Altered Expression and Function of Mitochondrial Я-Oxidation Enzymes

Total Page:16

File Type:pdf, Size:1020Kb

Altered Expression and Function of Mitochondrial Я-Oxidation Enzymes 0031-3998/01/5001-0083 PEDIATRIC RESEARCH Vol. 50, No. 1, 2001 Copyright © 2001 International Pediatric Research Foundation, Inc. Printed in U.S.A. Altered Expression and Function of Mitochondrial ␤-Oxidation Enzymes in Juvenile Intrauterine-Growth-Retarded Rat Skeletal Muscle ROBERT H. LANE, DAVID E. KELLEY, VLADIMIR H. RITOV, ANNA E. TSIRKA, AND ELISA M. GRUETZMACHER Department of Pediatrics, UCLA School of Medicine, Mattel Children’s Hospital at UCLA, Los Angeles, California 90095, U.S.A. [R.H.L.]; and Departments of Internal Medicine [D.E.K., V.H.R.] and Pediatrics [R.H.L., A.E.T., E.M.G.], University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213, U.S.A. ABSTRACT Uteroplacental insufficiency and subsequent intrauterine creased in IUGR skeletal muscle mitochondria, and isocitrate growth retardation (IUGR) affects postnatal metabolism. In ju- dehydrogenase activity was unchanged. Interestingly, skeletal venile rats, IUGR alters skeletal muscle mitochondrial gene muscle triglycerides were significantly increased in IUGR skel- expression and reduces mitochondrial NADϩ/NADH ratios, both etal muscle. We conclude that uteroplacental insufficiency alters of which affect ␤-oxidation flux. We therefore hypothesized that IUGR skeletal muscle mitochondrial lipid metabolism, and we gene expression and function of mitochondrial ␤-oxidation en- speculate that the changes observed in this study play a role in zymes would be altered in juvenile IUGR skeletal muscle. To test the long-term morbidity associated with IUGR. (Pediatr Res 50: this hypothesis, mRNA levels of five key mitochondrial enzymes 83–90, 2001) (carnitine palmitoyltransferase I, trifunctional protein of ␤-oxi- dation, uncoupling protein-3, isocitrate dehydrogenase, and mi- Abbreviations tochondrial malate dehydrogenase) and intramuscular triglycer- CPTI, carnitine palmitoyltransferase I ides were quantified in 21-d-old (preweaning) IUGR and control IUGR, intrauterine growth retardation rat skeletal muscle. In isolated skeletal muscle mitochondria, AGA, appropriate for gestational age enzyme function of the trifunctional protein of ␤-oxidation and ICD, isocitrate dehydrogenase isocitrate dehydrogenase were measured because both enzymes MMD, mitochondrial malate dehydrogenase compete for mitochondrial NADϩ. Carnitine palmitoyltrans- ND-4L, NADH-ubiquinone oxidoreductase subunit 4L ferase I, the trifunctional protein of ␤-oxidation, and uncoupling HADH, trifunctional protein of ␤-oxidation protein 3 mRNA levels were significantly increased in IUGR HADHA, trifunctional protein of ␤-oxidation ␣ subunit skeletal muscle, whereas mRNA levels of isocitrate dehydroge- UCP3, uncoupling protein 3 nase and mitochondrial malate dehydrogenase were unchanged. UCP3l, uncoupling protein 3—long isoform Similarly, trifunctional protein of ␤-oxidation activity was in- UCP3s, uncoupling protein 3—short isoform Uteroplacental insufficiency causes IUGR and is causally Several investigators have demonstrated that IUGR infants related to the development of multiple adult morbidities in- expend more energy and consume more oxygen than AGA cluding insulin resistance, hypertension, coronary heart dis- infants (2–6); moreover, Bohler et al. (3) found a significant ease, and dyslipidemia (1). Although the effects of these patho- decrease in the respiratory quotient of IUGR infants, but not physiologies are most critically felt during adulthood, evidence AGA infants, over the first 8 wk of life. Similarly, Chessex et exists that metabolism may already be altered in IUGR