.201((will be filled in by the editorial staff)) NAD(P)H-Dependent Enzymes for Reductive Amination: Active Site Description and Carbonyl-Containing Compound Spectrum. Laurine Ducrot,a Megan Bennett,b Gideon Groganb and Carine Vergne- Vaxelairea* a Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris- Saclay, 91057 Evry, France b York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK. Received: ((will be filled in by the editorial staff)) Abstract. The biocatalytic asymmetric synthesis of amines In this review we summarize the development of such from carbonyl compounds and amine precursors presents an enzymes from the engineering of amino acid dehydrogenases important advance in sustainable synthetic chemistry.
    [Show full text]
  • An Updated Genome Annotation for the Model Marine Bacterium Ruegeria Pomeroyi DSS-3 Adam R Rivers, Christa B Smith and Mary Ann Moran*
    Rivers et al. Standards in Genomic Sciences 2014, 9:11 http://www.standardsingenomics.com/content/9/1/11 SHORT GENOME REPORT Open Access An Updated genome annotation for the model marine bacterium Ruegeria pomeroyi DSS-3 Adam R Rivers, Christa B Smith and Mary Ann Moran* Abstract When the genome of Ruegeria pomeroyi DSS-3 was published in 2004, it represented the first sequence from a heterotrophic marine bacterium. Over the last ten years, the strain has become a valuable model for understanding the cycling of sulfur and carbon in the ocean. To ensure that this genome remains useful, we have updated 69 genes to incorporate functional annotations based on new experimental data, and improved the identification of 120 protein-coding regions based on proteomic and transcriptomic data. We review the progress made in understanding the biology of R. pomeroyi DSS-3 and list the changes made to the genome. Keywords: Roseobacter,DMSP Introduction Genome properties Ruegeria pomeroyi DSS-3 is an important model organ- The R. pomeroyi DSS-3 genome contains a 4,109,437 bp ism in studies of the physiology and ecology of marine circular chromosome (5 bp shorter than previously re- bacteria [1]. It is a genetically tractable strain that has ported [1]) and a 491,611 bp circular megaplasmid, with been essential for elucidating bacterial roles in the mar- a G + C content of 64.1 (Table 3). A detailed description ine sulfur and carbon cycles [2,3] and the biology and of the genome is found in the original article [1]. genomics of the marine Roseobacter clade [4], a group that makes up 5–20% of bacteria in ocean surface waters [5,6].
    [Show full text]
  • Mice Carrying a Human GLUD2 Gene Recapitulate Aspects of Human Transcriptome and Metabolome Development
    Mice carrying a human GLUD2 gene recapitulate aspects of human transcriptome and metabolome development Qian Lia,b,1, Song Guoa,1, Xi Jianga, Jaroslaw Brykc,2, Ronald Naumannd, Wolfgang Enardc,3, Masaru Tomitae, Masahiro Sugimotoe, Philipp Khaitovicha,c,f,4, and Svante Pääboc,4 aChinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; bUniversity of Chinese Academy of Sciences, 100049 Beijing, China; cMax Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; dMax Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany; eInstitute for Advanced Biosciences, Keio University, 997-0035 Tsuruoka, Yamagata, Japan; and fSkolkovo Institute for Science and Technology, 143025 Skolkovo, Russia Edited by Joshua M. Akey, University of Washington, Seattle, WA, and accepted by the Editorial Board April 1, 2016 (received for review September 28, 2015) Whereas all mammals have one glutamate dehydrogenase gene metabolic flux from glucose and glutamine to lipids by way of the (GLUD1), humans and apes carry an additional gene (GLUD2), TCA cycle (12). which encodes an enzyme with distinct biochemical properties. To investigate the physiological role the GLUD2 gene may We inserted a bacterial artificial chromosome containing the human play in human and ape brains, we generated mice transgenic for GLUD2. GLUD2 gene into mice and analyzed the resulting changes in the a genomic region containing human We compared effects transcriptome and metabolome during postnatal brain development. on gene expression and metabolism during postnatal development Effects were most pronounced early postnatally, and predominantly of the frontal cortex of the brain in these mice and their wild-type genes involved in neuronal development were affected.
