(12) Patent Application Publication (10) Pub. No.: US 2012/0301950 A1 Baynes Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2012/0301950 A1 Baynes Et Al US 201203 01950A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0301950 A1 Baynes et al. (43) Pub. Date: Nov. 29, 2012 (54) BOLOGICAL SYNTHESIS OF Publication Classification DIFUNCTIONAL HEXANES AND PENTANES FROM CARBOHYDRATE FEEDSTOCKS (51) Int. Cl. CI2N I/2 (2006.01) (76) Inventors: Brian M. Baynes, Cambridge, MA CI2N I/19 (2006.01) (US); John Michael Geremia, (52) U.S. Cl. ................................... 435/252.3; 435/254.2 Somerville, MA (US); Shaun M. Lippow, Somerville, MA (US) (57) ABSTRACT (21) Appl. No.: 12/661,125 Provided herein are methods for the production of difunc tional alkanes in microorganisms. Also provided are enzymes (22) Filed: Mar. 11, 2010 and nucleic acids encoding Such enzymes, associated with the difunctional alkane production from carbohydrates feed Related U.S. Application Data stocks in microorganisms. The invention also provides (60) Provisional application No. 61/209,917, filed on Mar. recombinant microorganisms and metabolic pathways for the 11, 2009. production of difunctional alkanes. Patent Application Publication Nov. 29, 2012 Sheet 1 of 10 US 2012/030 1950 A1 g f Patent Application Publication Nov. 29, 2012 Sheet 2 of 10 US 2012/030 1950 A1 O m D v Patent Application Publication Nov. 29, 2012 Sheet 3 of 10 US 2012/030 1950 A1 Patent Application Publication Nov. 29, 2012 Sheet 4 of 10 US 2012/030 1950 A1 O O O<—OSSHD (~~~~(~~~~D HDD(~~~ GS?un61– Patent Application Publication Nov. 29, 2012 Sheet 5 of 10 US 2012/030 1950 A1 Eas sa O [] HQ-H0HN H0 N?HH0U0 D?HN sanºººº} Patent Application Publication Nov. 29, 2012 Sheet 6 of 10 US 2012/030 1950 A1 Oº: LIG ~~O?os<L-º,No..99 OO Patent Application Publication Nov. 29, 2012 Sheet 7 of 10 US 2012/030 1950 A1 Patent Application PublicationNO~^O- ~~~~|0/CIZO Nov. 29, 2012 Sheet 8 of 10 US 2012/030 1950 A1 Patent Application Publication Nov. 29, 2012 Sheet 9 of 10 US 2012/030 1950 A1 NO 9?un61– -O~~~~|0/CHZO`so Patent Application Publication Nov. 29, 2012 Sheet 10 of 10 US 2012/030 1950 A1 US 2012/030 1950 A1 Nov. 29, 2012 BIOLOGICAL SYNTHESIS OF 0014 iii) 6-aminohex-2-enoyl-CoA to 6-aminohex-2- DIFUNCTIONAL HEXANES AND PENTANES enoic acid. FROM CARBOHYDRATE FEEDSTOCKS 0015. In other embodiments, the microorganism also includes a nucleic acid encoding a polypeptide that catalyzes RELATED APPLICATIONS a Substrate to product conversion Such as: 0001. This application claims the benefit of U.S. Provi 0016 i) 6-amino-3-hydroxyhexanoyl-CoA to 6-amino sional Application No. 61/209,917, filed Mar. 11, 2009, hexanoyl-CoA or which application is hereby incorporated by reference in its 0017 ii) 6-aminohexanoyl-CoA to 6-aminocaproic acid. entirety. 0018. In a second aspect, the invention provides in part a recombinant microorganism producing 6-aminocaproic acid FIELD OF INVENTION from lysine, and the recombinant microorganism includes at least one nucleic acid encoding a polypeptide that catalyzes a 0002 Aspects of the invention relate to methods for the Substrate to product conversion Such as: production of difunctional alkanes in microorganisms. In par 0019 i) lysine to beta-lysine, ticular, aspects of the invention describe enzymes, and