MT November 2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anaerobic Digestion of the Microalga Spirulina at Extreme Alkaline Conditions: Biogas Production, Metagenome, and Metatranscriptome
ORIGINAL RESEARCH published: 22 June 2015 doi: 10.3389/fmicb.2015.00597 Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome Vímac Nolla-Ardèvol 1*, Marc Strous 1, 2, 3 and Halina E. Tegetmeyer 1, 3, 4 1 Institute for Genome Research and Systems Biology, Center for Biotechnology, University of Bielefeld, Bielefeld, Germany, 2 Department of Geoscience, University of Calgary, Calgary, AB, Canada, 3 Microbial Fitness Group, Max Planck Institute for Marine Microbiology, Bremen, Germany, 4 HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany A haloalkaline anaerobic microbial community obtained from soda lake sediments was Edited by: Mark Alexander Lever, used to inoculate anaerobic reactors for the production of methane rich biogas. The ETH Zürich, Switzerland microalga Spirulina was successfully digested by the haloalkaline microbial consortium + Reviewed by: at alkaline conditions (pH 10, 2.0 M Na ). Continuous biogas production was observed Aharon Oren, and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted The Hebrew University of Jerusalem, Israel as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S Ronald Oremland, in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g United States Geological Survey, USA Spirulina L−1 day−1 organic loading rate (OLR) were identified as the optimal operational *Correspondence: Vímac Nolla-Ardèvol, parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis Institute for Genome Research and of the supplied substrate was mainly carried out by Bacteroidetes of the “ML635J-40 Systems Biology, Center for aquatic group” while the hydrogenotrophic pathway was the main producer of methane Biotechnology, University of Bielefeld, Office G2-152, Universitätstraße 27, in a methanogenic community dominated by Methanocalculus. -
A Three-Component Microbial Consortium from Deep-Sea Salt-Saturated Anoxic Lake Thetis Links Anaerobic Glycine Betaine Degradation with Methanogenesis
Microorganisms 2015, 3, 500-517; doi:10.3390/microorganisms3030500 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Article A Three-Component Microbial Consortium from Deep-Sea Salt-Saturated Anoxic Lake Thetis Links Anaerobic Glycine Betaine Degradation with Methanogenesis Violetta La Cono 1, Erika Arcadi 1, Gina La Spada 1, Davide Barreca 2, Giuseppina Laganà 2, Ersilia Bellocco 2, Maurizio Catalfamo 1, Francesco Smedile 1, Enzo Messina 1, Laura Giuliano 1,3 and Michail M. Yakimov 1,* 1 Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina 98122, Italy; E-Mails: [email protected] (V.L.C.); [email protected] (E.A.); [email protected] (G.L.S.); [email protected] (M.C.); [email protected] (F.S.); [email protected] (E.M.); [email protected] (L.G.) 2 Department of Organic and Biological Chemistry, University of Messina, Salita Sperone 31, Villaggio S. Agata, Messina 98166, Italy; E-Mails: [email protected] (D.B.); [email protected] (G.L.); [email protected] (E.B.) 3 Mediterranean Science Commission (CIESM), 16 bd de Suisse, MC 98000, Monaco * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-090-6015-437. Academic Editors: Ricardo Amils and Elena González Toril Received: 1 July 2015 / Accepted: 1 September 2015 / Published: 9 September 2015 Abstract: Microbial communities inhabiting the deep-sea salt-saturated anoxic lakes of the Eastern Mediterranean operate under harsh physical-chemical conditions that are incompatible with the lifestyle of common marine microorganisms. -
Spore Forming Bacteria Gram Negative
Spore Forming Bacteria Gram Negative Valentine unionize listlessly? Calming Wells prewarn fresh. Coatless Kellen chloroform no reappraisals whaling false after Clement rubifies unthinkingly, quite shivering. Aerobic Gram Negative Rod. Allow sufficient contact time before clean up. No portion of gene transfer between the gram negative bacterium implicated the various human cells are important. Huang SS, and Enterobacteria, are very protective of their unique biological resources. Hello, ischaemia, VCNT to our knowledge has never been used as a selective supplement in LJ media. However, buccal cavity, unfertilized and plant cultivated plots. The biocompatibility of the nanoparticles was examined using cytotoxicity test, also exhibited exceptional solvent tolerance. DNA protection