Isocitrate Dehydrogenase Activity Assay Kit (MAK062)

Total Page:16

File Type:pdf, Size:1020Kb

Isocitrate Dehydrogenase Activity Assay Kit (MAK062) Isocitrate Dehydrogenase Activity Assay Kit Catalog Number MAK062 Storage Temperature –20 C TECHNICAL BULLETIN Product Description Developer 1 vl Isocitrate dehydrogenase (IDH) catalyzes the Catalog Number MAK062E conversion of isocitrate to -ketoglutarate. In eukaryotes, there are three isozymes of IDH, the IDH Positive Control (NADP+) 20 L mitochondrial IDH2 and IDH3, and the cytoplasmic/ Catalog Number MAK062F peroxisomal IDH1. All three IDH family members require the presence of a divalent cation (Mg2+ or Mn2+) NADH Standard, 0.5 mole 1 vl and either the electron-accepting cofactor NADP+ (IDH1 Catalog Number MAK062G and IDH2) or NAD+ (IDH3) for their enzymatic activity. IDH1 and IDH2 mutations resulting in neomorphic Reagents and Equipment Required but Not enzymatic activity are found in certain cancers such as Provided. glioblastoma, acute myeloid leukemia, and colon 96 well flat-bottom plate – It is recommended to use cancer. This neoactivity shows a change in the clear plates for colorimetric assays. substrate specificity resulting in the conversion of Spectrophotometric multiwell plate reader -ketoglutarate to 2-hydroxyglutarate. Mutations in IDH family members are also associated with Ollier disease Precautions and Disclaimer and Maffucci syndrome. This product is for R&D use only, not for drug, household, or other uses. Please consult the Material The Isocitrate Dehydrogenase Activity Assay kit Safety Data Sheet for information regarding hazards provides a simple and direct procedure for measuring and safe handling practices. + + + NADP -dependent, NAD -dependent, or both NADP + and NAD -dependent IDH activity in a variety of Preparation Instructions samples. IDH activity is determined using isocitrate as Briefly centrifuge vials before opening. Use ultrapure the substrate in an enzyme reaction, which results in a water for the preparation of reagents. To maintain colorimetric (450 nm) product proportional to the reagent integrity, avoid repeated freeze/thaw cycles. enzymatic activity present. One unit of IDH is the amount of enzyme that will generate 1.0 mole of IDH Assay Buffer – Allow buffer to come to room NADH or NADP per minute at pH 8.0 at 37 °C. temperature before use. Components NAD+, NADP+, and IDH Substrate Buffer – Reconstitute The kit is sufficient for 100 assays in 96 well plates. each with 220 L of water. Mix well by pipetting, then aliquot and store, protected from light at IDH Assay Buffer 25 mL –20 C. Use within 2 months of reconstitution. Catalog Number MAK062A Developer – Reconstitute with 0.9 mL of water. Mix well + NAD 1 vl by pipetting (don’t vortex), then aliquot and store, Catalog Number MAK062B protected from light at –20 C. Use within + 2 months of reconstitution. NADP 1 vl Catalog Number MAK062C NADH Standard – Reconstitute in 50 L of water to generate a 10 mM NADH stock solution. Mix well IDH Substrate 1 vl by pipetting, then aliquot and store at –20 C. Use Catalog Number MAK062D within 2 months of reconstitution. 2 Storage/Stability Table 1. The kit is shipped on wet ice and storage at –20 C, Master Reaction Mixes protected from light, is recommended. Standards and Sample Reagent Procedure Samples Blank All samples and standards should be run in duplicate. IDH Assay Buffer 38 L 42 L Developer 8 L 8 L NADH Standards for Colorimetric Detection IDH Substrate 2 L – Dilute 10 L of the 10 mM NADH Standard with 90 L NAD+ and/or NADP+ 2 L – of the IDH Assay Buffer to prepare a 1 mM standard solution. Add 0, 2, 4, 6, 8, and 10 L of the 1 mM Note: For samples, if 2 L NAD+ is added, the assay standard solution into a 96 well plate, generating + + will detect NAD -dependent IDH. If 2 L NADP is 0 (blank), 2, 4, 6, 8, and 10 nmole/well standards. Add + added, the assay will detect NADP -dependent IDH. IDH Assay Buffer to each well to bring the volume to The addition of both 2 L NAD+ and 2 L NADP+ will 50 L. The NADH standard