infants. al. (6) found increased lipid oxidation in 3- to 4-wk-old IUGR infants. The molecular mechanisms of how the transient in utero event of uteroplacental insufficiency affects IUGR post- Received September 18, 2000; accepted February 23, 2001. Correspondence: Robert Lane, M.D., Mattel Children’s Hospital @ UCLA, B2-375 natal metabolism are unknown. MDCC, 10833 Le Conte Avenue, Los Angeles, CA, 90095, U.S.A.; e-mail: Skeletal muscle mitochondrial metabolism contributes sig- [email protected] nificantly to energy expenditure, oxygen consumption, and This research was supported, in part, by National Institute of Child Health and Human Development grants P30HD-28836-05 (R.H.L.), 1KO8BD01225-01 (R.H.L.), and 5P30- lipid oxidation. We have previously demonstrated that utero- DK46204-05 (R.H.L.), and the Magee-Womens Hospital Twenty-Five Club. placental insufficiency leads to altered skeletal muscle mito- 83 84 LANE ET AL. chondrial gene expression and metabolism in juvenile IUGR counterparts (7). Fasting serum triglyceride levels in 21-d-old rats (7). IUGR rat skeletal muscle is characterized by reduced (preweaning) control and IUGR rats are 90 Ϯ 10 and 125 Ϯ 24 mitochondrial NADϩ/NADH ratios and decreased ND-4L mg/dL, respectively (19). mRNA levels (7). ND-4L is a necessary component of the We quantified mRNA levels of CPTI (muscle isoform), mitochondrial respiratory chain complex I. These finding are HADHA, MMD, ICD, UCP3 in whole skeletal muscle, and intriguing because NADϩ is believed to be rapidly recycled enzyme function of HADH and ICD in skeletal muscle mito- between complex I of the respiratory chain and the mitochon- chondria from 21-d-old sham-operated control and IUGR rats drial HADH (Fig. 1) (8). (preweaning). We also measured skeletal muscle triglyceride HADH is an inner mitochondrial membrane protein that levels in both IUGR and sham-operated animals because al- contributes three of the four reactions necessary for mitochon- tered intramuscular triglycerides have been associated with drial long-chain fatty acid ␤-oxidation, including the reduction dysregulation of skeletal muscle mitochondrial metabolism of NADϩ to NADH (9). HADH competes directly for NADϩ (20). with the Krebs cycle dehydrogenases ICD and MMD. As a result, this intramitochondrial competition is a potential point METHODS of flux control connecting the Krebs cycle and ␤-oxidation, which may be particularly important in skeletal muscle (10, Animals. All procedures were approved by the Institutional 11). Animal Care and Use Committee of the Magee-Womens Re- CPTI and UCP3 also affect mitochondrial ␤-oxidation flux search Institute, Pittsburgh, PA, U.S.A. (12, 13). CPTI catalyzes the exchange of acyl-carnitines across Timed pregnant Sprague Dawley rats (Taconic Farms Inc., the mitochondrial outer membrane. UCP3 catalyzes mitochon- Germantown, NY, U.S.A.) were housed in individual cages drial proton leak and is preferentially expressed in skeletal and were exposed to 12-h light-dark cycles. All animals were muscle (14). Increased substrate flux through skeletal muscle fed routine Purina rat chow ad libitum. The animals were mitochondrial ␤-oxidation is associated with increased UCP3 allowed at least2dofacclimatization before experimental mRNA levels (15). handling. We therefore hypothesized that induction of IUGR in rats by On d 19 of gestation (term is 21.5 d), the maternal rats were maternal uteroplacental insufficiency would increase gene ex- anesthetized with intraperitoneal xylazine (8 mg/kg) and ket- pression and function of HADH as well as gene expression of amine (40 mg/kg), and both inferior uterine arteries were CPTI and UCP3, while not affecting the Krebs cycle dehydro- ligated (IUGR) (n ϭ 12 litters). Sham surgery