An Ecological Basis for Dual Genetic Code Expansion in Marine Deltaproteobacteria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prokaryotic Community Structure and Activity of Sulfate Reducers in Production Water from High-Temperature Oil Reservoirs with and Without Nitrate Treatment
Prokaryotic community structure and activity of sulfate reducers in production water from high-temperature oil reservoirs with and without nitrate treatment Dr. Antje Gittel Dept. of Biological Sciences, Aarhus University ISMOS 2 Aarhus 2009 Introduction Hypothesis Results Conclusions Offshore oil production systems Separation Oil Gas Water Production Injection ~80 degC 50-60 degC Reservoir ISMOS 2, June 2009 Antje Gittel Introduction Hypothesis Results Conclusions Characteristics of the study sites Norway Halfdan • Injection of sulfate-rich seawater Denmark • High loads of organic carbon compounds in the reservoir Dan Enrichment of sulfate -reducing prokaryotes Danish Underground Consortium, Maersk Oil (SRP ) that produce H 2S Souring, plugging, biocorrosion, toxicity, ..... • Strategy to control SRP activity at Halfdan: Addition of nitrate to the injection water ISMOS 2, June 2009 Antje Gittel Introduction Hypothesis Results Conclusions Principles of SRP inhibition by nitrate addition (i) Stimulation of heterothrophic nitrate- reducing bacteria (hNRB ) that hNRB outcompete SRP for electron donors (ii) Activity of nitrate -reducing, sulfide - oxidizing bacteria (NR-SOB ) resulting in SRP NR-SOB a decreasing net production of H2S (iii) Increase in redox potential by the production of nitrite and nitrous oxides and thereby and inhibition of SRP ISMOS 2, June 2009 Antje Gittel Introduction Hypothesis Results Conclusions Compared to an untreated oil field (Dan), nitrate addition to the injection water at Halfdan stimulates the growth of hNRB and/or NR-SOB , resulting in: 1) A general change in the prokaryotic community composition, i.e. • Presence of competitive hNRB and NR-SOB and/or • Presence of SRP that are able to reduce nitrate instead of sulfate 2) A decrease in SRP abundance and activity and 3) A reduced net sulfide production. -
A Three-Component Microbial Consortium from Deep-Sea Salt-Saturated Anoxic Lake Thetis Links Anaerobic Glycine Betaine Degradation with Methanogenesis
Microorganisms 2015, 3, 500-517; doi:10.3390/microorganisms3030500 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Article A Three-Component Microbial Consortium from Deep-Sea Salt-Saturated Anoxic Lake Thetis Links Anaerobic Glycine Betaine Degradation with Methanogenesis Violetta La Cono 1, Erika Arcadi 1, Gina La Spada 1, Davide Barreca 2, Giuseppina Laganà 2, Ersilia Bellocco 2, Maurizio Catalfamo 1, Francesco Smedile 1, Enzo Messina 1, Laura Giuliano 1,3 and Michail M. Yakimov 1,* 1 Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina 98122, Italy; E-Mails: [email protected] (V.L.C.); [email protected] (E.A.); [email protected] (G.L.S.); [email protected] (M.C.); [email protected] (F.S.); [email protected] (E.M.); [email protected] (L.G.) 2 Department of Organic and Biological Chemistry, University of Messina, Salita Sperone 31, Villaggio S. Agata, Messina 98166, Italy; E-Mails: [email protected] (D.B.); [email protected] (G.L.); [email protected] (E.B.) 3 Mediterranean Science Commission (CIESM), 16 bd de Suisse, MC 98000, Monaco * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-090-6015-437. Academic Editors: Ricardo Amils and Elena González Toril Received: 1 July 2015 / Accepted: 1 September 2015 / Published: 9 September 2015 Abstract: Microbial communities inhabiting the deep-sea salt-saturated anoxic lakes of the Eastern Mediterranean operate under harsh physical-chemical conditions that are incompatible with the lifestyle of common marine microorganisms. -
The Journal of Nutrition 1968 Volume 95 No.1
THE JOURNAL OF NUTRITION* OFFICIAL ORGAN OF THE AMERICAN INSTITUTE OF NUTRITION R i c h a r d H . B a r n e s , Editor Graduate School of Nutrition Cornell University, Savage Hall Ithaca, New York H a r o l d H . W i l l i a m s E. N e i g e T o d h u n t e r Associate Editor Biographical Editor EDITORIAL BOARD S a m u e l J . F o m o n W i l l i a m N. P e a r s o n M . K . H o r w i t t P a u l M . N e w b e r n e F. H. K r a t z e r K e n d a l l W . K i n g B o y d L. O’D e l l H. N. M u n r o H e r b e r t P . S a r e t t H. E. S a u b e r l i c h D o r i s H o w e s C a l l o w a y G e o r g e G . G r a h a m R o s l y n B . A l f i n -S l a t e r J . M . B e l l W i l l i a m G . H o e k s t r a G e o r g e H . -