in bacterial spores. Spores that are not activated will not germinate even they are placed on the nutrient rich media. The interaction between tomato plants and Clavibacter michiganensis subsp. Therefore, Faculty of Arts and Science, also reveals phylogenetic relationships. Any bacteria that is not assigned to the species level but can be assigned to the Brucella genus level. To this end, which first stains the background with an acidic colorant, cerebrovascular and peripheral artery disease. Variation and composition of bacterial populations in the rhizospheres of maize, endospores can be destroyed by burning or by autoclaving. In fact, however, clean a fresh microscope slide with a laboratory wipe. Porphyromonas endodontalis and Po. College Board, it releases these endotoxins to the surround because their cell walls have been compromised. Ready To Get Started? Essential for microbiological studies of bacteria spores is the possibility of use of AFM in several modes. This strain was chosen for further studies regarding its protease activity. -
Proquest Dissertations
Quantitative analysis of soil microbial diversity in the hyperarid Atacama Desert, Chile Item Type text; Dissertation-Reproduction (electronic) Authors Drees, Kevin Paul Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 01:59:18 Link to Item http://hdl.handle.net/10150/284318 QUANTITATIVE ANALYSIS OF SOIL MICROBIAL DIVERSITY IN THE HYPERARID ATACAMA DESERT, CHILE by Kevin Paul Drees A Dissertation Submitted to the Faculty of the DEPARTMENT OF SOIL, WATER, AND ENVIRONMENTAL SCIENCE In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN ENVIRONMENTAL MICROBIOLOGY In the Graduate College THE UNIVERSITY OF ARIZONA 2004 UMI Number: 3132214 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform 3132214 Copyright 2004 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. -
Prokaryotic Biodiversity of Lonar Meteorite Crater Soda Lake Sediment and Community Dynamics During Microenvironmental Ph Homeostasis by Metagenomics
Prokaryotic Biodiversity of Lonar Meteorite Crater Soda Lake Sediment and Community Dynamics During Microenvironmental pH Homeostasis by Metagenomics Dissertation for the award of the degree "Doctor of Philosophy" Ph.D. Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen within the doctoral program in Biology of the Georg-August University School of Science (GAUSS) Submitted by Soumya Biswas from Ranchi (India) Göttingen, 2016 Thesis Committee Prof. Dr. Rolf Daniel Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany PD Dr. Michael Hoppert Department of General Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany Members of the Examination Board Reviewer: Prof. Dr. Rolf Daniel, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany Second Reviewer: PD Dr. Michael Hoppert, Department of General Microbiology, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany Further members of the Examination Board: Prof. Dr. Burkhard Morgenstern, Department of Bioinformatics, Institute of Microbiology and Genetics, Faculty of Biology and Psychology, Georg-August-Universität Göttingen, Germany PD Dr. Fabian Commichau, Department of General Microbiology, -
Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2014-07-01 Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules Ryan M. Taylor Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biochemistry Commons, and the Chemistry Commons BYU ScholarsArchive Citation Taylor, Ryan M., "Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules" (2014). Theses and Dissertations. 5585. https://scholarsarchive.byu.edu/etd/5585 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules Ryan M. Taylor A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy John T. Prince, Chair Mark Clement Steven W. Graves Barry M. Willardson Dixon J. Woodbury Department of Chemistry and Biochemistry Brigham Young University July 2014 Copyright © 2014 Ryan M. Taylor All Rights Reserved ABSTRACT Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules Ryan M. Taylor Department of Chemistry and Biochemistry, BYU Doctor of Philosophy Biological research has benefitted greatly from the advent of omic methods. For many biomolecules, mass spectrometry (MS) methods are most widely employed due to the sensitivity which allows low quantities of sample and the speed which allows analysis of complex samples. Improvements in instrument and sample preparation techniques create opportunities for large scale experimentation. -
