Genome-Scale Analysis of Acetobacterium Bakii Reveals the Cold Adaptation of Psychrotolerant Acetogens by Post-Transcriptional Regulation

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Scale Analysis of Acetobacterium Bakii Reveals the Cold Adaptation of Psychrotolerant Acetogens by Post-Transcriptional Regulation Downloaded from rnajournal.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Shin et al. 1 Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of 2 psychrotolerant acetogens by post-transcriptional regulation 3 4 Jongoh Shin1, Yoseb Song1, Sangrak Jin1, Jung-Kul Lee2, Dong Rip Kim3, Sun Chang Kim1,4, 5 Suhyung Cho1*, and Byung-Kwan Cho1,4* 6 7 1Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of 8 Science and Technology, Daejeon 34141, Republic of Korea 9 2Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea 10 3Department of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea 11 4Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea 12 13 *Correspondence and requests for materials should be addressed to S.C. ([email protected]) 14 and B.-K.C. ([email protected]) 15 16 Running title: Cold adaptation of psychrotolerant acetogen 17 18 Keywords: Post-transcriptional regulation, Psychrotolerant acetogen, Acetobacterium bakii, 19 Cold-adaptive acetogenesis 20 1 Downloaded from rnajournal.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Shin et al. 1 ABSTRACT 2 Acetogens synthesize acetyl-CoA via CO2 or CO fixation, producing organic compounds. 3 Despite their ecological and industrial importance, their transcriptional and post-transcriptional 4 regulation has not been systematically studied. With completion of the genome sequence of 5 Acetobacterium bakii (4.28-Mb), we measured changes in the transcriptome of this 6 psychrotolerant acetogen in response to temperature variations under autotrophic and 7 heterotrophic growth conditions. Unexpectedly, acetogenesis genes were highly upregulated at 8 low temperatures under heterotrophic, as well as autotrophic, growth conditions. To 9 mechanistically understand the transcriptional regulation of acetogenesis genes via changes in 10 RNA secondary structures of 5′-untranslated regions (5′-UTR), the primary transcriptome was 11 experimentally determined, and 1,379 transcription start sites (TSS) and 1,100 5′-UTR were 12 found. Interestingly, acetogenesis genes contained longer 5′-UTR with lower RNA-folding free 13 energy than other genes, revealing that the 5′-UTRs control the RNA abundance of the 14 acetogenesis genes under low temperature conditions. Our findings suggest that post- 15 transcriptional regulation via RNA conformational changes of 5′-UTRs is necessary for cold- 16 adaptive acetogenesis. 17 18 INTRODUCTION 19 Microbial conversion of single carbon (C1) compounds, such as CO and CO2, to biofuels and 20 commodity chemicals, has been considered as one of the sustainable routes for the replacement 21 of fossil resources (Henstra et al. 2007; Bengelsdorf et al. 2013; Latif et al. 2014). In particular, 22 acetogens are attractive biocatalysts, since they can grow autotrophically with CO2 as the sole 23 carbon source and H2 as the electron donor, producing acetate as a primary end product (Drake 2 Downloaded from rnajournal.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Shin et al. 1 1995). This unique metabolism in acetogens is mediated by the reductive acetyl-CoA pathway 2 referred to as the Wood-Ljungdahl pathway (WLP), which provides a highly efficient system for 3 converting CO and CO2 to various biochemicals including acetate, ethanol, 2,3-butanediol, 4 butyrate, and butanol (Schiel-Bengelsdorf and Dürre 2012). 5 Acetogens are physiologically defined as a group of anaerobic bacteria that synthesize 6 acetyl-CoA as a central metabolic intermediate from chemolithoautotrophic substrates (Drake 7 1995). Acetogens comprise at least 23 different genera (Drake et al. 2006) and their growth 8 environments range from anoxic freshwater, soils, marine sediments, and sewage sludge to the 9 gastrointestinal tracts of insects and animals (Drake et al. 2006). Thus, systematic understanding 10 of their genetic backgrounds, as well as of transcriptional and translational regulation in response 11 to environmental factors, is a prerequisite for the full exploitation of their biosynthetic potential. 12 One example is the anaerobic growth of acetogens at low temperatures, of particular interest in 13 view of its ecological significance (Nozhevnikova et al. 1994). Several cold-active acetogens 14 were isolated from cold environments (Nozhevnikova et al. 1994; Kotsyurbenko et al. 1995; 15 Simankova et al. 2000; Kotsyurbenko et al. 2001; Nozhevnikova et al. 2001) including 16 perennially ice-covered sediments (Sattley and Madigan 2007). They are all affiliated with the 17 genus Acetobacterium, reflecting their phylogenetic proximity. The isolated bacteria are all 18 psychrotolerant and proliferate at temperatures as low as 1 ºC. Although both mesophilic and 19 thermophilic acetogens have been extensively studied, the mechanisms of cold adaptation and 20 the regulation of acetogenesis, including the WLP and the energy conservation systems of 21 psychrotolerant acetogens, remain elusive. 22 In transcriptional and post-transcriptional regulation, DNA sequences such as principal 23 promoter elements and 5′-untranslated regions (5′-UTRs) play a critical role as genome- 3 Downloaded from rnajournal.