The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment
life Article The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment Sierra R. Athen, Shivangi Dubey and John A. Kyndt * College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA; [email protected] (S.R.A.); [email protected] (S.D.) * Correspondence: [email protected] Abstract: The Eastern Nebraska Salt Marshes contain a unique, alkaline, and saline wetland area that is a remnant of prehistoric oceans that once covered this area. The microbial composition of these salt marshes, identified by metagenomic sequencing, appears to be different from well-studied coastal salt marshes as it contains bacterial genera that have only been found in cold-adapted, alkaline, saline environments. For example, Rubribacterium was only isolated before from an Eastern Siberian soda lake, but appears to be one of the most abundant bacteria present at the time of sampling of the Eastern Nebraska Salt Marshes. Further enrichment, followed by genome sequencing and metagenomic binning, revealed the presence of several halophilic, alkalophilic bacteria that play important roles in sulfur and carbon cycling, as well as in nitrogen fixation within this ecosystem. Photosynthetic sulfur bacteria, belonging to Prosthecochloris and Marichromatium, and chemotrophic sulfur bacteria of the genera Sulfurimonas, Arcobacter, and Thiomicrospira produce valuable oxidized sulfur compounds for algal and plant growth, while alkaliphilic, sulfur-reducing bacteria belonging to Sulfurospirillum help balance the sulfur cycle. This metagenome-based study provides a baseline to understand the complex, but balanced, syntrophic microbial interactions that occur in this unique Citation: Athen, S.R.; Dubey, S.; inland salt marsh environment. -
Microbial Diversity Under Extreme Euxinia: Mahoney Lake, Canada V
Geobiology (2012), 10, 223–235 DOI: 10.1111/j.1472-4669.2012.00317.x Microbial diversity under extreme euxinia: Mahoney Lake, Canada V. KLEPAC-CERAJ,1,2 C. A. HAYES,3 W. P. GILHOOLY,4 T. W. LYONS,5 R. KOLTER2 AND A. PEARSON3 1Department of Molecular Genetics, Forsyth Institute, Cambridge, MA, USA 2Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA 3Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 4Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO, USA 5Department of Earth Sciences, University of California, Riverside, CA, USA ABSTRACT Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and ⁄ or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distribu- tions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteo- bacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomi- crobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion. -
Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2014-07-01 Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules Ryan M. Taylor Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biochemistry Commons, and the Chemistry Commons BYU ScholarsArchive Citation Taylor, Ryan M., "Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules" (2014). Theses and Dissertations. 5585. https://scholarsarchive.byu.edu/etd/5585 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules Ryan M. Taylor A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy John T. Prince, Chair Mark Clement Steven W. Graves Barry M. Willardson Dixon J. Woodbury Department of Chemistry and Biochemistry Brigham Young University July 2014 Copyright © 2014 Ryan M. Taylor All Rights Reserved ABSTRACT Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules Ryan M. Taylor Department of Chemistry and Biochemistry, BYU Doctor of Philosophy Biological research has benefitted greatly from the advent of omic methods. For many biomolecules, mass spectrometry (MS) methods are most widely employed due to the sensitivity which allows low quantities of sample and the speed which allows analysis of complex samples. Improvements in instrument and sample preparation techniques create opportunities for large scale experimentation. -
Phosphine Stabilizers for Oxidoreductase Enzymes