nucleic acids encoding Such enzymes, associated with the 0020 ii) beta-lysine to 3,6-diaminohexanoyl-CoA, difunctional alkane production from carbohydrates feed 0021 iii) 3,6-diaminohexanoyl-CoA to 6-aminohex-2- stocks in microorganisms. More specifically, aspects of the enoyl-CoA, invention describe recombinant microorganisms and meta 0022 iv) 6-aminohex-2-enoyl-CoA to 6-aminohex-2- bolic pathways for the production of adipic acid, aminocap enoic acid, or roic acid, hexamethylenediamine, 6-hydroxyhexanoate and 0023 v) 6-aminohex-2-enoic acid to 6-aminocaproic acid. 6-hydroxyhexanamine and 1.6-hexanediol. 5-aminopen The at least one nucleic acid molecule is generally heterolo tanol. 5-aminopentanoate, 1,5-pentanediol, glutarate and gous to the recombinant microorganism. 5-hydroxypentanoate. 0024. In another aspect, the invention provides a recom binant microorganism producing 6-aminocaproic acid from BACKGROUND lysine, the recombinant microorganism includes at least one nucleic acid encoding a polypeptide that catalyzes a Substrate 0003 Crude oil is the number one starting material for the to product conversion that includes: synthesis of key organic chemicals and polymers. As oil 0025 i) lysine to beta-lysine, becomes increasingly scarce and expensive, biological pro 0026 ii) beta-lysine to 3,6-diaminohexanoyl-CoA, cessing of renewable raw materials in the production of chemicals using live microorganisms or their purified 0027 iii) 3,6-diaminohexanoyl-CoA to 6-aminohex-2- enzymes becomes increasingly interesting. Biological pro enoyl-CoA, cessing, in particular, fermentations have been used for cen 0028 iv) 6-aminohex-2-enoyl-CoA to 6-aminohexanoyl turies to make beverages. Over the last 50 years, microorgan CoA, or isms have been used commercially to make compounds Such 0029 v) 6-aminohexanoyl-CoA to 6-aminocaproic acid. as antibiotics, vitamins, and amino acids. However, the use of 0030. In a further aspect, provided is a recombinant micro microorganisms for making industrial chemicals has been organism producing 6-aminocaproic acid from lysine, where much less widespread. It has been realized only recently that the recombinant microorganism includes at least one nucleic microorganisms may be able to provide an economical route acid encoding a polypeptide that catalyzes a Substrate to to certain compounds that are difficult or costly to make by product conversion Such as: conventional chemical means. 0031 i) lysine to beta-lysine, 0032) ii) beta-lysine to 6-aminohex-2-enoic acid, or SUMMARY OF THE INVENTION 0033 iii) 6-aminohex-2-enoic acid to 6-aminocaproic acid. 0004. In one aspect, the invention provides a microorgan 0034. In certain embodiments, the at least one nucleic acid ism producing 6-aminocaproic acid from lysine, and the molecule is heterologous to the recombinant microorganism. microorganism includes at least one nucleic acid encoding a 0035. In a further aspect, provided is a recombinant micro polypeptide that catalyzes a Substrate to product conversion organism producing 6-aminocaproic acid from lysine, where Such as: the recombinant microorganism includes at least one nucleic 0005 i) lysine to beta-lysine, acid encoding a polypeptide that catalyzes a Substrate to 0006 ii) beta-lysine to 6-amino-3-oxohexanoic acid, 0007 iii) 6-amino-3-oxohexanoic acid to 6-amino-3-hy product conversion Such as: droxyhexanoic acid, 0036) i) lysine to 6-amino-2-oxohexanoic acid, 0008 iv) 6-amino-3-hydroxyhexanoic acid to 6-amino 0037 ii) 6-amino-2-oxohexanoic acid to 6-amino-2-hy hex-2-enoic acid, or droxyhexanoic acid, 0009 v) 6-aminohex-2-enoic acid to 6-aminocaproic acid. 0038 iii) 6-amino-2-hydroxyhexanoic acid to 6-amino 0010. In some embodiments, the nucleic acid molecule is hex-2-enoic acid, or heterologous to the recombinant microorganism. 