Two Novel HADHB Gene Mutations in a Korean Patient with Mitochondrial Trifunctional Protein Deficiency

Total Page:16

File Type:pdf, Size:1020Kb

Two Novel HADHB Gene Mutations in a Korean Patient with Mitochondrial Trifunctional Protein Deficiency Available online at www.annclinlabsci.org Annals of Clinical & Laboratory Science, vol. 39, no. 4, 2009 399 Case Report: Two Novel HADHB Gene Mutations in a Korean Patient with Mitochondrial Trifunctional Protein Deficiency Hyung-Doo Park,1,a Suk Ran Kim,1,a Chang-Seok Ki,1 Soo-Youn Lee,1 Yun Sil Chang,2 Dong-Kyu Jin,2 and Won Soon Park2 Departments of 1Laboratory Medicine & Genetics and 2Pediatrics, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea (aHyung-Doo Park and aSuk Ran Kim contributed equally to the work.) Abstract. Mitochondrial trifunctional protein (MTP) is a heterocomplex composed of 4 α-subunits containing LCEH (long-chain 2,3-enoyl-CoA hydratase) and LCHAD (long-chain 3-hydroxyacyl CoA dehydrogenase) activity, and 4 b-subunits that harbor LCKT (long-chain 3-ketoacyl-CoA thiolase) activity. MTP deficiency is an autosomal recessive disorder that causes a clinical spectrum of diseases ranging from severe infantile cardiomyopathy to mild chronic progressive polyneuropathy. Here, we report the case of a Korean male newborn who presented with severe lactic acidosis, seizures, and heart failure. A newborn screening test and plasma acylcarnitine profile analysis by tandem mass spectrometry showed an increase of 3-hydroxy species: 3-OH-palmitoylcarnitine, 0.44 nmol/ml (reference range, RR <0.07); 3-OH- linoleylcarnitine, 0.31 nmol/ml (RR <0.06); and 3-OH-oleylcarnitine, 0.51 nmol/ml (RR <0.04). These findings suggested either long-chain 3-hydroxyacyl-coA dehydrogenase deficiency or complete MTP deficiency. By molecular analysis of theHADHB gene, the patient was found to be a compound heterozygote for c.358dupT (p.A120CfsX8) and c.1364T>G (p.V455G) mutations. These 2 mutations of the HADHB gene were novel and inherited. Although the patient was treated by reduction of glucose administration and supplementation of a medium-chain triglyceride-based diet with L-carnitine, he died 2 mo after birth due to advanced cardiac failure. Keywords: mitochondrial trifunctional protein (MTP) deficiency, HADHB gene mutations Introduction b-oxidation of fatty acids, which consists of multiple transport steps, is initiated by a catalytic reaction Fatty acid oxidation is a major source of energy for mediated by a long-chain acyl-CoA dehydrogenase, skeletal and cardiac muscle. Mitochondrial trifunct- followed by MTP [2]. ional protein (MTP) is bound to the inner mito- MTP deficiency, an autosomal recessive chondrial membrane and is a heterocomplex of 4 disorder, leads to a spectrum of diseases ranging α-subunits containing LCEH (long-chain 2,3- from severe infantile cardiomyopathy, inducing enoyl-CoA hydratase) and LCHAD (long-chain early death, to mild chronic progressive sensorimotor 3-hydroxyacyl CoA dehydrogenase) activity, and 4 polyneuropathy with episodic rhabdomyolysis [1]. b-subunits that harbor LCKT (long-chain 3- Deficiency of either MTP or LCHAD in association ketoacyl-CoA thiolase) activity [1]. Mitochondrial with fetal MTP defects occurs at a rate of 1/ 38,000 pregnancies, calculated from a molecular screening Address correspondence to Won-Soon Park, M.D., Ph.D., study of 351 normal subjects [3]. MTP complex Department of Pediatrics, Samsung Medical Center, 50 Ilwon- dong, Gangnam-gu, Seoul, 135-710, Korea; tel 82 2 3410 disorders are classified into 2 phenotypes: isolated 3523; fax 82 2 3410 0043; e-mail [email protected]. LCHAD deficiency and general MTP deficiency. 