Europäisches Patentamt *EP001181356B1* (19) European Patent Office Office européen des brevets (11) EP 1 181 356 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12N 9/02, C12P 7/00, of the grant of the patent: C12P 13/02, C12P 1/00 07.12.2005 Bulletin 2005/49 (86) International application number: (21) Application number: 00917839.3 PCT/US2000/006300 (22) Date of filing: 10.03.2000 (87) International publication number: WO 2000/053731 (14.09.2000 Gazette 2000/37) (54) Phosphine stabilizers for oxidoreductase enzymes Phosphine Stabilisatoren für oxidoreduktase Enzymen Phosphines stabilisateurs des enzymes ayant une activité comme oxidoreducase (84) Designated Contracting States: (56) References cited: DE FR GB NL US-A- 5 777 008 (30) Priority: 11.03.1999 US 123833 P • ABRIL O ET AL.: "Hybrid organometallic/enzymatic catalyst systems: (43) Date of publication of application: Regeneration of NADH using dihydrogen" 27.02.2002 Bulletin 2002/09 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 104, no. 6, 1982, pages 1552-1554, (60) Divisional application: XP002148357 DC US cited in the application 05021016.0 • BHADURI S ET AL: "Coupling of catalysis by carbonyl clusters and dehydrigenases: (73) Proprietor: EASTMAN CHEMICAL COMPANY Redution of pyruvate to L-lactate by dihydrogen" Kingsport, TN 37660 (US) JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 120, no. 49, 11 October 1998 (72) Inventors: (1998-10-11), pages 12127-12128, XP002148358 • HEMBRE, Robert, T. DC US cited in the application Johnson City, TN 37601 (US) • OTSUKA K: "Regeneration of NADH and ketone • WAGENKNECHT, Paul, S. hydrogenation by hydrogen with the San Jose, CA 95129 (US) combination of hydrogenase and alcohol • PENNEY, Jonathan, M. -
H-Dependent Enzymes for Reductive Amination
NAD(P)H-Dependent Enzymes for Reductive Amination: Active Site Description and Carbonyl-Containing Compound Spectrum Laurine Ducrot, Megan Bennett, Gideon Grogan, Carine Vergne-Vaxelaire To cite this version: Laurine Ducrot, Megan Bennett, Gideon Grogan, Carine Vergne-Vaxelaire. NAD(P)H-Dependent En- zymes for Reductive Amination: Active Site Description and Carbonyl-Containing Compound Spec- trum. Advanced Synthesis and Catalysis, Wiley-VCH Verlag, In press, 10.1002/adsc.202000870. hal-02945508 HAL Id: hal-02945508 https://hal.archives-ouvertes.fr/hal-02945508 Submitted on 22 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW DOI: 10.1002/adsc.201((will be filled in by the editorial staff)) NAD(P)H-Dependent Enzymes for Reductive Amination: Active Site Description and Carbonyl-Containing Compound Spectrum. Laurine Ducrot,a Megan Bennett,b Gideon Groganb and Carine Vergne- Vaxelairea* a Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris- Saclay, 91057 Evry, France b York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK. Received: ((will be filled in by the editorial staff)) Abstract. The biocatalytic asymmetric synthesis of amines In this review we summarize the development of such from carbonyl compounds and amine precursors presents an enzymes from the engineering of amino acid dehydrogenases important advance in sustainable synthetic chemistry. -
Phylogenetic and Functional Characterization of Symbiotic Bacteria in Gutless Marine Worms (Annelida, Oligochaeta)
Phylogenetic and functional characterization of symbiotic bacteria in gutless marine worms (Annelida, Oligochaeta) Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften -Dr. rer. nat.- dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Anna Blazejak Oktober 2005 Die vorliegende Arbeit wurde in der Zeit vom März 2002 bis Oktober 2005 am Max-Planck-Institut für Marine Mikrobiologie in Bremen angefertigt. 1. Gutachter: Prof. Dr. Rudolf Amann 2. Gutachter: Prof. Dr. Ulrich Fischer Tag des Promotionskolloquiums: 22. November 2005 Contents Summary ………………………………………………………………………………….… 1 Zusammenfassung ………………………………………………………………………… 2 Part I: Combined Presentation of Results A Introduction .…………………………………………………………………… 4 1 Definition and characteristics of symbiosis ...……………………………………. 4 2 Chemoautotrophic symbioses ..…………………………………………………… 6 2.1 Habitats of chemoautotrophic symbioses .………………………………… 8 2.2 Diversity of hosts harboring chemoautotrophic bacteria ………………… 10 2.2.1 Phylogenetic diversity of chemoautotrophic symbionts …………… 11 3 Symbiotic associations in gutless oligochaetes ………………………………… 13 3.1 Biogeography and phylogeny of the hosts …..……………………………. 13 3.2 The environment …..…………………………………………………………. 14 3.3 Structure of the symbiosis ………..…………………………………………. 16 3.4 Transmission of the symbionts ………..……………………………………. 18 3.5 Molecular characterization of the symbionts …..………………………….. 19 3.6 Function of the symbionts in gutless oligochaetes ..…..…………………. 20 4 Goals of this thesis …….………………………………………………………….. -
An Updated Genome Annotation for the Model Marine Bacterium Ruegeria Pomeroyi DSS-3 Adam R Rivers, Christa B Smith and Mary Ann Moran*