0039 iv) 6-aminohex-2-enoic acid to 6-aminocaproic 0011. In other embodiments, the microorganism also acid. includes a nucleic acid encoding a polypeptide that catalyzes 0040. In certain embodiments, the recombinant microor a Substrate to product conversion Such as: ganism also includes at least one nucleic acid encoding a 0012 i) 6-amino-3-hydroxyhexanoic acid to 6-amino-3- polypeptide that catalyzes a Substrate to product conversion hydroxyhexanoyl-CoA, Such as: 0013 ii) 6-amino-3-hydroxyhexanoyl-CoA to 6-amino 0041 i) 6-amino-2-hydroxyhexanoic to 6-amino-2-hy hex-2-enoyl-CoA, or droxyhexanoyl-CoA, or US 2012/030 1950 A1 Nov. 29, 2012 0042 ii) 6-amino-2-hydroxyhexanoyl-CoA to 6-amino 0072 vi) 6-amino-2-hydroxyhexanoyl-CoA to 6-amino hex-2-enoyl-CoA. hex-2-enoyl-CoA, 0043. In certain embodiments, the recombinant microor 0073 vii) 6-aminohex-2-enoyl-CoA to 6-aminohexanoyl ganism also includes at least one nucleic acid encoding a CoA, or polypeptide that catalyzes a Substrate to product conversion 0074 viii) 6-aminohexanoyl-CoA to 6-aminocaproic Such as: acid. 0044) i) 6-amino-2-hydroxyhexanoic to 6-amino-2-hy 0075. In another aspect, provided is a recombinant micro droxyhexanoyl-CoA, organism producing 6-aminocaproic acid from L-2,3-dihy 0045 ii) 6-amino-2-hydroxyhexanoyl-CoA to 6-amino drodipicolinate, the recombinant microorganism includes at hexanoyl-CoA, or least one nucleic acid encoding a polypeptide that catalyzes a 0046 iii) 6-aminohexanoyl-CoA to 6-aminocaproic acid. Substrate to product conversion Such as: 0047. In another aspect, the invention provides a recom (0076) i) L-2,3-dihydrodipicolinate to A'-piperideine-2,6- binant microorganism producing 6-aminocaproic acid from dicarboxylate, L-2,3-dihydrodipicolinate, and the recombinant microorgan 10077 ii) A'-piperideine-2,6-dicarboxylate to A'-piperi ism includes at least one nucleic acid encoding a polypeptide deine-2-carboxylate, that catalyzes a substrate to product conversion Such as: I0048 i) L-2,3-dihydrodipicolinate to A'-piperideine-2,6- I0078 iii) A'-piperideine-2-carboxylate to 6-amino-2- dicarboxylate, oxohexanoic acid, I0049) ii) A'-piperideine-2,6-dicarboxylate to A'-piperi 0079 iv) 6-amino-2-oxohexanoic acid to 6-amino-2-hy deine-2-carboxylate, droxyhexanoic acid, I0050) iii) A'-piperideine-2-carboxylate to L-pipecolate, 0080 v) 6-amino-2-hydroxyhexanoic acid to 6-amino-2- 0051 iv) L-pipecolate to 6-amino-2-oxohexanoic acid, hydroxyhexanoyl-CoA, 0052 v) 6-amino-2-oxohexanoic acid to 6-amino-2-hy I0081 vi) 6-amino-2-hydroxyhexanoyl-CoA to 6-amino droxyhexanoic acid, hex-2-enoyl-CoA, 0053 vi) 6-amino-2-hydroxyhexanoic acid to 6-amino I0082 vii) 6-amino-hex-2-enoyl-CoA to 6-amino-hex-2- hex-2-enoic acid, or enoic acid, or 0054 vii) 6-aminohex-2-enoic acid to 6-aminocaproic I0083 viii) 6-amino-hex-2-enoic acid to 6-aminocaproic acid.