0091-7370/09/0400-0399. $2.10. © 2009 by the Association of Clinical Scientists, Inc. 400 Annals of Clinical & Laboratory Science, vol. 39, no. 4, 2009 Different nuclear genes, namely, HADHA and The clinical status of the patient did not improve following HADHB, consisting of 20 and 16 exons, respectively, onset of these symptoms, and he exhibited a pale appearance, decreased activity, and tachypnea. encode each subunit of MTP. Both genes are Four days after birth, a blood spot was collected from located on chromosome 2p23. More than 60% of the patient’s original newborn screening card and butylated cases associated with LCHAD deficiency have the acylcarnitines were analyzed by tandem mass spectrometry E474Q (c.1528G>C) mutation in the α-subunit (Waters, Manchester, UK). Initial laboratory findings [4,5]. The remaining cases consist of complete included serum urea, 31.4 mg/dl (reference range, RR 8-22); creatinine, 1.25 mg/dl (RR 0.7-1.3); AST, 128 U/L (RR <40); MTP deficiency that is caused by defects in either ALT, 57 U/L (RR <40); and glucose 63 mg/dl (RR 70-110). the α- or b-subunits encoded by the HADHB gene The serum ammonia level was 358 µmol/L (RR 56-92), and [5,6]. Generally, all 3 enzyme activities of the MTP the lactic acid level was 24.8 mmol/L (RR 0.7-2.5). Plasma complex are undetectable in MTP deficiency due amino acids and urine organic acids were analyzed. Quantitative acylcarnitine profile testing in plasma (Mayo to a lack of both HADHA and HADHB proteins Medical Lab, Rochester, MN) was also performed. [7]. In contrast to many patients with LCHAD Five days after birth the patient developed frequent deficiency, only a few patients with MTP deficiency seizures, and electroencephalography showed abnormal have been reported. Here, we present a Korean findings. Postnatal echocardiography revealed a significant patient with complex MTP deficiency confirmed left ventricular dilatation, reduced cardiac dysfunction (ejection fraction, 25%), moderate mitral regurgitation, and by clinical, biochemical, and molecular findings. tricuspid regurgitation. Brain MRI analysis suggested liquefaction of hemorrhages in both frontal lobes. The serum Materials and Methods levels of cardiac markers were as follows: CK-MB, 127.6 ng/ ml (RR <5); cardiac troponin I, 1.21 ng/ml (RR <0.78); and The male patient in this study was born at 36 weeks of N-terminal pro-BNP, 35,000 pg/ml (RR <88). gestation to healthy, non-consanguineous Korean parents. Molecular defects in the HADHA and HADHB genes The weight of the patient at birth was 2600 g (25-50th were investigated to confirm the diagnosis of MTP deficiency. percentile), the length was 48.5 cm (50-75th percentile), and After obtaining informed consent from the parents, blood the head circumference was 33 cm (50th percentile). The samples were collected from the patient and parents. Genomic patient’s Apgar score was 8 at 1 min and 10 at 5 min. The DNA was isolated from peripheral blood leukocytes using a family history was unremarkable. Chest retractions with Wizard genomic DNA purification kit according to the grunting sounds were observed 14 hr after birth. Blood gas manufacturer’s instructions (Promega, Madison, WI). The patient’s HADHA and HADHB genes were amplified by PCR analysis showed pH 6.98, pO2 56.1 mmHg, bicarbonate 6.8 