    [Show full text]
  • United States Patent (10) Patent No.: US 9,562,241 B2 Burk Et Al
    USOO9562241 B2 (12) United States Patent (10) Patent No.: US 9,562,241 B2 Burk et al. (45) Date of Patent: Feb. 7, 2017 (54) SEMI-SYNTHETIC TEREPHTHALIC ACID 5,487.987 A * 1/1996 Frost .................... C12N 9,0069 VLAMCROORGANISMIS THAT PRODUCE 5,504.004 A 4/1996 Guettler et all 435,142 MUCONCACID 5,521,075- W I A 5/1996 Guettler et al.a (71) Applicant: GENOMATICA, INC., San Diego, CA 3. A '95 seal. (US) 5,686,276 A 11/1997 Lafend et al. 5,700.934 A 12/1997 Wolters et al. (72) Inventors: Mark J. Burk, San Diego, CA (US); (Continued) Robin E. Osterhout, San Diego, CA (US); Jun Sun, San Diego, CA (US) FOREIGN PATENT DOCUMENTS (73) Assignee: Genomatica, Inc., San Diego, CA (US) CN 1 358 841 T 2002 EP O 494 O78 7, 1992 (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 14/308,292 Abadjieva et al., “The Yeast ARG7 Gene Product is Autoproteolyzed to Two Subunit Peptides, Yielding Active (22) Filed: Jun. 18, 2014 Ornithine Acetyltransferase,” J. Biol. Chem. 275(15): 11361-11367 2000). (65) Prior Publication Data . al., “Discovery of amide (peptide) bond synthetic activity in US 2014/0302573 A1 Oct. 9, 2014 Acyl-CoA synthetase,” J. Biol. Chem. 28.3(17): 11312-11321 (2008). Aberhart and Hsu, "Stereospecific hydrogen loss in the conversion Related U.S. Application Data of H, isobutyrate to f—hydroxyisobutyrate in Pseudomonas (63) Continuation of application No.
    [Show full text]
  • An Ecological Basis for Dual Genetic Code Expansion in Marine Deltaproteobacteria
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435355; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An ecological basis for dual genetic code expansion in marine deltaproteobacteria 1 Veronika Kivenson1, Blair G. Paul2, David L. Valentine2* 2 1Interdepartmental Graduate Program in Marine Science, University of California, Santa Barbara, CA 3 93106, USA 4 2Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, 5 CA 93106, USA 6 * Correspondence: 7 David L. Valentine 8 [email protected] 9 Present Address 10 VK: Oregon State University, Corvallis, OR 97331 11 BGP: Marine Biological Laboratory, Woods Hole, MA 02543 12 13 Keywords: microbiome, pyrrolysine, selenocysteine, metabolism, metagenomics 14 15 Abstract 16 Marine benthic environments may be shaped by anthropogenic and other localized events, leading to 17 changes in microbial community composition evident decades after a disturbance. Marine sediments 18 in particular harbor exceptional taxonomic diversity and can shed light on distinctive evolutionary 19 strategies. Genetic code expansion may increase the structural and functional diversity of proteins in 20 cells, by repurposing stop codons to encode noncanonical amino acids: pyrrolysine (Pyl) and 21 selenocysteine (Sec). Here, we show that the genomes of abundant Deltaproteobacteria from the 22 sediments of a deep-ocean chemical waste dump site, have undergone genetic code expansion. Pyl 23 and Sec in these organisms appear to augment trimethylamine (TMA) and one-carbon metabolism, 24 representing key drivers of their ecology.
    [Show full text]
  • O O2 Enzymes Available from Sigma Enzymes Available from Sigma