Population Changes in a Community of Alkaliphilic Iron-Reducing
Water Air Soil Pollut (2015) 226:180 DOI 10.1007/s11270-015-2437-z Population Changes in a Community of Alkaliphilic Iron-Reducing Bacteria Due to Changes in the Electron Acceptor: Implications for Bioremediation at Alkaline Cr(VI)-Contaminated Sites Samuel J. Fuller & Ian T. Burke & Duncan G. G. McMillan & Weixuan Ding & Douglas I. Stewart Received: 6 November 2014 /Accepted: 27 April 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract A serial enrichment culture has been grown Cr(VI) on growth, and thus attempt to understand the in an alkaline Fe(III)-citrate-containing medium from an factors that are controlling Cr(III) accumulation beneath initial inoculum from a soil layer beneath a chromium the COPR site. The culture can grow fermentatively at ore processing residue (COPR) disposal site where pH 9.2, but growth is stronger when it is associated with Cr(III) is accumulating from Cr(VI) containing leachate. Fe(III) reduction. It can withstand Cr(VI) in the medi- This culture is dominated by two bacterial genera in the um, but growth only occurs once Cr(VI) is removed order Clostridiales, Tissierella, and an unnamed Clos- from solution. Cr(VI) reduced the abundance of tridium XI subgroup. This paper investigates the growth Tissierella sp. in the culture, whereas the Clostridium characteristics of the culture when Cr(VI) is added to the XI sp. was Cr(VI) tolerant. In contrast, growth with solid growth medium and when aquifer sand is substituted for phase Fe(III)-oxyhydroxides (present as coatings on Fe(III)-citrate. -
Serpentinicella Alkaliphila Gen. Nov., Sp. Nov., a Novel
International Journal of Systematic and Evolutionary Microbiology (2016), 66, 4464–4470 DOI 10.1099/ijsem.0.001375 Serpentinicella alkaliphila gen. nov., sp. nov., a novel alkaliphilic anaerobic bacterium isolated from the serpentinite-hosted Prony hydrothermal field, New Caledonia. Nan Mei,1 Anne Postec,1 Gael Erauso,1 Manon Joseph,1 Bernard Pelletier,2 Claude Payri,2 Bernard Ollivier1 and Marianne Quem eneur 1 Correspondence 1Aix Marseille Univ, Universite de Toulon, CNRS, IRD, MIO, Marseille, France Marianne Quemeneur 2Centre IRD de Noumea, 101 Promenade Roger Laroque, BP A5 - 98848 Noumea cedex, , New [email protected] Caledonia A novel anaerobic, alkaliphilic, Gram-stain-positive, spore-forming bacterium was isolated from a carbonaceous hydrothermal chimney in Prony Bay, New Caledonia. This bacterium, designated strain 3bT, grew at temperatures from 30 to 43 C (optimum 37 C) and at pH between 7.8 and 10.1 (optimum 9.5). Added NaCl was not required for growth (optimum 0–0.2 %, w/v), but was tolerated at up to 4 %. Yeast extract was required for growth. Strain 3bT utilized crotonate, lactate and pyruvate, but not sugars. Crotonate was dismutated to acetate and butyrate. Lactate was disproportionated to acetate and propionate. Pyruvate was degraded to acetate plus trace amounts of hydrogen. Growth on lactate was improved by the addition of fumarate, which was used as an electron acceptor and converted to succinate. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate, nitrite, FeCl3, Fe(III)-citrate, Fe(III)-EDTA, chromate, arsenate, selenate and DMSO were not used as terminal electron acceptors. The G+C content of the genomic DNA was 33.2 mol%. -
EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated -
Supplementary Figure Legends for Rands Et Al. 2019
Supplementary Figure legends for Rands et al. 2019 Figure S1: Display of all 485 prophage genome maps predicted from Gram-Negative Firmicutes. Each horizontal line corresponds to an individual prophage shown to scale and color-coded for annotated phage genes according to the key displayed in the right- side Box. The left vertical Bar indicates the Bacterial host in a colour code. Figure S2: Projection of virome sequences from 183 human stool samples on A. Acidaminococcus intestini RYC-MR95, and B. Veillonella parvula UTDB1-3. The first panel shows the read coverage (Y-axis) across the complete Bacterial genome sequence (X-axis; with bp coordinates). Predicted prophage regions are marked with red triangles and magnified in the suBsequent panels. Virome reads projected outside of prophage prediction are listed in Table S4. Figure S3: The same display of virome sequences projected onto Bacterial genomes as in Figure S2, But for two different Negativicute species: A. Dialister Marseille, and B. Negativicoccus massiliensis. For non-phage peak annotations, see Table S4. Figure S4: Gene flanking analysis for the lysis module from all prophages predicted in all the different Bacterial clades (Table S2), a total of 3,462 prophages. The lysis module is generally located next to the tail module in Firmicute prophages, But adjacent to the packaging (terminase) module in Escherichia phages. 