was performed genases ICD and MMD. To test this hypothesis, we used a upon control animals who underwent identical anesthetic and well-characterized rat model of uteroplacental insufficiency surgical procedures except for the uterine artery ligation (n ϭ and IUGR that is induced by ligating both uterine arteries of 12 litters). Maternal rats recovered within a few hours and had the pregnant rat. Fetal and neonatal rats in this model are ad libitum access to food and water. The rats were allowed to significantly lighter than controls that undergo identical anes- delivery spontaneously, and the litter size was randomly culled thesia and sham surgery, and litter size does not differ between to six at birth in both control and IUGR litters by veterinary control and IUGR groups (7, 16). Like the human, the IUGR staff who were blinded to the group and the purpose of the rat fetus is characterized by hypoxia, acidosis, hypoglycemia, study. Maternal rats were allowed ad libitum access to food and hypoinsulinemia (16, 17). These values normalize in the and water, and pups remained with their dams until d 21 of life. perinatal period (18). At d 21 of life, both male and female To perform studies upon d 21 skeletal muscle, pups were IUGR rats weigh significantly less than sham-operated control separated from their dams for 4 h (to minimize individual Figure 1. Illustration of mitochondria and enzymes significant in this study. In bold are the enzymes whose mRNA and/or enzyme function were measured in d 21 sham-operated control or IUGR skeletal muscle. CPTI and HADH are enzymes that play significant roles in determining the rate of ␤-oxidation; ICD and MMD are Krebs cycle NADϩ dehydrogenases that compete with HADH for NADϩ; UCP3 is the skeletal muscle UCP isoform whose expression correlates with fat metabolism and proton leak. I, II, III, and IV identify complexes I, II, III, and IV, respectively. Between complexes I and II, complexes III and IV, and after complex IV are representations of F0 F1 ATP synthase. F1 ATP synthase production of ATP is powered by proton flow through the F0 channel. IUGR ALTERS SKELETAL MUSCLE ␤-OXIDATION 85 hormonal variations associated with feeding) and sedated with retinal RNA. Reactions
Recommended publications
  • Diapositiva 1
    ns 10 A Unmethylated C Methylated ) 8 Normal Normal Tissue Cervix Esophagus 4 cervical esophageal a.u. * *** * *** ( 6 TargetID MAPINFO Position Ca-Ski HeLa SW756 tissue COLO-680N KYSE-180 OACM 5.1C tissue cg04255070 22851591 TSS1500 0.896 0.070 0.082 0.060 0.613 0.622 0.075 0.020 2 (log2) 4 cg01593340 22851587 TSS1500 0.826 0.055 0.051 0.110 0.518 0.518 0.034 0.040 cg16113692 22851502 TSS200 0.964 0.073 0.072 0.030 0.625 0.785 0.018 0.010 2 0 cg26918510 22851422 TSS200 0.985 0.019 0.000 0.000 0.711 0.961 0.010 0.060 expression cg26821579 22851416 TSS200 0.988 0.083 0.058 0.000 0.387 0.955 0.021 0.050 TRMT12 mRNA Expression mRNA TRMT12 0 cg01129966 22851401 TSS200 0.933 0.039 0.077 0.020 0.815 0.963 0.078 0.010 -2 cg25421615 22851383 TSS200 0.958 0.033 0.006 0.000 0.447 0.971 0.037 0.020 mRNA cg17953636 22851321 1stExon 0.816 0.092 0.099 0.080 0.889 0.750 0.136 0.030 -4 Methylated SVIP Unmethylated SVIP relative expression (a.u.) expression relative SVIP D Cervix Esophagus HNC Meth ) HNC Unmeth Cervix Meth 3.0 *** Cervix Unmeth *** Esophagus Meth a.u. ( 2.5 CaCaEsophagus-Ski-Ski Unmeth COLO-680N Haematological Meth TSS B TSS Haematological Unmeth 2.0 -244 bp +104 bp 244 bp +104 bp 1.5 ** * expression -SVIP 1.0 HeLa KYSE-180 HeLa TSS TSS 0.5 -ACTB 244 bp +104 bp - 244 bp +104 bp mRNA 0.0 HeLa SW756 Ca-Ski SW756 SW756 OACM 5.1C TSS KYSE-180 TSS COLO-680NOACM 5.1 C - 244 bp +104 bp 244 bp +104 bp E ) 3.0 * Ca-Ski COLO-680N WT TSS TSS 2.0 a.u.