    COO 2.7.1.15 Ribokinase OXIDOREDUCTASES CONH2 COO 2.7.1.16 Ribulokinase 1.1.1.1 Alcohol dehydrogenase BLOOD GROUP + O O + O O 1.1.1.3 Homoserine dehydrogenase HYALURONIC ACID DERMATAN ALGINATES O-ANTIGENS STARCH GLYCOGEN CH COO N COO 2.7.1.17 Xylulokinase P GLYCOPROTEINS SUBSTANCES 2 OH N + COO 1.1.1.8 Glycerol-3-phosphate dehydrogenase Ribose -O - P - O - P - O- Adenosine(P) Ribose - O - P - O - P - O -Adenosine NICOTINATE 2.7.1.19 Phosphoribulokinase GANGLIOSIDES PEPTIDO- CH OH CH OH N 1 + COO 1.1.1.9 D-Xylulose reductase 2 2 NH .2.1 2.7.1.24 Dephospho-CoA kinase O CHITIN CHONDROITIN PECTIN INULIN CELLULOSE O O NH O O O O Ribose- P 2.4 N N RP 1.1.1.10 l-Xylulose reductase MUCINS GLYCAN 6.3.5.1 2.7.7.18 2.7.1.25 Adenylylsulfate kinase CH2OH HO Indoleacetate Indoxyl + 1.1.1.14 l-Iditol dehydrogenase L O O O Desamino-NAD Nicotinate- Quinolinate- A 2.7.1.28 Triokinase O O 1.1.1.132 HO (Auxin) NAD(P) 6.3.1.5 2.4.2.19 1.1.1.19 Glucuronate reductase CHOH - 2.4.1.68 CH3 OH OH OH nucleotide 2.7.1.30 Glycerol kinase Y - COO nucleotide 2.7.1.31 Glycerate kinase 1.1.1.21 Aldehyde reductase AcNH CHOH COO 6.3.2.7-10 2.4.1.69 O 1.2.3.7 2.4.2.19 R OPPT OH OH + 1.1.1.22 UDPglucose dehydrogenase 2.4.99.7 HO O OPPU HO 2.7.1.32 Choline kinase S CH2OH 6.3.2.13 OH OPPU CH HO CH2CH(NH3)COO HO CH CH NH HO CH2CH2NHCOCH3 CH O CH CH NHCOCH COO 1.1.1.23 Histidinol dehydrogenase OPC 2.4.1.17 3 2.4.1.29 CH CHO 2 2 2 3 2 2 3 O 2.7.1.33 Pantothenate kinase CH3CH NHAC OH OH OH LACTOSE 2 COO 1.1.1.25 Shikimate dehydrogenase A HO HO OPPG CH OH 2.7.1.34 Pantetheine kinase UDP- TDP-Rhamnose 2 NH NH NH NH N M 2.7.1.36 Mevalonate kinase 1.1.1.27 Lactate dehydrogenase HO COO- GDP- 2.4.1.21 O NH NH 4.1.1.28 2.3.1.5 2.1.1.4 1.1.1.29 Glycerate dehydrogenase C UDP-N-Ac-Muramate Iduronate OH 2.4.1.1 2.4.1.11 HO 5-Hydroxy- 5-Hydroxytryptamine N-Acetyl-serotonin N-Acetyl-5-O-methyl-serotonin Quinolinate 2.7.1.39 Homoserine kinase Mannuronate CH3 etc.
    [Show full text]
  • Front Matter
    UvA-DARE (Digital Academic Repository) Expanding the catalytic activity of amine dehydrogenases Rational enzyme engineering via computational analysis and application in organic synthesis Tseliou, V. Publication date 2020 Document Version Other version License Other Link to publication Citation for published version (APA): Tseliou, V. (2020). Expanding the catalytic activity of amine dehydrogenases: Rational enzyme engineering via computational analysis and application in organic synthesis. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 Rational Enzyme Engineering via Computational Analysis and Application in Organic Synthesis Analysis and Rational Enzyme Engineering via Computational ACTIVITY OF AMINEEXPANDING DEHYDROGENASES: THE CATALYTIC EXPANDING THE CATALYTIC ACTIVITY OF AMINE DEHYDROGENASES: RATIONAL ENZYME ENGINEERING VIA COMPUTATIONAL ANALYSIS AND APPLICATION IN ORGANIC SYNTHESIS V.
    [Show full text]
  • Bacillus Peoriae Sp. Nov
    6982 INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, Apr. 1993, p. 388-390 Vol. 43, No.2 0020-7713/93/020388-03502.00/0 Bacillus peoriae sp. nov. ANTHONY MONTEFUSCO,l L. K. NAKAMURA,2* AND D. P. LABEDA2 Depm1ment ofBiology, Illinois State University, NOl7nal, Illinois, 61761, 1 and Microbial Properties Research, National Center for Agricultural Utilization Research, Agricultural Research Selvice, U.S. Department ofAgriculture, Peoria, Illinois 616042 The taxonomy of an apparently genetically distinct gas-producing group of Bacillus strains formerly classified as Bacillus polymyxa was studied. Multilocus enzyme electrophoresis analysis confirmed the distinctiveness of the unknown taxon. Low DNA relatedness values also demonstrated that the unknown was not closely related genetically to any of the presently recognized species that have guanine-plus-cytosine values of 45 to 47 mol% or produce gas by fermentation of sugars. The unknown group was also a phenotypically distinct taxon. The data suggest that the unknown group merits recognition as a new species, for which the name Bacillus peoriae is proposed. The species Bacillus polymyxa was validly proposed as a leucine aminopeptidase (EC 3.4.1.1). The procedure for species by Mace in 1889 (6). Because of their rather rare determining the relative mobilities of alternative forms of ability to form gas, their unique spore morphology, and their each enzyme was described previously (9). Levels of simi­ apparent phenotypic homogeneity, B. polymyxa strains were larity among strains were estimated on the basis of the easily identified. Until 1984, when Seldin et al. (13) named Jaccard coefficient, and clustering was based on unweighted the gas-forming, nitrogen-fixing organism B.