mmol/L, and base excess -23.9 mmol/L, indicating severe using primers designed by the authors (Table 1) and a Thermal metabolic acidosis. Thereafter, hypotension (BP, 22/15 Cycler 9700 (Applied Biosystems, Foster City, CA). Sequence mmHg) and oliguric renal failure developed and the patient analyses of all coding exons and the flanking introns of the was treated with intravenous dopamine, dobutamine, HADHA and HADHB genes were performed using the epinephrine, sodium bicarbonate, glucose, and vasopressin. BigDye Terminator Cycle Sequencing Ready Reaction kit Table 1. Primer sequences for mutation analysis of the HADHB gene. Exon Primer Sequence (5’→3’) Primer Sequence (5’→3’) 2 2F AGTGGTTGCTGCAATGTGAA 2R CTCGTAGCTGGGAGGAACAG 3 3F ATCAAAATGGGCCCTCAGAT 3R GCAGGTTCAAATCCCAGAAA 4 4F AAGCTGTCCAGACCAAAACG 4R TCATGGGACTGCTATCCAAA 5 5F TGAAATGATGGACTGCCTTG 5R TGATCAATCGAGTCCTGTGG 6 6F AGAAGGTGCCAAATGCTTGT 6R GACAATGTCCTAAACCAGCTCA 7 7F TCATAGCCTCGTGTCTGCAC 7R GGCAGGATGATCTCTTGAGC 8 8F ACGTCCATATGGCAGGAATG 8R CACCTATTACAGCATAGCAGAGTCC 9 9F CTGCTTGTCTTGGACTTGATTG 9R TCCCAAAGTGCTGAGATTAGTG 10 10F AAGCATTTAGATGATTTCCCAAT 10R GGGCCTTAAAACCGTGATTC 11 11F GCTTGGCCATGAGCATTTAT 11R GTCCAAGGATACAAACTGCTACC 12 12F AAGCCGAAGGCATATTTGAG 12R CAAAACCTCCCGAGTAGCTG 13 13F CCTTGCCTTGCTCTTTGAAC 13R CTCCCAGCAGTGTGAATCAG 14 14F GCGTAGAGGAACATGAATAACG 14R TCCAATTATTAACGTGCTTTGAA 15 15F TGACCTAGACTTACTTTCTTTTGCAG 15R AACAAAAAGTTTTATCAGAATTACAGC 16 16F TGAGCCCCATTTTGTAGAGG 16R GGCAAGGCTTAAGTGCAAAC Novel HADHB mutations in a patient with MTP deficiency 401 Fig. 1. Acylcarnitine profiling in a healthy newborn (A) and in the study patient (B). Elevated levels of 3-hydroxydicarboxylic derivatives of the C16:0 and C18:1 species are shown. (Applied Biosystems) on an ABI Prism 3130 genetic analyzer 3-hydroxysebacic acid. Quantitative acylcarnitine (Applied Biosystems). profiling in plasma showed prominent accumulation of 3-hydroxy species levels as follows: 3-OH- Results palmitoylcarnitine (C16-OH), 0.44 nmol/ml (RR <0.07); 3-OH-linoleylcarnitine (C18:2-OH), 0.31 A newborn screening test by tandem mass spectro- nmol/ml (RR <0.06); and 3-OH-oleylcarnitine metry revealed elevation of 3-hydroxydicarboxylic (C18:1-OH), 0.51 nmol/ml (RR <0.04). derivatives of the C16:0 and C18:1 species (C16- We identified 2 novel mutations in theHADHB OH: 1.17 µmol/L, cut-off <0.07; C18:1-OH: 0.44 gene of the patient with MTP deficiency belonging µmol/L, cut-off <0.07) (Fig. 1). Plasma amino acid to the second phenotype as described above. profiling produced nonspecific findings, and urine Specifically, the patient was a compound organic acids revealed increases of adipic acid and heterozygote for c.358dupT and c.1364T>G 402 Annals of Clinical & Laboratory Science, vol. 39, no. 4, 2009 Fig. 2. Direct sequencing of the HADHB gene in the patient revealed 2 novel mutation: c.358dupT (p.A120CfsX8) and c.1364T>G (p.V455G). The patient’s father was heterozygous for the c.358dupT mutation and his mother was a carrier for the c.1364T>G mutation. mutations of the HADHB gene (Table 2). An exonic Discussion single T duplication at c.358 in exon 7 created a novel early termination codon (p.A120CfsX8) We have identified 2 novelHADHB mutations in a while the c.1364T>G transition resulted in an neonate affected by MTP complex deficiency. amino acid substitution of Val to Gly at codon 455 Valine, with a hydropathy index of 4.2, is one of (p.V455G) in exon 15 (reference sequence from the most hydrophobic amino acids [8].