    [Show full text]
  • Mt-Atp8 Gene in the Conplastic Mouse Strain C57BL/6J-Mtfvb/NJ on the Mitochondrial Function and Consequent Alterations to Metabolic and Immunological Phenotypes
    From the Lübeck Institute of Experimental Dermatology of the University of Lübeck Director: Prof. Dr. Saleh M. Ibrahim Interplay of mtDNA, metabolism and microbiota in the pathogenesis of AIBD Dissertation for Fulfillment of Requirements for the Doctoral Degree of the University of Lübeck from the Department of Natural Sciences Submitted by Paul Schilf from Rostock Lübeck, 2016 First referee: Prof. Dr. Saleh M. Ibrahim Second referee: Prof. Dr. Stephan Anemüller Chairman: Prof. Dr. Rainer Duden Date of oral examination: 30.03.2017 Approved for printing: Lübeck, 06.04.2017 Ich versichere, dass ich die Dissertation ohne fremde Hilfe angefertigt und keine anderen als die angegebenen Hilfsmittel verwendet habe. Weder vorher noch gleichzeitig habe ich andernorts einen Zulassungsantrag gestellt oder diese Dissertation vorgelegt. ABSTRACT Mitochondria are critical in the regulation of cellular metabolism and influence signaling processes and inflammatory responses. Mitochondrial DNA mutations and mitochondrial dysfunction are known to cause a wide range of pathological conditions and are associated with various immune diseases. The findings in this work describe the effect of a mutation in the mitochondrially encoded mt-Atp8 gene in the conplastic mouse strain C57BL/6J-mtFVB/NJ on the mitochondrial function and consequent alterations to metabolic and immunological phenotypes. This work provides insights into the mutation-induced cellular adaptations that influence the inflammatory milieu and shape pathological processes, in particular focusing on autoimmune bullous diseases, which have recently been reported to be associated with mtDNA polymorphisms in the human MT-ATP8 gene. The mt-Atp8 mutation diminishes the assembly of the ATP synthase complex into multimers and decreases mitochondrial respiration, affects generation of reactive oxygen species thus leading to a shift in the metabolic balance and reduction in the energy state of the cell as indicated by the ratio ATP to ADP.
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Nutritional Vitamin B6 Deficiency Impairs Lipid Me Tabolism and Leads
    J Nutr Sci Vitaminol, 47, 306-310, 2001 Xanthurenic Acid Inhibits Metal Ion-Induced Lipid Peroxidation and Protects NADP-Isocitrate Dehydrogenase from Oxidative Inactivation Keiko MURAKAMI,Masae ITO and Masataka YOSHINO* Department of Biochemistry, Aichi Medical University School of Medicine,Nagakute, Aichi 480-1195, Japan (ReceivedJanuary 26, 2001) Summary Vitamin B6 deficiency increases the lipid peroxidation and the synthesis of xanthurenic acid from tryptophan. Antioxidant properties of xanthurenic acid were exam ined in relation to the coordination of transition metals. Xanthurenic acid inhibited the for mation of thiobarbituric acid-reactive substances as a marker of iron-mediated lipid peroxi dation and copper-dependent oxidation of low density lipoprotein. NADP-isocitrate dehydro genase (EC 1.1.1.42), a principal NADPH-generating enzyme for the antioxidant defense system, was inactivated by reduced iron and copper, and xanthurenic acid protected the en zyme from the Fe2+-mediated inactivation. Xanthurenic acid may participate in the en hanced regeneration of reduced glutathione by stimulating the NADPH supply. Xanthurenic acid further enhanced the autooxidation of Fe2+ ion. Other tryptophan metabolites such as kynurenic acid and various quinoline compounds did not inhibit the lipid peroxidation and the inactivation of NADP-isocitrate dehydrogenase, and they showed little or no effect on the Fe2+ autooxidation. The antioxidant properties of xanthurenic acid are related to the metal-chelating activity and probably to the enhanced oxidation of reduced transition met als as a prooxidant, and this action may be due to the electron deficient nature of this com pound. Key Words xanthurenic acid, antioxidant, LDL, NADP-isocitrate dehydrogenase, reactive oxygen species Nutritional vitamin B6 deficiency impairs lipid me Lipid peroxidation.