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0301950 A1 Baynes Et Al
    US 201203 01950A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0301950 A1 Baynes et al. (43) Pub. Date: Nov. 29, 2012 (54) BOLOGICAL SYNTHESIS OF Publication Classification DIFUNCTIONAL HEXANES AND PENTANES FROM CARBOHYDRATE FEEDSTOCKS (51) Int. Cl. CI2N I/2 (2006.01) (76) Inventors: Brian M. Baynes, Cambridge, MA CI2N I/19 (2006.01) (US); John Michael Geremia, (52) U.S. Cl. ................................... 435/252.3; 435/254.2 Somerville, MA (US); Shaun M. Lippow, Somerville, MA (US) (57) ABSTRACT (21) Appl. No.: 12/661,125 Provided herein are methods for the production of difunc tional alkanes in microorganisms. Also provided are enzymes (22) Filed: Mar. 11, 2010 and nucleic acids encoding Such enzymes, associated with the difunctional alkane production from carbohydrates feed Related U.S. Application Data stocks in microorganisms. The invention also provides (60) Provisional application No. 61/209,917, filed on Mar. recombinant microorganisms and metabolic pathways for the 11, 2009. production of difunctional alkanes. Patent Application Publication Nov. 29, 2012 Sheet 1 of 10 US 2012/030 1950 A1 g f Patent Application Publication Nov. 29, 2012 Sheet 2 of 10 US 2012/030 1950 A1 O m D v Patent Application Publication Nov. 29, 2012 Sheet 3 of 10 US 2012/030 1950 A1 Patent Application Publication Nov. 29, 2012 Sheet 4 of 10 US 2012/030 1950 A1 O O O<—OSSHD (~~~~(~~~~D HDD(~~~ GS?un61– Patent Application Publication Nov. 29, 2012 Sheet 5 of 10 US 2012/030 1950 A1 Eas sa O [] HQ-H0HN H0 N?HH0U0 D?HN sanºººº} Patent Application Publication Nov.
    [Show full text]
  • Pygal Application No. 61/209.917, Filed on Mar. CNENEEEN", ON."
    USOO8404465B2 (12) UnitedO States Patent (10) Patent No.: US 8.404,465 B2 Baynes et al. (45) Date of Patent: *Mar. 26, 2013 (54) BIOLOGICAL SYNTHESIS OF 2006.01601 38 A1 7, 2006 Church 6-AMINOCAPROCACID FROM 3.28 2. A 3.92 ElaC CARBOHYDRATE FEEDSTOCKS 2007/025.4341 A1 11/2007 Raemakers-Franken 2007,0269870 A1 11/2007 Church (75) Inventors: Brian M. Baynes, Cambridge, MA 2008, OO6461.0 A1 3/2008 Lipovsek (US); John Michael Geremia, 2008/0287320 A1 1 1/2008 Baynes Somerville, MA (US); Shaun M. 2009,008784.0 A1 4/2009 Baynes Lippow, Somerville, MA (US) 2009,0246838 A1 10, 2009 Zelder FOREIGN PATENT DOCUMENTS (73) Assignee: Celexion, LLC, Cambridge, MA (US) JP 2002223 770 8, 2008 c WO WO9507996 3, 1995 (*) Notice: Subject to any disclaimer, the term of this WO WOO166573 9, 2001 patent is extended or adjusted under 35 WO WOO3106691 12/2003 U.S.C. 154(b) by 225 days. WO WO2004O13341 2, 2004 WO WO2007099029 9, 2007 This patent is Subject to a terminal dis- WO WO2007101867 9, 2007 claimer. WO WO2O08092.720 9, 2008 WO WO2008127283 10, 2008 WO WO2009/046375 4/2009 (21) Appl. No.: 12/661,125 WO WO2009.113853 9, 2009 WO WO2009.113855 9, 2009 (22) Filed: Mar 11, 2010 WO WO2009,151728 12/2009 (65) Prior Publication Data OTHER PUBLICATIONS US 2012/O3O1950 A1 Nov. 29, 2012 Chica et al. Curr Opin Biotechnol. Aug. 2005:16(4):378-84.* Sen et al. Appl Biochem Biotechnol. Dec. 2007: 143(3):212-23.* Related U.S.
    [Show full text]