Recommended publications
  • Diapositiva 1
    ns 10 A Unmethylated C Methylated ) 8 Normal Normal Tissue Cervix Esophagus 4 cervical esophageal a.u. * *** * *** ( 6 TargetID MAPINFO Position Ca-Ski HeLa SW756 tissue COLO-680N KYSE-180 OACM 5.1C tissue cg04255070 22851591 TSS1500 0.896 0.070 0.082 0.060 0.613 0.622 0.075 0.020 2 (log2) 4 cg01593340 22851587 TSS1500 0.826 0.055 0.051 0.110 0.518 0.518 0.034 0.040 cg16113692 22851502 TSS200 0.964 0.073 0.072 0.030 0.625 0.785 0.018 0.010 2 0 cg26918510 22851422 TSS200 0.985 0.019 0.000 0.000 0.711 0.961 0.010 0.060 expression cg26821579 22851416 TSS200 0.988 0.083 0.058 0.000 0.387 0.955 0.021 0.050 TRMT12 mRNA Expression mRNA TRMT12 0 cg01129966 22851401 TSS200 0.933 0.039 0.077 0.020 0.815 0.963 0.078 0.010 -2 cg25421615 22851383 TSS200 0.958 0.033 0.006 0.000 0.447 0.971 0.037 0.020 mRNA cg17953636 22851321 1stExon 0.816 0.092 0.099 0.080 0.889 0.750 0.136 0.030 -4 Methylated SVIP Unmethylated SVIP relative expression (a.u.) expression relative SVIP D Cervix Esophagus HNC Meth ) HNC Unmeth Cervix Meth 3.0 *** Cervix Unmeth *** Esophagus Meth a.u. ( 2.5 CaCaEsophagus-Ski-Ski Unmeth COLO-680N Haematological Meth TSS B TSS Haematological Unmeth 2.0 -244 bp +104 bp 244 bp +104 bp 1.5 ** * expression -SVIP 1.0 HeLa KYSE-180 HeLa TSS TSS 0.5 -ACTB 244 bp +104 bp - 244 bp +104 bp mRNA 0.0 HeLa SW756 Ca-Ski SW756 SW756 OACM 5.1C TSS KYSE-180 TSS COLO-680NOACM 5.1 C - 244 bp +104 bp 244 bp +104 bp E ) 3.0 * Ca-Ski COLO-680N WT TSS TSS 2.0 a.u.