curve can be used as the + + detect total IDH activity. If both NAD and NADP are standard for the NAD+-dependent IDH as well as the + added, adjust the volume of IDH Assay Buffer to 36 L. NADP -dependent IDH activity. Sample Preparation 2. Add 50 L of the appropriate Master Reaction Mix 6 to each of the wells. Mix well using a horizontal Tissue (50 mg) or cells (1 10 ) can be homogenized shaker or by pipetting. in 200 L of ice-cold IDH Assay Buffer. Centrifuge the samples at 13,000 g for 10 minutes to remove 3. Incubate the plate at 37 C. After 2–3 minutes insoluble material. (T ), measure the absorbance at 450 nm initial (A ) . Serum samples can be directly added to wells. 450 initial Note: It is essential that (A ) is in the linear 450 initial range of the standard curve. Bring samples to a final volume of 50 L with IDH Assay Buffer. 4. Continue to incubate the plate at 37 C measuring Note: For unknown samples, it is suggested to test the absorbance (A ) every 5 minutes. Protect the several sample dilutions to ensure the readings are 450 plate from light during the incubation. within the linear range of the standard curve. 5. Continue taking measurements until the value of For the positive control (optional), add 2–5 L of the the most active sample is greater than the value of IDH positive control solution to wells and adjust to the highest standard (10 nmole/well). At this time 50 L with the IDH Assay Buffer. the most active sample is near or exceeds the end of the linear range of the standard curve. Assay Reaction 1. Set up the Master Reaction Mixes according to the 6. The final absorbance measurement [(A450)final] for scheme in Table 1. 50 L of the Master Reaction calculating the enzyme activity would be the Mix is required for each reaction (well). penultimate reading or the value before the most Note: NADPH and NADH in the samples will active sample is near or exceeds the end of the generate a background signal. To remove the effect linear range of the standard curve (see step 5). The of NADPH and NADH background, a sample blank time of the penultimate reading is Tfinal. may be set up for each sample by omitting the IDH + + Note: It is essential the final measurement falls substrate and NAD and/or NADP . within the linear range of the standard curve. 3 Results The IDH activity of a sample may be determined by the Calculations following equation: Correct for the background by subtracting the final measurement [(A450)final] obtained for the 0 (blank) IDH Activity = B Sample Dilution Factor NADH standard from the final measurement [(A450)final] (Reaction Time) V of the standards and samples. Background values can be significant and must be subtracted from all readings. B = Amount (nmole) of NADH generated between Tinitial Plot the NADH standard curve. and Tfinal. Note: A new standard curve must be set up each time Reaction Time = Tfinal – Tinitial (minutes) the assay is run. V = sample volume (mL) added to well Calculate the change in absorbance from Tinitial to Tfinal IDH activity is reported as nmole/min/mL = milliunit/mL. for the samples. One unit of IDH is the amount of enzyme that will generate 1.0 mole of NADH or NADP per minute at A450 = (A450)final – (A450)initial pH 8.0 at 37 C. Compare the A450 of each sample to the standard Example: curve to determine the amount of NADH and/or NADPH NADH (B) = 5.84 nmole (B) generated by the isocitrate dehydrogenase between First reading (Tinitial) = 3 minute Tinitial and Tfinal. Second reading (Tfinal) = 32 minutes Sample volume (V) = 0.01 mL Sample dilution is 1 IDH activity is: 5.84 1 = 20.14 milliunits/mL (32–3) 0.01 4 Troubleshooting Guide Problem Possible Cause Suggested Solution Cold assay buffer Assay Buffer must be at room temperature Omission of step in procedure Refer and follow Technical Bulletin precisely Assay not working Plate reader at incorrect wavelength Check filter settings of instrument Type of 96 well plate used For colorimetric assays, use clear plates Samples prepared in different buffer Use the Assay Buffer provided Repeat the