    [Show full text]
  • ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Isocitrate Dehydrogenase Activity Assay Kit (MAK062)
    Isocitrate Dehydrogenase Activity Assay Kit Catalog Number MAK062 Storage Temperature –20 C TECHNICAL BULLETIN Product Description Developer 1 vl Isocitrate dehydrogenase (IDH) catalyzes the Catalog Number MAK062E conversion of isocitrate to -ketoglutarate. In eukaryotes, there are three isozymes of IDH, the IDH Positive Control (NADP+) 20 L mitochondrial IDH2 and IDH3, and the cytoplasmic/ Catalog Number MAK062F peroxisomal IDH1. All three IDH family members require the presence of a divalent cation (Mg2+ or Mn2+) NADH Standard, 0.5 mole 1 vl and either the electron-accepting cofactor NADP+ (IDH1 Catalog Number MAK062G and IDH2) or NAD+ (IDH3) for their enzymatic activity. IDH1 and IDH2 mutations resulting in neomorphic Reagents and Equipment Required but Not enzymatic activity are found in certain cancers such as Provided. glioblastoma, acute myeloid leukemia, and colon 96 well flat-bottom plate – It is recommended to use cancer. This neoactivity shows a change in the clear plates for colorimetric assays. substrate specificity resulting in the conversion of Spectrophotometric multiwell plate reader -ketoglutarate to 2-hydroxyglutarate. Mutations in IDH family members are also associated with Ollier disease Precautions and Disclaimer and Maffucci syndrome. This product is for R&D use only, not for drug, household, or other uses. Please consult the Material The Isocitrate Dehydrogenase Activity Assay kit Safety Data Sheet for information regarding hazards provides a simple and direct procedure for measuring and safe handling practices. + + + NADP -dependent, NAD -dependent, or both NADP + and NAD -dependent IDH activity in a variety of Preparation Instructions samples. IDH activity is determined using isocitrate as Briefly centrifuge vials before opening.