    [Show full text]
  • Altered Expression and Function of Mitochondrial Я-Oxidation Enzymes
    0031-3998/01/5001-0083 PEDIATRIC RESEARCH Vol. 50, No. 1, 2001 Copyright © 2001 International Pediatric Research Foundation, Inc. Printed in U.S.A. Altered Expression and Function of Mitochondrial ␤-Oxidation Enzymes in Juvenile Intrauterine-Growth-Retarded Rat Skeletal Muscle ROBERT H. LANE, DAVID E. KELLEY, VLADIMIR H. RITOV, ANNA E. TSIRKA, AND ELISA M. GRUETZMACHER Department of Pediatrics, UCLA School of Medicine, Mattel Children’s Hospital at UCLA, Los Angeles, California 90095, U.S.A. [R.H.L.]; and Departments of Internal Medicine [D.E.K., V.H.R.] and Pediatrics [R.H.L., A.E.T., E.M.G.], University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213, U.S.A. ABSTRACT Uteroplacental insufficiency and subsequent intrauterine creased in IUGR skeletal muscle mitochondria, and isocitrate growth retardation (IUGR) affects postnatal metabolism. In ju- dehydrogenase activity was unchanged. Interestingly, skeletal venile rats, IUGR alters skeletal muscle mitochondrial gene muscle triglycerides were significantly increased in IUGR skel- expression and reduces mitochondrial NADϩ/NADH ratios, both etal muscle. We conclude that uteroplacental insufficiency alters of which affect ␤-oxidation flux. We therefore hypothesized that IUGR skeletal muscle mitochondrial lipid metabolism, and we gene expression and function of mitochondrial ␤-oxidation en- speculate that the changes observed in this study play a role in zymes would be altered in juvenile IUGR skeletal muscle. To test the long-term morbidity associated with IUGR. (Pediatr Res 50: this hypothesis, mRNA levels of five key mitochondrial enzymes 83–90, 2001) (carnitine palmitoyltransferase I, trifunctional protein of ␤-oxi- dation, uncoupling protein-3, isocitrate dehydrogenase, and mi- Abbreviations tochondrial malate dehydrogenase) and intramuscular triglycer- CPTI, carnitine palmitoyltransferase I ides were quantified in 21-d-old (preweaning) IUGR and control IUGR, intrauterine growth retardation rat skeletal muscle.
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Isocitrate Dehydrogenase Activity Assay Kit (MAK062)
    Isocitrate Dehydrogenase Activity Assay Kit Catalog Number MAK062 Storage Temperature –20 C TECHNICAL BULLETIN Product Description Developer 1 vl Isocitrate dehydrogenase (IDH) catalyzes the Catalog Number MAK062E conversion of isocitrate to -ketoglutarate. In eukaryotes, there are three isozymes of IDH, the IDH Positive Control (NADP+) 20 L mitochondrial IDH2 and IDH3, and the cytoplasmic/ Catalog Number MAK062F peroxisomal IDH1. All three IDH family members require the presence of a divalent cation (Mg2+ or Mn2+) NADH Standard, 0.5 mole 1 vl and either the electron-accepting cofactor NADP+ (IDH1 Catalog Number MAK062G and IDH2) or NAD+ (IDH3) for their enzymatic activity. IDH1 and IDH2 mutations resulting in neomorphic Reagents and Equipment Required but Not enzymatic activity are found in certain cancers such as Provided. glioblastoma, acute myeloid leukemia, and colon 96 well flat-bottom plate – It is recommended to use cancer. This neoactivity shows a change in the clear plates for colorimetric assays. substrate specificity resulting in the conversion of Spectrophotometric multiwell plate reader -ketoglutarate to 2-hydroxyglutarate. Mutations in IDH family members are also associated with Ollier disease Precautions and Disclaimer and Maffucci syndrome. This product is for R&D use only, not for drug, household, or other uses. Please consult the Material The Isocitrate Dehydrogenase Activity Assay kit Safety Data Sheet for information regarding hazards provides a simple and direct procedure for measuring and safe handling practices. + + + NADP -dependent, NAD -dependent, or both NADP + and NAD -dependent IDH activity in a variety of Preparation Instructions samples. IDH activity is determined using isocitrate as Briefly centrifuge vials before opening.