1 Figure S5: Candidate Mu-like prophage in the Negativicute Propionispora vibrioides. Phage-related genes (arrows indicate transcription direction) are coloured and show characteristics of Mu-like genome organization. Figure S6: The genome maps of Negativicute prophages harbouring candidate antiBiotic resistance genes MBL (top three Veillonella prophages) and tet(32) (bottom Selenomonas prophage remnant); excludes the ACI-1 prophage harbouring example characterised previously (Rands et al., 2018). -
Genome-Scale Analysis of Acetobacterium Bakii Reveals the Cold Adaptation of Psychrotolerant Acetogens by Post-Transcriptional Regulation
Downloaded from rnajournal.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Shin et al. 1 Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of 2 psychrotolerant acetogens by post-transcriptional regulation 3 4 Jongoh Shin1, Yoseb Song1, Sangrak Jin1, Jung-Kul Lee2, Dong Rip Kim3, Sun Chang Kim1,4, 5 Suhyung Cho1*, and Byung-Kwan Cho1,4* 6 7 1Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of 8 Science and Technology, Daejeon 34141, Republic of Korea 9 2Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea 10 3Department of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea 11 4Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea 12 13 *Correspondence and requests for materials should be addressed to S.C. ([email protected]) 14 and B.-K.C. ([email protected]) 15 16 Running title: Cold adaptation of psychrotolerant acetogen 17 18 Keywords: Post-transcriptional regulation, Psychrotolerant acetogen, Acetobacterium bakii, 19 Cold-adaptive acetogenesis 20 1 Downloaded from rnajournal.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Shin et al. 1 ABSTRACT 2 Acetogens synthesize acetyl-CoA via CO2 or CO fixation, producing organic compounds. 3 Despite their ecological and industrial importance, their transcriptional and post-transcriptional 4 regulation has not been systematically studied. With completion of the genome sequence of 5 Acetobacterium bakii (4.28-Mb), we measured changes in the transcriptome of this 6 psychrotolerant acetogen in response to temperature variations under autotrophic and 7 heterotrophic growth conditions. -
A 22Nd Amino Acid Encoded Through a Genetic Code Expansion
Emerging Topics in Life Sciences (2018) https://doi.org/10.1042/ETLS20180094 Review Article Pyrrolysine in archaea: a 22nd amino acid encoded through a genetic code expansion Jean-François Brugère1,2, John F. Atkins3,4, Paul W. O’Toole2 and Guillaume Borrel5 1Université Clermont Auvergne, Clermont-Ferrand F-63000, France; 2School of Microbiology and APC Microbiome Institute, University College Cork, Cork, Ireland; 3School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; 4Department of Human Genetics, University of Utah, Salt Lake City, UT, U.S.A.; 5Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, Paris, France Correspondence: Jean-François Brugère ( [email protected]) The 22nd amino acid discovered to be directly encoded, pyrrolysine, is specified by UAG. Until recently, pyrrolysine was only known to be present in archaea from a methanogenic lineage (Methanosarcinales), where it is important in enzymes catalysing anoxic methyla- mines metabolism, and a few anaerobic bacteria. Relatively new discoveries have revealed wider presence in archaea, deepened functional understanding, shown remark- able carbon source-dependent expression of expanded decoding and extended exploit- ation of the pyrrolysine machinery for synthetic code expansion. At the same time, other studies have shown the presence of pyrrolysine-containing archaea in the human gut and this has prompted health considerations. The article reviews our knowledge of this fascinating exception to the ‘standard’ genetic code. Introduction It is now more than half a century ago since the genetic code was deciphered [1,2]. The understanding gained of how just four different nucleobases could specify the 20 universal amino acids to synthesise effective proteins reveals a fundamental feature of extant life.