    [Show full text]
  • The Emerging Neuroprotective Role of Mitochondrial Uncoupling Protein
    Review Article • DOI: 10.1515/tnsci-2015-0019 • Translational Neuroscience • 6 • 2015 • 179-186 Translational Neuroscience THE EMERGING NEUROPROTECTIVE ROLE Kieran P. Normoyle1,2,3, OF MITOCHONDRIAL Miri Kim2,4, Arash Farahvar5, UNCOUPLING PROTEIN-2 Daniel Llano1,6,7, Kevin Jackson7,8, IN TRAUMATIC BRAIN INJURY Huan Wang6,8* Abstract 1Department of Molecular and Integrative Traumatic brain injury (TBI) is a multifaceted disease with intrinsically complex heterogeneity and remains a Physiology, University of Illinois at Urbana- Champaign, Urbana, IL, USA significant clinical challenge to manage. TBI model systems have demonstrated many mechanisms that contribute 2College of Medicine, University of Illinois at to brain parenchymal cell death, including glutamate and calcium toxicity, oxidative stress, inflammation, and Urbana-Champaign, Urbana, IL, USA mitochondrial dysfunction. Mitochondria are critically regulated by uncoupling proteins (UCP), which allow 3Department of Child Neurology, Massachusetts protons to leak back into the matrix and thus reduce the mitochondrial membrane potential by dissipating the General Hospital, Boston, MA, USA 4Department of Cell and Developmental Biology, proton motive force. This uncoupling of oxidative phosphorylation from adenosine triphosphate (ATP) synthesis University of Illinois at Urbana-Champaign, is potentially critical for protection against cellular injury as a result of TBI and stroke. A greater understanding Urbana, IL, USA of the underlying mechanism or mechanisms by which uncoupling protein-2
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Deficiency of Skeletal Muscle Succinate Dehydrogenase and Aconitase
    Deficiency of skeletal muscle succinate dehydrogenase and aconitase. Pathophysiology of exercise in a novel human muscle oxidative defect. R G Haller, … , K Ayyad, C G Blomqvist J Clin Invest. 1991;88(4):1197-1206. https://doi.org/10.1172/JCI115422. Research Article We evaluated a 22-yr-old Swedish man with lifelong exercise intolerance marked by premature exertional muscle fatigue, dyspnea, and cardiac palpitations with superimposed episodes lasting days to weeks of increased muscle fatigability and weakness associated with painful muscle swelling and pigmenturia. Cycle exercise testing revealed low maximal oxygen uptake (12 ml/min per kg; healthy sedentary men = 39 +/- 5) with exaggerated increases in venous lactate and pyruvate in relation to oxygen uptake (VO2) but low lactate/pyruvate ratios in maximal exercise. The severe oxidative limitation was characterized by impaired muscle oxygen extraction indicated by subnormal systemic arteriovenous oxygen difference (a- v O2 diff) in maximal exercise (patient = 4.0 ml/dl, normal men = 16.7 +/- 2.1) despite normal oxygen carrying capacity and Hgb-O2 P50. In contrast maximal oxygen delivery (cardiac output, Q) was high compared to sedentary healthy men (Qmax, patient = 303 ml/min per kg, normal men 238 +/- 36) and the slope of increase in Q relative to VO2 (i.e., delta Q/delta VO2) from rest to exercise was exaggerated (delta Q/delta VO2, patient = 29, normal men = 4.7 +/- 0.6) indicating uncoupling of the normal approximately 1:1 relationship between oxygen delivery and utilization in dynamic exercise. Studies of isolated skeletal muscle mitochondria in our patient revealed markedly impaired succinate oxidation with normal glutamate oxidation implying a metabolic defect at […] Find the latest version: https://jci.me/115422/pdf Deficiency of Skeletal Muscle Succinate Dehydrogenase and Aconitase Pathophysiology of Exercise in a Novel Human Muscle Oxidative Defect Ronald G.
    [Show full text]
  • Role of De Novo Cholesterol Synthesis Enzymes in Cancer Jie Yang1,2, Lihua Wang1,2, Renbing Jia1,2
    Journal of Cancer 2020, Vol. 11 1761 Ivyspring International Publisher Journal of Cancer 2020; 11(7): 1761-1767. doi: 10.7150/jca.38598 Review Role of de novo cholesterol synthesis enzymes in cancer Jie Yang1,2, Lihua Wang1,2, Renbing Jia1,2 1. Department of Ophthalmology, Ninth People’s Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 2. Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China. Corresponding authors: Renbing Jia, [email protected] and Lihua Wang, [email protected]. Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai 200011, China © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.07.21; Accepted: 2019.11.30; Published: 2020.01.17 Abstract Despite extensive research in the cancer field, cancer remains one of the most prevalent diseases. There is an urgent need to identify specific targets that are safe and effective for the treatment of cancer. In recent years, cancer metabolism has come into the spotlight in cancer research. Lipid metabolism, especially cholesterol metabolism, plays a critical role in membrane synthesis as well as lipid signaling in cancer. This review focuses on the contribution of the de novo cholesterol synthesis pathway to tumorigenesis, cancer progression and metastasis. In conclusion, cholesterol metabolism could be an effective target for novel anticancer treatment. Key words: metabolic reprogramming, de novo cholesterol synthesis, cancer progress Introduction Over the past few decades, numerous published that cholesterol plays a critical role in cancer studies have focused on cancer cell metabolism and progression15-19.