sample homogenization, Cell/Tissue culture samples were increasing the length and extent of incompletely homogenized homogenization step. Samples with erratic Samples used after multiple freeze-thaw Aliquot and freeze samples if needed to use readings cycles multiple times Presence of interfering substance in the If possible, dilute sample further sample Use of old or inappropriately stored Use fresh samples and store correctly until samples used Thaw all components completely and mix Improperly thawed components gently before use Use of expired kit or improperly stored Check the expiration date and store the Lower/higher reagents components appropriately readings in samples Allowing the reagents to sit for extended Prepare fresh Master Reaction Mix before and standards times on ice each use Refer to Technical Bulletin and verify correct Incorrect incubation times or temperatures incubation times and temperatures Incorrect volumes used Use calibrated pipettes and aliquot correctly Thaw and resuspend all components before Use of partially thawed components preparing the reaction mix Pipetting errors in preparation of standards Avoid pipetting small volumes Prepare a Master Reaction Mix whenever Pipetting errors in the Reaction Mix possible Non-linear standard Pipette gently against the wall of the plate Air bubbles formed in well curve well Standard stock is at incorrect Refer to the standard dilution instructions in concentration the Technical Bulletin Recheck calculations after referring to Calculation errors Technical Bulletin Substituting reagents from older kits/lots Use fresh components from the same kit Samples measured at incorrect Check the equipment and filter settings wavelength Unanticipated results Samples contain interfering substances If possible, dilute sample further Sample readings above/below the linear Concentrate or dilute samples so readings range are in the linear range SS,LS,MAM 08/18-1 2018 Sigma-Aldrich Co.
Recommended publications
  • Altered Expression and Function of Mitochondrial Я-Oxidation Enzymes
    0031-3998/01/5001-0083 PEDIATRIC RESEARCH Vol. 50, No. 1, 2001 Copyright © 2001 International Pediatric Research Foundation, Inc. Printed in U.S.A. Altered Expression and Function of Mitochondrial ␤-Oxidation Enzymes in Juvenile Intrauterine-Growth-Retarded Rat Skeletal Muscle ROBERT H. LANE, DAVID E. KELLEY, VLADIMIR H. RITOV, ANNA E. TSIRKA, AND ELISA M. GRUETZMACHER Department of Pediatrics, UCLA School of Medicine, Mattel Children’s Hospital at UCLA, Los Angeles, California 90095, U.S.A. [R.H.L.]; and Departments of Internal Medicine [D.E.K., V.H.R.] and Pediatrics [R.H.L., A.E.T., E.M.G.], University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213, U.S.A. ABSTRACT Uteroplacental insufficiency and subsequent intrauterine creased in IUGR skeletal muscle mitochondria, and isocitrate growth retardation (IUGR) affects postnatal metabolism. In ju- dehydrogenase activity was unchanged. Interestingly, skeletal venile rats, IUGR alters skeletal muscle mitochondrial gene muscle triglycerides were significantly increased in IUGR skel- expression and reduces mitochondrial NADϩ/NADH ratios, both etal muscle. We conclude that uteroplacental insufficiency alters of which affect ␤-oxidation flux. We therefore hypothesized that IUGR skeletal muscle mitochondrial lipid metabolism, and we gene expression and function of mitochondrial ␤-oxidation en- speculate that the changes observed in this study play a role in zymes would be altered in juvenile IUGR skeletal muscle. To test the long-term morbidity associated with IUGR. (Pediatr Res 50: this hypothesis, mRNA levels of five key mitochondrial enzymes 83–90, 2001) (carnitine palmitoyltransferase I, trifunctional protein of ␤-oxi- dation, uncoupling protein-3, isocitrate dehydrogenase, and mi- Abbreviations tochondrial malate dehydrogenase) and intramuscular triglycer- CPTI, carnitine palmitoyltransferase I ides were quantified in 21-d-old (preweaning) IUGR and control IUGR, intrauterine growth retardation rat skeletal muscle.