    [Show full text]
  • Role of De Novo Cholesterol Synthesis Enzymes in Cancer Jie Yang1,2, Lihua Wang1,2, Renbing Jia1,2
    Journal of Cancer 2020, Vol. 11 1761 Ivyspring International Publisher Journal of Cancer 2020; 11(7): 1761-1767. doi: 10.7150/jca.38598 Review Role of de novo cholesterol synthesis enzymes in cancer Jie Yang1,2, Lihua Wang1,2, Renbing Jia1,2 1. Department of Ophthalmology, Ninth People’s Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 2. Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China. Corresponding authors: Renbing Jia, [email protected] and Lihua Wang, [email protected]. Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai 200011, China © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.07.21; Accepted: 2019.11.30; Published: 2020.01.17 Abstract Despite extensive research in the cancer field, cancer remains one of the most prevalent diseases. There is an urgent need to identify specific targets that are safe and effective for the treatment of cancer. In recent years, cancer metabolism has come into the spotlight in cancer research. Lipid metabolism, especially cholesterol metabolism, plays a critical role in membrane synthesis as well as lipid signaling in cancer. This review focuses on the contribution of the de novo cholesterol synthesis pathway to tumorigenesis, cancer progression and metastasis. In conclusion, cholesterol metabolism could be an effective target for novel anticancer treatment. Key words: metabolic reprogramming, de novo cholesterol synthesis, cancer progress Introduction Over the past few decades, numerous published that cholesterol plays a critical role in cancer studies have focused on cancer cell metabolism and progression15-19.
    [Show full text]
  • Isocitrate Dehydrogenase 1 (NADP+) (I5036)
    Isocitrate Dehydrogenase 1 (NADP+), human recombinant, expressed in Escherichia coli Catalog Number I5036 Storage Temperature –20 °C CAS RN 9028-48-2 IDH1 and IDH2 have frequent genetic alterations in EC 1.1.1.42 acute myeloid leukemia4 and better understanding of Systematic name: Isocitrate:NADP+ oxidoreductase these mutations may lead to an improvement of (decarboxylating) individual cancer risk assessment.6 In addition other studies have shown loss of IDH1 in bladder cancer Synonyms: IDH1, cytosolic NADP(+)-dependent patients during tumor development suggesting this may isocitrate dehydrogenase, isocitrate:NADP+ be involved in tumor progression and metastasis.7 oxidoreductase (decarboxylating), Isocitric Dehydrogenase, ICD1, PICD, IDPC, ICDC, This product is lyophilized from a solution containing oxalosuccinate decarboxylase Tris-HCl, pH 8.0, with trehalose, ammonium sulfate, and DTT. Product Description Isocitrate dehydrogenase (NADP+) [EC 1.1.1.42] is a Purity: ³90% (SDS-PAGE) Krebs cycle enzyme, which converts isocitrate to a-ketoglutarate. The flow of isocitrate through the Specific activity: ³80 units/mg protein glyoxylate bypass is regulated by phosphorylation of isocitrate dehydrogenase, which competes for a Unit definition: 1 unit corresponds to the amount of 1 common substrate (isocitrate) with isocitrate lyase. enzyme, which converts 1 mmole of DL-isocitrate to The activity of the enzyme is dependent on the a-ketoglutarate per minute at pH 7.4 and 37 °C (NADP formation of a magnesium or manganese-isocitrate as cofactor). The activity is measured by observing the 2 complex. reduction of NADP to NADPH at 340 nm in the 7 presence of 4 mM DL-isocitrate and 2 mM MnSO4.