Recommended publications
  • Diapositiva 1
    ns 10 A Unmethylated C Methylated ) 8 Normal Normal Tissue Cervix Esophagus 4 cervical esophageal a.u. * *** * *** ( 6 TargetID MAPINFO Position Ca-Ski HeLa SW756 tissue COLO-680N KYSE-180 OACM 5.1C tissue cg04255070 22851591 TSS1500 0.896 0.070 0.082 0.060 0.613 0.622 0.075 0.020 2 (log2) 4 cg01593340 22851587 TSS1500 0.826 0.055 0.051 0.110 0.518 0.518 0.034 0.040 cg16113692 22851502 TSS200 0.964 0.073 0.072 0.030 0.625 0.785 0.018 0.010 2 0 cg26918510 22851422 TSS200 0.985 0.019 0.000 0.000 0.711 0.961 0.010 0.060 expression cg26821579 22851416 TSS200 0.988 0.083 0.058 0.000 0.387 0.955 0.021 0.050 TRMT12 mRNA Expression mRNA TRMT12 0 cg01129966 22851401 TSS200 0.933 0.039 0.077 0.020 0.815 0.963 0.078 0.010 -2 cg25421615 22851383 TSS200 0.958 0.033 0.006 0.000 0.447 0.971 0.037 0.020 mRNA cg17953636 22851321 1stExon 0.816 0.092 0.099 0.080 0.889 0.750 0.136 0.030 -4 Methylated SVIP Unmethylated SVIP relative expression (a.u.) expression relative SVIP D Cervix Esophagus HNC Meth ) HNC Unmeth Cervix Meth 3.0 *** Cervix Unmeth *** Esophagus Meth a.u. ( 2.5 CaCaEsophagus-Ski-Ski Unmeth COLO-680N Haematological Meth TSS B TSS Haematological Unmeth 2.0 -244 bp +104 bp 244 bp +104 bp 1.5 ** * expression -SVIP 1.0 HeLa KYSE-180 HeLa TSS TSS 0.5 -ACTB 244 bp +104 bp - 244 bp +104 bp mRNA 0.0 HeLa SW756 Ca-Ski SW756 SW756 OACM 5.1C TSS KYSE-180 TSS COLO-680NOACM 5.1 C - 244 bp +104 bp 244 bp +104 bp E ) 3.0 * Ca-Ski COLO-680N WT TSS TSS 2.0 a.u.
    [Show full text]
  • Altered Expression and Function of Mitochondrial Я-Oxidation Enzymes
    0031-3998/01/5001-0083 PEDIATRIC RESEARCH Vol. 50, No. 1, 2001 Copyright © 2001 International Pediatric Research Foundation, Inc. Printed in U.S.A. Altered Expression and Function of Mitochondrial ␤-Oxidation Enzymes in Juvenile Intrauterine-Growth-Retarded Rat Skeletal Muscle ROBERT H. LANE, DAVID E. KELLEY, VLADIMIR H. RITOV, ANNA E. TSIRKA, AND ELISA M. GRUETZMACHER Department of Pediatrics, UCLA School of Medicine, Mattel Children’s Hospital at UCLA, Los Angeles, California 90095, U.S.A. [R.H.L.]; and Departments of Internal Medicine [D.E.K., V.H.R.] and Pediatrics [R.H.L., A.E.T., E.M.G.], University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213, U.S.A. ABSTRACT Uteroplacental insufficiency and subsequent intrauterine creased in IUGR skeletal muscle mitochondria, and isocitrate growth retardation (IUGR) affects postnatal metabolism. In ju- dehydrogenase activity was unchanged. Interestingly, skeletal venile rats, IUGR alters skeletal muscle mitochondrial gene muscle triglycerides were significantly increased in IUGR skel- expression and reduces mitochondrial NADϩ/NADH ratios, both etal muscle. We conclude that uteroplacental insufficiency alters of which affect ␤-oxidation flux. We therefore hypothesized that IUGR skeletal muscle mitochondrial lipid metabolism, and we gene expression and function of mitochondrial ␤-oxidation en- speculate that the changes observed in this study play a role in zymes would be altered in juvenile IUGR skeletal muscle. To test the long-term morbidity associated with IUGR. (Pediatr Res 50: this hypothesis, mRNA levels of five key mitochondrial enzymes 83–90, 2001) (carnitine palmitoyltransferase I, trifunctional protein of ␤-oxi- dation, uncoupling protein-3, isocitrate dehydrogenase, and mi- Abbreviations tochondrial malate dehydrogenase) and intramuscular triglycer- CPTI, carnitine palmitoyltransferase I ides were quantified in 21-d-old (preweaning) IUGR and control IUGR, intrauterine growth retardation rat skeletal muscle.