    [Show full text]
  • Nutritional Vitamin B6 Deficiency Impairs Lipid Me Tabolism and Leads
    J Nutr Sci Vitaminol, 47, 306-310, 2001 Xanthurenic Acid Inhibits Metal Ion-Induced Lipid Peroxidation and Protects NADP-Isocitrate Dehydrogenase from Oxidative Inactivation Keiko MURAKAMI,Masae ITO and Masataka YOSHINO* Department of Biochemistry, Aichi Medical University School of Medicine,Nagakute, Aichi 480-1195, Japan (ReceivedJanuary 26, 2001) Summary Vitamin B6 deficiency increases the lipid peroxidation and the synthesis of xanthurenic acid from tryptophan. Antioxidant properties of xanthurenic acid were exam ined in relation to the coordination of transition metals. Xanthurenic acid inhibited the for mation of thiobarbituric acid-reactive substances as a marker of iron-mediated lipid peroxi dation and copper-dependent oxidation of low density lipoprotein. NADP-isocitrate dehydro genase (EC 1.1.1.42), a principal NADPH-generating enzyme for the antioxidant defense system, was inactivated by reduced iron and copper, and xanthurenic acid protected the en zyme from the Fe2+-mediated inactivation. Xanthurenic acid may participate in the en hanced regeneration of reduced glutathione by stimulating the NADPH supply. Xanthurenic acid further enhanced the autooxidation of Fe2+ ion. Other tryptophan metabolites such as kynurenic acid and various quinoline compounds did not inhibit the lipid peroxidation and the inactivation of NADP-isocitrate dehydrogenase, and they showed little or no effect on the Fe2+ autooxidation. The antioxidant properties of xanthurenic acid are related to the metal-chelating activity and probably to the enhanced oxidation of reduced transition met als as a prooxidant, and this action may be due to the electron deficient nature of this com pound. Key Words xanthurenic acid, antioxidant, LDL, NADP-isocitrate dehydrogenase, reactive oxygen species Nutritional vitamin B6 deficiency impairs lipid me Lipid peroxidation.
    [Show full text]
  • Isocitrate Dehydrogenase 1 (NADP+) (I5036)
    Isocitrate Dehydrogenase 1 (NADP+), human recombinant, expressed in Escherichia coli Catalog Number I5036 Storage Temperature –20 °C CAS RN 9028-48-2 IDH1 and IDH2 have frequent genetic alterations in EC 1.1.1.42 acute myeloid leukemia4 and better understanding of Systematic name: Isocitrate:NADP+ oxidoreductase these mutations may lead to an improvement of (decarboxylating) individual cancer risk assessment.6 In addition other studies have shown loss of IDH1 in bladder cancer Synonyms: IDH1, cytosolic NADP(+)-dependent patients during tumor development suggesting this may isocitrate dehydrogenase, isocitrate:NADP+ be involved in tumor progression and metastasis.7 oxidoreductase (decarboxylating), Isocitric Dehydrogenase, ICD1, PICD, IDPC, ICDC, This product is lyophilized from a solution containing oxalosuccinate decarboxylase Tris-HCl, pH 8.0, with trehalose, ammonium sulfate, and DTT. Product Description Isocitrate dehydrogenase (NADP+) [EC 1.1.1.42] is a Purity: ³90% (SDS-PAGE) Krebs cycle enzyme, which converts isocitrate to a-ketoglutarate. The flow of isocitrate through the Specific activity: ³80 units/mg protein glyoxylate bypass is regulated by phosphorylation of isocitrate dehydrogenase, which competes for a Unit definition: 1 unit corresponds to the amount of 1 common substrate (isocitrate) with isocitrate lyase. enzyme, which converts 1 mmole of DL-isocitrate to The activity of the enzyme is dependent on the a-ketoglutarate per minute at pH 7.4 and 37 °C (NADP formation of a magnesium or manganese-isocitrate as cofactor). The activity is measured by observing the 2 complex. reduction of NADP to NADPH at 340 nm in the 7 presence of 4 mM DL-isocitrate and 2 mM MnSO4.