    [Show full text]
  • RESEARCH COMMUNICATION HADHA Is a Potential Predictor Of
    HADHA is a Potential Predictor of the Response to Platinum-based Chemotherapy RESEARCH COMMUNICATION HADHA is a Potential Predictor of Response to Platinum-based Chemotherapy for Lung Cancer Taihei Kageyama1, Ryo Nagashio1, 2, Shinichiro Ryuge 3, Toshihide Matsumoto1,5, Akira Iyoda4, Yukitoshi Satoh4, Noriyuki Masuda3, Shi-Xu Jiang5, Makoto Saegusa5, Yuichi Sato1, 2* Abstract To identify a cisplatin resistance predictor to reduce or prevent unnecessary side effects, we firstly established four cisplatin-resistant sub-lines and compared their protein profiles with cisplatin-sensitive parent lung cancer cell lines using two-dimensional gel electrophoresis. Between the cisplatin-resistant and -sensitive cells, a total of 359 protein spots were differently expressed (>1.5 fold), and 217 proteins (83.0%) were identified. We focused on a mitochondrial protein, hydroxyl-coenzyme A dehydrogenase/3-ketoacyl-coenzyme A thiolase/enoyl-coenzyme A hydratase alpha subunit (HADHA), which was increased in all cisplatin-resistant cells. Furthermore, pre- treated biopsy specimens taken from patients who showed resistance to platinum-based treatment showed a significantly higher positive rate for HADHA in all cases (p=0.00367), including non-small cell lung carcinomas (p=0.002), small-cell lung carcinomas (p=0.038), and adenocarcinomas (p=0.008). These results suggest that the expression of HADHA may be a useful marker to predict resistance to platinum-based chemotherapy in patients with lung cancer. Keywords: Cisplatin - HADHA - lung cancer - two-dimensional gel electrophoresis Asian Pacific J Cancer Prev, 12, 3457-3463 Introduction cisplatin resistance rose due to a decrease of blood flow in the tumor and increased DNA repair (Stewart, 2007), Lung cancer is the leading cause of cancer-related the mechanisms underlying cisplatin resistance have not death in the world, and the five-year overall survival rate yet been clarified, and an effective cisplatin resistance is still below 16% (Jemal et al., 2009).
    [Show full text]
  • Health Effects Support Document for Perfluorooctanoic Acid (PFOA)
    United States Office of Water EPA 822-R-16-003 Environmental Protection Mail Code 4304T May 2016 Agency Health Effects Support Document for Perfluorooctanoic Acid (PFOA) Perfluorooctanoic Acid – May 2016 i Health Effects Support Document for Perfluorooctanoic Acid (PFOA) U.S. Environmental Protection Agency Office of Water (4304T) Health and Ecological Criteria Division Washington, DC 20460 EPA Document Number: 822-R-16-003 May 2016 Perfluorooctanoic Acid – May 2016 ii BACKGROUND The Safe Drinking Water Act (SDWA), as amended in 1996, requires the Administrator of the U.S. Environmental Protection Agency (EPA) to periodically publish a list of unregulated chemical contaminants known or anticipated to occur in public water systems and that may require regulation under SDWA. The SDWA also requires the Agency to make regulatory determinations on at least five contaminants on the Contaminant Candidate List (CCL) every 5 years. For each contaminant on the CCL, before EPA makes a regulatory determination, the Agency needs to obtain sufficient data to conduct analyses on the extent to which the contaminant occurs and the risk it poses to populations via drinking water. Ultimately, this information will assist the Agency in determining the most appropriate course of action in relation to the contaminant (e.g., developing a regulation to control it in drinking water, developing guidance, or deciding not to regulate it). The PFOA health assessment was initiated by the Office of Water, Office of Science and Technology in 2009. The draft Health Effects Support Document for Perfluoroctanoic Acid (PFOA) was completed in 2013 and released for public comment in February 2014.