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Role of De Novo Cholesterol Synthesis Enzymes in Cancer Jie Yang1,2, Lihua Wang1,2, Renbing Jia1,2
    Journal of Cancer 2020, Vol. 11 1761 Ivyspring International Publisher Journal of Cancer 2020; 11(7): 1761-1767. doi: 10.7150/jca.38598 Review Role of de novo cholesterol synthesis enzymes in cancer Jie Yang1,2, Lihua Wang1,2, Renbing Jia1,2 1. Department of Ophthalmology, Ninth People’s Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 2. Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China. Corresponding authors: Renbing Jia, [email protected] and Lihua Wang, [email protected]. Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai 200011, China © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.07.21; Accepted: 2019.11.30; Published: 2020.01.17 Abstract Despite extensive research in the cancer field, cancer remains one of the most prevalent diseases. There is an urgent need to identify specific targets that are safe and effective for the treatment of cancer. In recent years, cancer metabolism has come into the spotlight in cancer research. Lipid metabolism, especially cholesterol metabolism, plays a critical role in membrane synthesis as well as lipid signaling in cancer. This review focuses on the contribution of the de novo cholesterol synthesis pathway to tumorigenesis, cancer progression and metastasis. In conclusion, cholesterol metabolism could be an effective target for novel anticancer treatment. Key words: metabolic reprogramming, de novo cholesterol synthesis, cancer progress Introduction Over the past few decades, numerous published that cholesterol plays a critical role in cancer studies have focused on cancer cell metabolism and progression15-19.
    [Show full text]
  • RESEARCH COMMUNICATION HADHA Is a Potential Predictor Of
    HADHA is a Potential Predictor of the Response to Platinum-based Chemotherapy RESEARCH COMMUNICATION HADHA is a Potential Predictor of Response to Platinum-based Chemotherapy for Lung Cancer Taihei Kageyama1, Ryo Nagashio1, 2, Shinichiro Ryuge 3, Toshihide Matsumoto1,5, Akira Iyoda4, Yukitoshi Satoh4, Noriyuki Masuda3, Shi-Xu Jiang5, Makoto Saegusa5, Yuichi Sato1, 2* Abstract To identify a cisplatin resistance predictor to reduce or prevent unnecessary side effects, we firstly established four cisplatin-resistant sub-lines and compared their protein profiles with cisplatin-sensitive parent lung cancer cell lines using two-dimensional gel electrophoresis. Between the cisplatin-resistant and -sensitive cells, a total of 359 protein spots were differently expressed (>1.5 fold), and 217 proteins (83.0%) were identified. We focused on a mitochondrial protein, hydroxyl-coenzyme A dehydrogenase/3-ketoacyl-coenzyme A thiolase/enoyl-coenzyme A hydratase alpha subunit (HADHA), which was increased in all cisplatin-resistant cells. Furthermore, pre- treated biopsy specimens taken from patients who showed resistance to platinum-based treatment showed a significantly higher positive rate for HADHA in all cases (p=0.00367), including non-small cell lung carcinomas (p=0.002), small-cell lung carcinomas (p=0.038), and adenocarcinomas (p=0.008). These results suggest that the expression of HADHA may be a useful marker to predict resistance to platinum-based chemotherapy in patients with lung cancer. Keywords: Cisplatin - HADHA - lung cancer - two-dimensional gel electrophoresis Asian Pacific J Cancer Prev, 12, 3457-3463 Introduction cisplatin resistance rose due to a decrease of blood flow in the tumor and increased DNA repair (Stewart, 2007), Lung cancer is the leading cause of cancer-related the mechanisms underlying cisplatin resistance have not death in the world, and the five-year overall survival rate yet been clarified, and an effective cisplatin resistance is still below 16% (Jemal et al., 2009).