    [Show full text]
  • (LCHAD) Deficiency / Mitochondrial Trifunctional Protein (MTF) Deficiency
    Long chain acyl-CoA dehydrogenase (LCHAD) deficiency / Mitochondrial trifunctional protein (MTF) deficiency Contact details Introduction Regional Genetics Service Long chain acyl-CoA dehydrogenase (LCHAD) deficiency / mitochondrial trifunctional Levels 4-6, Barclay House protein (MTF) deficiency is an autosomal recessive disorder of mitochondrial beta- 37 Queen Square oxidation of fatty acids. The mitochondrial trifunctional protein is composed of 4 alpha London, WC1N 3BH and 4 beta subunits, which are encoded by the HADHA and HADHB genes, respectively. It is characterized by early-onset cardiomyopathy, hypoglycemia, T +44 (0) 20 7762 6888 neuropathy, and pigmentary retinopathy, and sudden death. There is also an infantile F +44 (0) 20 7813 8578 onset form with a hepatic Reye-like syndrome, and a late-adolescent onset form with primarily a skeletal myopathy. Tandem mass spectrometry of organic acids in urine, Samples required and carnitines in blood spots, allows the diagnosis to be unequivocally determined. An 5ml venous blood in plastic EDTA additional clinical complication can occur in the pregnant mothers of affected fetuses; bottles (>1ml from neonates) they may experience maternal acute fatty liver of pregnancy (AFLP) syndrome or Prenatal testing must be arranged hypertension/haemolysis, elevated liver enzymes and low platelets (HELLP) in advance, through a Clinical syndrome. Genetics department if possible. The genes encoding the HADHA and HADHB subunits are located on chromosome Amniotic fluid or CV samples 2p23.3. The pathogenic
    [Show full text]
  • Aldehyde Dehydrogenase 2 Activation and Coevolution of Its Εpkc
    Nene et al. Journal of Biomedical Science (2017) 24:3 DOI 10.1186/s12929-016-0312-x RESEARCH Open Access Aldehyde dehydrogenase 2 activation and coevolution of its εPKC-mediated phosphorylation sites Aishwarya Nene†, Che-Hong Chen*† , Marie-Hélène Disatnik, Leslie Cruz and Daria Mochly-Rosen Abstract Background: Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a key enzyme for the metabolism of many toxic aldehydes such as acetaldehyde, derived from alcohol drinking, and 4HNE, an oxidative stress-derived lipid peroxidation aldehyde. Post-translational enhancement of ALDH2 activity can be achieved by serine/threonine phosphorylation by epsilon protein kinase C (εPKC). Elevated ALDH2 is beneficial in reducing injury following myocardial infarction, stroke and other oxidative stress and aldehyde toxicity-related diseases. We have previously identified three εPKC phosphorylation sites, threonine 185 (T185), serine 279 (S279) and threonine 412 (T412), on ALDH2. Here we further characterized the role and contribution of each phosphorylation site to the enhancement of enzymatic activity by εPKC. Methods: Each individual phosphorylation site was mutated to a negatively charged amino acid, glutamate, to mimic a phosphorylation, or to a non-phosphorylatable amino acid, alanine. ALDH2 enzyme activities and protection against 4HNE inactivation were measured in the presence or absence of εPKC phosphorylation in vitro. Coevolution of ALDH2 and its εPKC phosphorylation sites was delineated by multiple sequence alignments among a diverse range of species and within the ALDH multigene family. Results: We identified S279 as a critical εPKC phosphorylation site in the activation of ALDH2. The critical catalytic site, cysteine 302 (C302) of ALDH2 is susceptible to adduct formation by reactive aldehyde, 4HNE, which readily renders the enzyme inactive.