    [Show full text]
  • Isocitrate Dehydrogenase 1 (NADP+) (I5036)
    Isocitrate Dehydrogenase 1 (NADP+), human recombinant, expressed in Escherichia coli Catalog Number I5036 Storage Temperature –20 °C CAS RN 9028-48-2 IDH1 and IDH2 have frequent genetic alterations in EC 1.1.1.42 acute myeloid leukemia4 and better understanding of Systematic name: Isocitrate:NADP+ oxidoreductase these mutations may lead to an improvement of (decarboxylating) individual cancer risk assessment.6 In addition other studies have shown loss of IDH1 in bladder cancer Synonyms: IDH1, cytosolic NADP(+)-dependent patients during tumor development suggesting this may isocitrate dehydrogenase, isocitrate:NADP+ be involved in tumor progression and metastasis.7 oxidoreductase (decarboxylating), Isocitric Dehydrogenase, ICD1, PICD, IDPC, ICDC, This product is lyophilized from a solution containing oxalosuccinate decarboxylase Tris-HCl, pH 8.0, with trehalose, ammonium sulfate, and DTT. Product Description Isocitrate dehydrogenase (NADP+) [EC 1.1.1.42] is a Purity: ³90% (SDS-PAGE) Krebs cycle enzyme, which converts isocitrate to a-ketoglutarate. The flow of isocitrate through the Specific activity: ³80 units/mg protein glyoxylate bypass is regulated by phosphorylation of isocitrate dehydrogenase, which competes for a Unit definition: 1 unit corresponds to the amount of 1 common substrate (isocitrate) with isocitrate lyase. enzyme, which converts 1 mmole of DL-isocitrate to The activity of the enzyme is dependent on the a-ketoglutarate per minute at pH 7.4 and 37 °C (NADP formation of a magnesium or manganese-isocitrate as cofactor). The activity is measured by observing the 2 complex. reduction of NADP to NADPH at 340 nm in the 7 presence of 4 mM DL-isocitrate and 2 mM MnSO4.
    [Show full text]
  • Pro-Aging Effects of Xanthine Oxidoreductase Products
    antioxidants Review Pro-Aging Effects of Xanthine Oxidoreductase Products , , Maria Giulia Battelli y , Massimo Bortolotti y , Andrea Bolognesi * z and Letizia Polito * z Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy; [email protected] (M.G.B.); [email protected] (M.B.) * Correspondence: [email protected] (A.B.); [email protected] (L.P.); Tel.: +39-051-20-9-4707 (A.B.); +39-051-20-9-4729 (L.P.) These authors contributed equally. y Co-last authors. z Received: 22 July 2020; Accepted: 4 September 2020; Published: 8 September 2020 Abstract: The senescence process is the result of a series of factors that start from the genetic constitution interacting with epigenetic modifications induced by endogenous and environmental causes and that lead to a progressive deterioration at the cellular and functional levels. One of the main causes of aging is oxidative stress deriving from the imbalance between the production of reactive oxygen (ROS) and nitrogen (RNS) species and their scavenging through antioxidants. Xanthine oxidoreductase (XOR) activities produce uric acid, as well as reactive oxygen and nitrogen species, which all may be relevant to such equilibrium. This review analyzes XOR activity through in vitro experiments, animal studies and clinical reports, which highlight the pro-aging effects of XOR products. However, XOR activity contributes to a regular level of ROS and RNS, which appears essential for the proper functioning of many physiological pathways. This discourages the use of therapies with XOR inhibitors, unless symptomatic hyperuricemia is present.
    [Show full text]