    [Show full text]
  • (LCHAD) Deficiency / Mitochondrial Trifunctional Protein (MTF) Deficiency
    Long chain acyl-CoA dehydrogenase (LCHAD) deficiency / Mitochondrial trifunctional protein (MTF) deficiency Contact details Introduction Regional Genetics Service Long chain acyl-CoA dehydrogenase (LCHAD) deficiency / mitochondrial trifunctional Levels 4-6, Barclay House protein (MTF) deficiency is an autosomal recessive disorder of mitochondrial beta- 37 Queen Square oxidation of fatty acids. The mitochondrial trifunctional protein is composed of 4 alpha London, WC1N 3BH and 4 beta subunits, which are encoded by the HADHA and HADHB genes, respectively. It is characterized by early-onset cardiomyopathy, hypoglycemia, T +44 (0) 20 7762 6888 neuropathy, and pigmentary retinopathy, and sudden death. There is also an infantile F +44 (0) 20 7813 8578 onset form with a hepatic Reye-like syndrome, and a late-adolescent onset form with primarily a skeletal myopathy. Tandem mass spectrometry of organic acids in urine, Samples required and carnitines in blood spots, allows the diagnosis to be unequivocally determined. An 5ml venous blood in plastic EDTA additional clinical complication can occur in the pregnant mothers of affected fetuses; bottles (>1ml from neonates) they may experience maternal acute fatty liver of pregnancy (AFLP) syndrome or Prenatal testing must be arranged hypertension/haemolysis, elevated liver enzymes and low platelets (HELLP) in advance, through a Clinical syndrome. Genetics department if possible. The genes encoding the HADHA and HADHB subunits are located on chromosome Amniotic fluid or CV samples 2p23.3. The pathogenic
    [Show full text]
  • The Journal of Nutrition 1968 Volume 95 No.1
    THE JOURNAL OF NUTRITION* OFFICIAL ORGAN OF THE AMERICAN INSTITUTE OF NUTRITION R i c h a r d H . B a r n e s , Editor Graduate School of Nutrition Cornell University, Savage Hall Ithaca, New York H a r o l d H . W i l l i a m s E. N e i g e T o d h u n t e r Associate Editor Biographical Editor EDITORIAL BOARD S a m u e l J . F o m o n W i l l i a m N. P e a r s o n M . K . H o r w i t t P a u l M . N e w b e r n e F. H. K r a t z e r K e n d a l l W . K i n g B o y d L. O’D e l l H. N. M u n r o H e r b e r t P . S a r e t t H. E. S a u b e r l i c h D o r i s H o w e s C a l l o w a y G e o r g e G . G r a h a m R o s l y n B . A l f i n -S l a t e r J . M . B e l l W i l l i a m G . H o e k s t r a G e o r g e H .
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Anamika Kothari Quang Ong Ron Caspi An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Peter D Karp Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Csac1394711Cyc: Candidatus Saccharibacteria bacterium RAAC3_TM7_1 Cellular Overview Connections between pathways are omitted for legibility. Tim Holland TM7C00001G0420 TM7C00001G0109 TM7C00001G0953 TM7C00001G0666 TM7C00001G0203 TM7C00001G0886 TM7C00001G0113 TM7C00001G0247 TM7C00001G0735 TM7C00001G0001 TM7C00001G0509 TM7C00001G0264 TM7C00001G0176 TM7C00001G0342 TM7C00001G0055 TM7C00001G0120 TM7C00001G0642 TM7C00001G0837 TM7C00001G0101 TM7C00001G0559 TM7C00001G0810 TM7C00001G0656 TM7C00001G0180 TM7C00001G0742 TM7C00001G0128 TM7C00001G0831 TM7C00001G0517 TM7C00001G0238 TM7C00001G0079 TM7C00001G0111 TM7C00001G0961 TM7C00001G0743 TM7C00001G0893 TM7C00001G0630 TM7C00001G0360 TM7C00001G0616 TM7C00001G0162 TM7C00001G0006 TM7C00001G0365 TM7C00001G0596 TM7C00001G0141 TM7C00001G0689 TM7C00001G0273 TM7C00001G0126 TM7C00001G0717 TM7C00001G0110 TM7C00001G0278 TM7C00001G0734 TM7C00001G0444 TM7C00001G0019 TM7C00001G0381 TM7C00001G0874 TM7C00001G0318 TM7C00001G0451 TM7C00001G0306 TM7C00001G0928 TM7C00001G0622 TM7C00001G0150 TM7C00001G0439 TM7C00001G0233 TM7C00001G0462 TM7C00001G0421 TM7C00001G0220 TM7C00001G0276 TM7C00001G0054 TM7C00001G0419 TM7C00001G0252 TM7C00001G0592 TM7C00001G0628 TM7C00001G0200 TM7C00001G0709 TM7C00001G0025 TM7C00001G0846 TM7C00001G0163 TM7C00001G0142 TM7C00001G0895 TM7C00001G0930 Detoxification Carbohydrate Biosynthesis DNA combined with a 2'- di-trans,octa-cis a 2'- Amino Acid Degradation an L-methionyl- TM7C00001G0190 superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E.