    [Show full text]
  • Citric Acid Cycle
    CHEM464 / Medh, J.D. The Citric Acid Cycle Citric Acid Cycle: Central Role in Catabolism • Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylCoA • In aerobic organisms, citric acid cycle makes up the final stage of catabolism when acetyl CoA is completely oxidized to CO2. • Also called Krebs cycle or tricarboxylic acid (TCA) cycle. • It is a central integrative pathway that harvests chemical energy from biological fuel in the form of electrons in NADH and FADH2 (oxidation is loss of electrons). • NADH and FADH2 transfer electrons via the electron transport chain to final electron acceptor, O2, to form H2O. Entry of Pyruvate into the TCA cycle • Pyruvate is formed in the cytosol as a product of glycolysis • For entry into the TCA cycle, it has to be converted to Acetyl CoA. • Oxidation of pyruvate to acetyl CoA is catalyzed by the pyruvate dehydrogenase complex in the mitochondria • Mitochondria consist of inner and outer membranes and the matrix • Enzymes of the PDH complex and the TCA cycle (except succinate dehydrogenase) are in the matrix • Pyruvate translocase is an antiporter present in the inner mitochondrial membrane that allows entry of a molecule of pyruvate in exchange for a hydroxide ion. 1 CHEM464 / Medh, J.D. The Citric Acid Cycle The Pyruvate Dehydrogenase (PDH) complex • The PDH complex consists of 3 enzymes. They are: pyruvate dehydrogenase (E1), Dihydrolipoyl transacetylase (E2) and dihydrolipoyl dehydrogenase (E3). • It has 5 cofactors: CoASH, NAD+, lipoamide, TPP and FAD. CoASH and NAD+ participate stoichiometrically in the reaction, the other 3 cofactors have catalytic functions.
    [Show full text]
  • Is Glyceraldehyde-3-Phosphate Dehydrogenase a Central Redox Mediator?
    1 Is glyceraldehyde-3-phosphate dehydrogenase a central redox mediator? 2 Grace Russell, David Veal, John T. Hancock* 3 Department of Applied Sciences, University of the West of England, Bristol, 4 UK. 5 *Correspondence: 6 Prof. John T. Hancock 7 Faculty of Health and Applied Sciences, 8 University of the West of England, Bristol, BS16 1QY, UK. 9 [email protected] 10 11 SHORT TITLE | Redox and GAPDH 12 13 ABSTRACT 14 D-Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an immensely important 15 enzyme carrying out a vital step in glycolysis and is found in all living organisms. 16 Although there are several isoforms identified in many species, it is now recognized 17 that cytosolic GAPDH has numerous moonlighting roles and is found in a variety of 18 intracellular locations, but also is associated with external membranes and the 19 extracellular environment. The switch of GAPDH function, from what would be 20 considered as its main metabolic role, to its alternate activities, is often under the 21 influence of redox active compounds. Reactive oxygen species (ROS), such as 22 hydrogen peroxide, along with reactive nitrogen species (RNS), such as nitric oxide, 23 are produced by a variety of mechanisms in cells, including from metabolic 24 processes, with their accumulation in cells being dramatically increased under stress 25 conditions. Overall, such reactive compounds contribute to the redox signaling of the 26 cell. Commonly redox signaling leads to post-translational modification of proteins, 27 often on the thiol groups of cysteine residues. In GAPDH the active site cysteine can 28 be modified in a variety of ways, but of pertinence, can be altered by both ROS and 29 RNS, as well as hydrogen sulfide and glutathione.
    [Show full text]
  • How Is Alcohol Metabolized by the Body?
    Overview: How Is Alcohol Metabolized by the Body? Samir Zakhari, Ph.D. Alcohol is eliminated from the body by various metabolic mechanisms. The primary enzymes involved are aldehyde dehydrogenase (ALDH), alcohol dehydrogenase (ADH), cytochrome P450 (CYP2E1), and catalase. Variations in the genes for these enzymes have been found to influence alcohol consumption, alcohol-related tissue damage, and alcohol dependence. The consequences of alcohol metabolism include oxygen deficits (i.e., hypoxia) in the liver; interaction between alcohol metabolism byproducts and other cell components, resulting in the formation of harmful compounds (i.e., adducts); formation of highly reactive oxygen-containing molecules (i.e., reactive oxygen species [ROS]) that can damage other cell components; changes in the ratio of NADH to NAD+ (i.e., the cell’s redox state); tissue damage; fetal damage; impairment of other metabolic processes; cancer; and medication interactions. Several issues related to alcohol metabolism require further research. KEY WORDS: Ethanol-to­ acetaldehyde metabolism; alcohol dehydrogenase (ADH); aldehyde dehydrogenase (ALDH); acetaldehyde; acetate; cytochrome P450 2E1 (CYP2E1); catalase; reactive oxygen species (ROS); blood alcohol concentration (BAC); liver; stomach; brain; fetal alcohol effects; genetics and heredity; ethnic group; hypoxia The alcohol elimination rate varies state of liver cells. Chronic alcohol con- he effects of alcohol (i.e., ethanol) widely (i.e., three-fold) among individ- sumption and alcohol metabolism are on various tissues depend on its uals and is influenced by factors such as strongly linked to several pathological concentration in the blood T chronic alcohol consumption, diet, age, consequences and tissue damage. (blood alcohol concentration [BAC]) smoking, and time of day (Bennion and Understanding the balance of alcohol’s over time.