    [Show full text]
  • (LCHAD) Deficiency / Mitochondrial Trifunctional Protein (MTF) Deficiency
    Long chain acyl-CoA dehydrogenase (LCHAD) deficiency / Mitochondrial trifunctional protein (MTF) deficiency Contact details Introduction Regional Genetics Service Long chain acyl-CoA dehydrogenase (LCHAD) deficiency / mitochondrial trifunctional Levels 4-6, Barclay House protein (MTF) deficiency is an autosomal recessive disorder of mitochondrial beta- 37 Queen Square oxidation of fatty acids. The mitochondrial trifunctional protein is composed of 4 alpha London, WC1N 3BH and 4 beta subunits, which are encoded by the HADHA and HADHB genes, respectively. It is characterized by early-onset cardiomyopathy, hypoglycemia, T +44 (0) 20 7762 6888 neuropathy, and pigmentary retinopathy, and sudden death. There is also an infantile F +44 (0) 20 7813 8578 onset form with a hepatic Reye-like syndrome, and a late-adolescent onset form with primarily a skeletal myopathy. Tandem mass spectrometry of organic acids in urine, Samples required and carnitines in blood spots, allows the diagnosis to be unequivocally determined. An 5ml venous blood in plastic EDTA additional clinical complication can occur in the pregnant mothers of affected fetuses; bottles (>1ml from neonates) they may experience maternal acute fatty liver of pregnancy (AFLP) syndrome or Prenatal testing must be arranged hypertension/haemolysis, elevated liver enzymes and low platelets (HELLP) in advance, through a Clinical syndrome. Genetics department if possible. The genes encoding the HADHA and HADHB subunits are located on chromosome Amniotic fluid or CV samples 2p23.3. The pathogenic
    [Show full text]
  • Lipid Metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives
    cancers Review Lipid metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives 1, 1, 1 2 1 Laurence Pellerin y, Lorry Carrié y , Carine Dufau , Laurence Nieto , Bruno Ségui , 1,3 1, , 1, , Thierry Levade , Joëlle Riond * z and Nathalie Andrieu-Abadie * z 1 Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, tgrCS 53717, 31037 Toulouse CEDEX 1, France; [email protected] (L.P.); [email protected] (L.C.); [email protected] (C.D.); [email protected] (B.S.); [email protected] (T.L.) 2 Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Toulouse III Paul-Sabatier, UMR 5089, 205 Route de Narbonne, 31400 Toulouse, France; [email protected] 3 Laboratoire de Biochimie Métabolique, CHU Toulouse, 31059 Toulouse, France * Correspondence: [email protected] (J.R.); [email protected] (N.A.-A.); Tel.: +33-582-7416-20 (J.R.) These authors contributed equally to this work. y These authors jointly supervised this work. z Received: 15 September 2020; Accepted: 23 October 2020; Published: 27 October 2020 Simple Summary: Melanoma is a devastating skin cancer characterized by an impressive metabolic plasticity. Melanoma cells are able to adapt to the tumor microenvironment by using a variety of fuels that contribute to tumor growth and progression. In this review, the authors summarize the contribution of the lipid metabolic network in melanoma plasticity and aggressiveness, with a particular attention to specific lipid classes such as glycerophospholipids, sphingolipids, sterols and eicosanoids.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]
  • Is Glyceraldehyde-3-Phosphate Dehydrogenase a Central Redox Mediator?
    1 Is glyceraldehyde-3-phosphate dehydrogenase a central redox mediator? 2 Grace Russell, David Veal, John T. Hancock* 3 Department of Applied Sciences, University of the West of England, Bristol, 4 UK. 5 *Correspondence: 6 Prof. John T. Hancock 7 Faculty of Health and Applied Sciences, 8 University of the West of England, Bristol, BS16 1QY, UK. 9 [email protected] 10 11 SHORT TITLE | Redox and GAPDH 12 13 ABSTRACT 14 D-Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an immensely important 15 enzyme carrying out a vital step in glycolysis and is found in all living organisms. 16 Although there are several isoforms identified in many species, it is now recognized 17 that cytosolic GAPDH has numerous moonlighting roles and is found in a variety of 18 intracellular locations, but also is associated with external membranes and the 19 extracellular environment. The switch of GAPDH function, from what would be 20 considered as its main metabolic role, to its alternate activities, is often under the 21 influence of redox active compounds. Reactive oxygen species (ROS), such as 22 hydrogen peroxide, along with reactive nitrogen species (RNS), such as nitric oxide, 23 are produced by a variety of mechanisms in cells, including from metabolic 24 processes, with their accumulation in cells being dramatically increased under stress 25 conditions. Overall, such reactive compounds contribute to the redox signaling of the 26 cell. Commonly redox signaling leads to post-translational modification of proteins, 27 often on the thiol groups of cysteine residues. In GAPDH the active site cysteine can 28 be modified in a variety of ways, but of pertinence, can be altered by both ROS and 29 RNS, as well as hydrogen sulfide and glutathione.
    [Show full text]