    [Show full text]
  • Distribution of Membrane-Bound Monoamine Oxidase in Bacteria
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Oct. 1979, p. 565-569 Vol. 38, No. 4 0099-2240/79/10-0565/05$02.00/0 Distribution of Membrane-Bound Monoamine Oxidase in Bacteria YOSHIKATSU MUROOKA,* NOBUYUKI DOI, AND TOKUYA HARADA The Institute ofScientific and Industrial Research, Osaka University, Yamadakami, Suita, Osaka (565), Japan Received for publication 22 March 1979 The distribution of membrane-bound monoamine oxidase in 30 strains of various bacteria was studied. Monoamine oxidase was determined by using an ammonia-selective electrode; analyses were sensitive and easy to perform. The enzyme was found in some strains of the family Enterobacteriaceae, such as Klebsiella, Enterobacter, Escherichia, Salmonella, Serratia, and Proteus. Among strains of other families of bacteria tested, only Pseudomonas aeruginosa IFO 3901, Micrococcus luteus IFO 12708, and Brevibacterium ammoniagenes IAM 1641 had monoamine oxidase activity. In all of these bacteria except B. ammoniagenes, monoamine oxidase was induced by tyramine and was highly specific for tyramine, octopamine, dopamine, and norepinephrine. The enzyme in two strains oxidized histamine or benzylamine. Correlations between the distri- butions of membrane-bound monoamine oxidase and arylsulfatase synthesized in the presence of tyramine were discussed. Monoamine oxidase catalyzes the oxidative monoamine oxidase had broad substrate speci- deamination of monoamines by the following ficity, the enzyme in bacteria can be assayed reaction: R-CH2NH2 + 02+ H20 -+ R-CHO + conveniently by potentiometric measurement of NH3 + H202. ammonia formation with an ammonia-selective The enzyme usually has a broad substrate electrode by the method used for the brain en- specificity in animals and plays a major role in zyme by Meyerson et al.
    [Show full text]
  • Phosphine Stabilizers for Oxidoreductase Enzymes
    Europäisches Patentamt *EP001181356B1* (19) European Patent Office Office européen des brevets (11) EP 1 181 356 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12N 9/02, C12P 7/00, of the grant of the patent: C12P 13/02, C12P 1/00 07.12.2005 Bulletin 2005/49 (86) International application number: (21) Application number: 00917839.3 PCT/US2000/006300 (22) Date of filing: 10.03.2000 (87) International publication number: WO 2000/053731 (14.09.2000 Gazette 2000/37) (54) Phosphine stabilizers for oxidoreductase enzymes Phosphine Stabilisatoren für oxidoreduktase Enzymen Phosphines stabilisateurs des enzymes ayant une activité comme oxidoreducase (84) Designated Contracting States: (56) References cited: DE FR GB NL US-A- 5 777 008 (30) Priority: 11.03.1999 US 123833 P • ABRIL O ET AL.: "Hybrid organometallic/enzymatic catalyst systems: (43) Date of publication of application: Regeneration of NADH using dihydrogen" 27.02.2002 Bulletin 2002/09 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 104, no. 6, 1982, pages 1552-1554, (60) Divisional application: XP002148357 DC US cited in the application 05021016.0 • BHADURI S ET AL: "Coupling of catalysis by carbonyl clusters and dehydrigenases: (73) Proprietor: EASTMAN CHEMICAL COMPANY Redution of pyruvate to L-lactate by dihydrogen" Kingsport, TN 37660 (US) JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 120, no. 49, 11 October 1998 (72) Inventors: (1998-10-11), pages 12127-12128, XP002148358 • HEMBRE, Robert, T. DC US cited in the application Johnson City, TN 37601 (US) • OTSUKA K: "Regeneration of NADH and ketone • WAGENKNECHT, Paul, S. hydrogenation by hydrogen with the San Jose, CA 95129 (US) combination of hydrogenase and alcohol • PENNEY, Jonathan, M.