    [Show full text]
  • Dehydrogenase Classes
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 4980-4984, May 1994 Biochemistry Fundamental molecular differences between alcohol dehydrogenase classes (Drosophila octano dehydrogenase/class m alcohol dehydrogenase/mo ur patterns/zinc enyme famy) OLLE DANIELSSON*, SILVIA ATRIANt, TERESA LUQUEt, LARS HJELMQVIST*, ROSER GONZALEZ-DUARTEt, AND HANS J6RNVALL*f *Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden; tCenter for Biotechnology, Karolinska Institutet, S-141 86 Huddinge, Sweden; and tDepartment of Genetics, University of Barcelona, E-08071 Barcelona, Spain Communicated by Sune Bergstrom, January 18, 1994 ABSTRACT Two types of alcohol dehydrogenase in sepa- ary patterns, with class III being "constant" and class I rate protein families are the "medium-chain" zinc enzymes "variable" (10), result in a consistent picture of the enzyme (including the classical liver and yeast forms) and the "short- system and place the classes of medium-chain alcohol dehy- chain" enzymes (including the insect form). Although the drogenases as separate enzymes in the cellular metabolism. medium-chain family has been characterized in prokaryotes Similarly, another protein family, short-chain dehydroge- and many eukaryotes (fungi, plants, cephalopods, and verte- nases, has also evolved into a family comprising many brates), insects have seemed to possess only the short-chain different enzyme activities, including an alcohol dehydroge- enzyme. We have now also characterized a medium-chain nase (11). This form operates by means of a completely alcohol dehydrogenase in Drosophila. The enzyme is identical different catalytic mechanism and is related to mammalian to insect octanol dehydrogenase. It Is a typical class m alcohol prostaglandin dehydrogenases/carbonyl reductase (12).
    [Show full text]
  • Biological Application and Disease of Oxidoreductase Enzymes Mezgebu Legesse Habte and Etsegenet Assefa Beyene
    Chapter Biological Application and Disease of Oxidoreductase Enzymes Mezgebu Legesse Habte and Etsegenet Assefa Beyene Abstract In biochemistry, oxidoreductase is a large group of enzymes that are involved in redox reaction in living organisms and in the laboratory. Oxidoreductase enzymes catalyze reaction involving oxygen insertion, hydride transfer, proton extraction, and other essential steps. There are a number of metabolic pathways like glycolysis, Krebs cycle, electron transport chain and oxidative phosphorylation, drug transfor- mation and detoxification in liver, photosynthesis in chloroplast of plants, etc. that require the direct involvements of oxidoreductase enzymes. In addition, degrada- tion of old and unnecessary endogenous biomolecules is catalyzed by a family of oxidoreductase enzymes, e.g., xanthine oxidoreductase. Oxidoreductase enzymes use NAD, FAD, or NADP as a cofactor and their efficiency, specificity, good biode- gradability, and being studied well make it fit well for industrial applications. In the near future, oxidoreductase may be utilized as the best biocatalyst in pharmaceuti- cal, food processing, and other industries. Oxidoreductase play a significant role in the field of disease diagnosis, prognosis, and treatment. By analyzing the activities of enzymes and changes of certain substances in the body fluids, the number of disease conditions can be diagnosed. Disorders resulting from deficiency (quantita- tive and qualitative) and excess of oxidoreductase, which may contribute to the metabolic abnormalities and decreased normal performance of life, are becoming common. Keywords: biocatalyst, biological application, disease, metabolism, mutation, oxidoreductase 1. Introduction Oxidoreductases, which includes oxidase, oxygenase, peroxidase, dehydroge- nase, and others, are enzymes that catalyze redox reaction in living organisms and in the laboratory [1].