Rivers et al. Standards in Genomic Sciences 2014, 9:11 http://www.standardsingenomics.com/content/9/1/11 SHORT GENOME REPORT Open Access An Updated genome annotation for the model marine bacterium Ruegeria pomeroyi DSS-3 Adam R Rivers, Christa B Smith and Mary Ann Moran* Abstract When the genome of Ruegeria pomeroyi DSS-3 was published in 2004, it represented the first sequence from a heterotrophic marine bacterium. Over the last ten years, the strain has become a valuable model for understanding the cycling of sulfur and carbon in the ocean. To ensure that this genome remains useful, we have updated 69 genes to incorporate functional annotations based on new experimental data, and improved the identification of 120 protein-coding regions based on proteomic and transcriptomic data. We review the progress made in understanding the biology of R. pomeroyi DSS-3 and list the changes made to the genome. Keywords: Roseobacter,DMSP Introduction Genome properties Ruegeria pomeroyi DSS-3 is an important model organ- The R. pomeroyi DSS-3 genome contains a 4,109,437 bp ism in studies of the physiology and ecology of marine circular chromosome (5 bp shorter than previously re- bacteria [1]. It is a genetically tractable strain that has ported [1]) and a 491,611 bp circular megaplasmid, with been essential for elucidating bacterial roles in the mar- a G + C content of 64.1 (Table 3). A detailed description ine sulfur and carbon cycles [2,3] and the biology and of the genome is found in the original article [1]. genomics of the marine Roseobacter clade [4], a group that makes up 5–20% of bacteria in ocean surface waters [5,6]. -
Tree Scale: 1 D Bacteria P Desulfobacterota C Jdfr-97 O Jdfr-97 F Jdfr-97 G Jdfr-97 S Jdfr-97 Sp002010915 WGS ID MTPG01
d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermodesulfobacterium s Thermodesulfobacterium commune WGS ID JQLF01 d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermosulfurimonas s Thermosulfurimonas dismutans WGS ID LWLG01 d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f DG-60 g DG-60 s DG-60 sp001304365 WGS ID LJNA01 ID WGS sp001304365 DG-60 s DG-60 g DG-60 f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f Desulfofervidaceae g Desulfofervidus s Desulfofervidus auxilii RS GCF 001577525 1 001577525 GCF RS auxilii Desulfofervidus s Desulfofervidus g Desulfofervidaceae f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfatatoraceae g Thermodesulfatator s Thermodesulfatator atlanticus WGS ID ATXH01 d Bacteria p Desulfobacterota c Desulfobacteria o Desulfatiglandales f NaphS2 g 4484-190-2 s 4484-190-2 sp002050025 WGS ID MVDB01 ID WGS sp002050025 4484-190-2 s 4484-190-2 g NaphS2 f Desulfatiglandales o Desulfobacteria c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g QOAM01 s QOAM01 sp003978075 WGS ID QOAM01 d Bacteria p Desulfobacterota c BSN033 o UBA8473 f UBA8473 g UBA8473 s UBA8473 sp002782605 WGS -
1 Characterization of Sulfur Metabolizing Microbes in a Cold Saline Microbial Mat of the Canadian High Arctic Raven Comery Mast
Characterization of sulfur metabolizing microbes in a cold saline microbial mat of the Canadian High Arctic Raven Comery Master of Science Department of Natural Resource Sciences Unit: Microbiology McGill University, Montreal July 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master in Science © Raven Comery 2015 1 Abstract/Résumé The Gypsum Hill (GH) spring system is located on Axel Heiberg Island of the High Arctic, perennially discharging cold hypersaline water rich in sulfur compounds. Microbial mats are found adjacent to channels of the GH springs. This thesis is the first detailed analysis of the Gypsum Hill spring microbial mats and their microbial diversity. Physicochemical analyses of the water saturating the GH spring microbial mat show that in summer it is cold (9°C), hypersaline (5.6%), and contains sulfide (0-10 ppm) and thiosulfate (>50 ppm). Pyrosequencing analyses were carried out on both 16S rRNA transcripts (i.e. cDNA) and genes (i.e. DNA) to investigate the mat’s community composition, diversity, and putatively active members. In order to investigate the sulfate reducing community in detail, the sulfite reductase gene and its transcript were also sequenced. Finally, enrichment cultures for sulfate/sulfur reducing bacteria were set up and monitored for sulfide production at cold temperatures. Overall, sulfur metabolism was found to be an important component of the GH microbial mat system, particularly the active fraction, as 49% of DNA and 77% of cDNA from bacterial 16S rRNA gene libraries were classified as taxa capable of the reduction or oxidation of sulfur compounds.