    [Show full text]
  • H-Dependent Enzymes for Reductive Amination
    NAD(P)H-Dependent Enzymes for Reductive Amination: Active Site Description and Carbonyl-Containing Compound Spectrum Laurine Ducrot, Megan Bennett, Gideon Grogan, Carine Vergne-Vaxelaire To cite this version: Laurine Ducrot, Megan Bennett, Gideon Grogan, Carine Vergne-Vaxelaire. NAD(P)H-Dependent En- zymes for Reductive Amination: Active Site Description and Carbonyl-Containing Compound Spec- trum. Advanced Synthesis and Catalysis, Wiley-VCH Verlag, In press, 10.1002/adsc.202000870. hal-02945508 HAL Id: hal-02945508 https://hal.archives-ouvertes.fr/hal-02945508 Submitted on 22 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW DOI: 10.1002/adsc.201((will be filled in by the editorial staff)) NAD(P)H-Dependent Enzymes for Reductive Amination: Active Site Description and Carbonyl-Containing Compound Spectrum. Laurine Ducrot,a Megan Bennett,b Gideon Groganb and Carine Vergne- Vaxelairea* a Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris- Saclay, 91057 Evry, France b York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK. Received: ((will be filled in by the editorial staff)) Abstract. The biocatalytic asymmetric synthesis of amines In this review we summarize the development of such from carbonyl compounds and amine precursors presents an enzymes from the engineering of amino acid dehydrogenases important advance in sustainable synthetic chemistry.
    [Show full text]
  • Product Information Sheet for NR-8066
    Product Information Sheet for NR-8066 Francisella tularensis subsp. novicida, “Two-Allele” Transposon Mutant Library, Growth Conditions: Media: Plate 32 (tnfn1_pw060510p04) Tryptic Soy Agar containing 0.1% L-cysteine and 10 µg/mL kanamycin Catalog No. NR-8066 Incubation: Temperature: 37°C Atmosphere: Aerobic with 5% CO2 For research use only. Not for human use. Propagation: 1. Scrape top of frozen well with a pipette tip and streak Contributor: onto agar plate. Colin Manoil, Ph.D., Professor of Genome Sciences, 2. Incubate the plate at 37°C for 24–48 hours. University of Washington, Seattle, Washington Citation: Product Description: Acknowledgment for publications should read “The following 1 A comprehensive 16508-member transposon mutant library reagent was obtained through the NIH Biodefense and of sequence-defined transposon insertion mutants of Emerging Infections Research Resources Repository, NIAID, Francisella tularensis subsp. novicida, strain U112 was NIH: Francisella tularensis subsp. novicida, “Two-Allele” prepared to allow the systematic identification of virulence Transposon Mutant Library, Plate 32 (tnfn1_pw060510p04), determinants and other factors associated with Francisella NR-8066.” pathogenesis. Genes refractory to insertional inactivation helped define the genes essential for viability of the Biosafety Level: 2 organism. Appropriate safety procedures should always be used with this material. Laboratory safety is discussed in the following To facilitate genome-scale screening using the mutant publication: U.S. Department of Health and Human Services, collection, a “two-allele” single-colony purified sublibrary, Public Health Service, Centers for Disease Control and made up of approximately two purified mutants per gene, Prevention, and National Institutes of Health. Biosafety in was assembled.
    [Show full text]