    [Show full text]
  • Control of the Antitumor Immune Response by Cancer Metabolism
    cells Review Control of the Antitumor Immune Response by Cancer Metabolism Charlotte Domblides 1,2 , Lydia Lartigue 3,† and Benjamin Faustin 1,4,*,† 1 Bordeaux University, CNRS, UMR 5164, ImmunoConcEpT, 33000 Bordeaux, France; [email protected] 2 Department of Medical Oncology, Hôpital Saint-André, Bordeaux University Hospital-CHU, 33000 Bordeaux, France 3 Curematch, Inc., 6440 Lusk Bvld, San Diego, CA 92121, USA; [email protected] 4 Cellomet, CGFB, 146 Rue léo Saignat, F-33000 Bordeaux, France * Correspondence: [email protected]; Tel.: +33-(0)557-571-470 † These authors contributed equally to this work. Received: 22 December 2018; Accepted: 28 January 2019; Published: 31 January 2019 Abstract: The metabolic reprogramming of tumor cells and immune escape are two major hallmarks of cancer cells. The metabolic changes that occur during tumorigenesis, enabling survival and proliferation, are described for both solid and hematological malignancies. Concurrently, tumor cells have deployed mechanisms to escape immune cell recognition and destruction. Additionally, therapeutic blocking of tumor-mediated immunosuppression has proven to have an unprecedented positive impact in clinical oncology. Increased evidence suggests that cancer metabolism not only plays a crucial role in cancer signaling for sustaining tumorigenesis and survival, but also has wider implications in the regulation of antitumor immune signaling through both the release of signaling molecules and the expression of immune membrane ligands. Here, we review these molecular events to highlight the contribution of cancer cell metabolic reprogramming on the shaping of the antitumor immune response. Keywords: cancer; metabolism; immunity 1. Introduction Both the innate and adaptive immune systems have now established roles in the host defense against cancers through various mechanisms, which are raising an unprecedented development of modern cancer immunotherapies.
    [Show full text]
  • Moldx : BCKDHB Gene Test
    Local Coverage Article: Billing and Coding: MolDX: BCKDHB Gene Test (A55099) Links in PDF documents are not guaranteed to work. To follow a web link, please use the MCD Website. Contractor Information CONTRACTOR NAME CONTRACT TYPE CONTRACT JURISDICTION STATE(S) NUMBER Noridian Healthcare Solutions, A and B MAC 01111 - MAC A J - E California - Entire State LLC Noridian Healthcare Solutions, A and B MAC 01112 - MAC B J - E California - Northern LLC Noridian Healthcare Solutions, A and B MAC 01182 - MAC B J - E California - Southern LLC Noridian Healthcare Solutions, A and B MAC 01211 - MAC A J - E American Samoa LLC Guam Hawaii Northern Mariana Islands Noridian Healthcare Solutions, A and B MAC 01212 - MAC B J - E American Samoa LLC Guam Hawaii Northern Mariana Islands Noridian Healthcare Solutions, A and B MAC 01311 - MAC A J - E Nevada LLC Noridian Healthcare Solutions, A and B MAC 01312 - MAC B J - E Nevada LLC Noridian Healthcare Solutions, A and B MAC 01911 - MAC A J - E American Samoa LLC California - Entire State Guam Hawaii Nevada Northern Mariana Islands Article Information General Information Article ID Original Effective Date Created on 12/19/2019. Page 1 of 6 A55099 10/17/2016 Article Title Revision Effective Date Billing and Coding: MolDX: BCKDHB Gene Test 12/01/2019 Article Type Revision Ending Date Billing and Coding N/A AMA CPT / ADA CDT / AHA NUBC Copyright Retirement Date Statement N/A CPT codes, descriptions and other data only are copyright 2018 American Medical Association. All Rights Reserved. Applicable FARS/HHSARS apply. Current Dental Terminology © 2018 American Dental Association.
    [Show full text]