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Shin et al. 1 embedded cis-acting determinants (Jeong et al. 2016). The identification of transcription start 2 sites (TSSs) via differential RNA sequencing (dRNA-Seq) has facilitated the definition of 3 bacterial operons and regulatory sequences (Sharma et al. 2010; Sharma and Vogel 2014). The 4 latter approach, combined with RNA sequencing (RNA-Seq) for the study of gene expression, 5 now allows for quantitative analysis of transcriptional and translational regulation in various 6 species with unprecedented detail (Sharma and Vogel 2014; Jeong et al. 2017). Also, the precise 7 mapping of TSSs enables to define the sequence and structure of the mRNA 5′ ends, thus 8 providing insights into mRNA stability and translational efficiency (Jeong et al. 2016). Thus, we 9 describe a systematic approach toward the integration of genome, primary transcriptome, and 10 transcriptome data from a psychrotolerant acetogen, Acetobacterium bakii DSM 8239, originally 11 isolated from a cold environment (< 6 ºC) (Kotsyurbenko et al. 1995) and displaying a higher 12 growth rate at 1 °C than Acetobacterium paludosum and Acetobacterium fimetarium 13 (Kotsyurbenko et al. 1995). We completed the A. bakii genome sequence and identified unique 14 expression patterns of acetogenesis genes under optimal and low temperature growth conditions. 15 We also determined the genome-wide location of TSSs to investigate the role of cis-acting 16 elements including 5′-UTRs, promoter elements, and Shine-Dalgarno (SD) sequences. Our data 17 suggest that the RNA regulatory elements embedded in the 5′-UTR orchestrate the gene 18 expression changes underlying adaptation to a cold environment. 19 20 RESULTS 21 Completion of the genome sequence of the psychrotolerant bacterium A. bakii 22 To complete the A. bakii genome sequence, we employed single-molecule real-time (SMRT) 23 sequencing, yielding 108,817 quality-trimmed long reads (6,297 bp of average length). The 4 Downloaded from rnajournal.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Shin et al. 1 genome was assembled using a hierarchical genome assembly process (HGAP v2.3.0), the 2 SSPACE scaffolding algorithm (Hunt et al. 2014) with Illumina mate-pair sequencing data, and a 3 PCR-based primer walking method. The genome was polished using two types of short high- 4 fidelity sequence reads obtained from whole genome paired-end sequencing and strand-specific 5 RNA sequencing (RNA-Seq). One scaffold (4.28-Mb) and one short contig (35-kb) were finally 6 assembled as a chromosome and a plasmid DNA, respectively (Supplemental Table S1). 7 However, the 35-kb contig could not be assembled as a circular DNA, suggesting that it was an 8 unfinished product resulting from incomplete assembly. A total of 112 nucleotide conflicts 9 between Illumina short read sequences and the assembled genome sequence were corrected by 10 the Illumina short read sequences (Supplemental Table S2). The 4.28-Mb genome, with a GC 11 content of 41.3%, was annotated for 3,973 coding genes (CDS), 22 ribosomal RNAs (rRNA), 12 and 69 transfer RNAs (tRNA) genes. Compared to the previous draft genome sequence (Hwang 13 et al. 2015), an additional 183,963 bps and 280 genes were identified including large repeats and 14 structural variations, such as rRNA genes (Supplemental Table S1). Importantly, the methyl- 15 branch of the WLP, including a formyl-tetrahydrofolate (THF) synthetase (ABAKI_c24790) and 16 a V-type ATP synthase gene cluster (ABAKI_c03210 – ABAKI_c03290), were newly uncovered 17 in the completed genome. 18 The genomes of several model acetogens, such as Acetobacterium woodii (Poehlein et al. 19 2012), Clostridium ljungdahlii (Köpke et al. 2010), Clostridium autoethanogenum (Brown et al. 20 2014), and Moorella thermoacetica (Pierce et al. 2008), have been reported. Despite their genetic 21 diversity, acetogens share highly conserved gene clusters for autotrophic growth, such as the 22 WLP, central metabolic pathways, and cofactor biosynthetic pathways (Poehlein et al. 2015; 23 Shin et al. 2016). Pairwise genome comparison showed that A. bakii was most closely related to 5 Downloaded
Recommended publications
  • Acetogen Communities in the Gut of Herbivores and Their Potential Role in Syngas Fermentation
    fermentation Article Acetogen Communities in the Gut of Herbivores and Their Potential Role in Syngas Fermentation Chunlei Yang Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; [email protected] Received: 2 May 2018; Accepted: 4 June 2018; Published: 7 June 2018 Abstract: To better understand the effects of host selection on gut acetogens and their potential role in syngas fermentation, the composition and hydrogenotrophic features of acetogen populations in cow and sheep rumens, rabbit ceca, and horse feces were studied. The acetogens detected in horses and rabbits were more phylogenetically diverse than those in cows and sheep, suggesting that the host species plays an important role in shaping gut acetogen populations. Acetogen enrichments from these animals presented good capacities to use hydrogen, with acetate as the major end product. Minor propionate, butyrate, and isovalerate were also produced. During 48 h of incubation, acetogen enrichments from horse consumed 4.75 moles of H2 to every 1 mole of acetate—significantly lower than rabbits, cows, and sheep (5.17, 5.53, and 5.23 moles, respectively) (p < 0.05)—and produced significantly more butyrate (p < 0.05). Enrichments from cows and sheep produced significantly higher amounts of propionate when compared to rabbits or horses (p < 0.05); enrichments from sheep produced the highest amounts of isovalerate (p < 0.05). These short chain fatty acids are important precursors for the synthesis of biofuel products, suggesting that gut contents of herbivores may be promising sources for harvesting functional acetogens for biofuel production.
    [Show full text]
  • A Three-Component Microbial Consortium from Deep-Sea Salt-Saturated Anoxic Lake Thetis Links Anaerobic Glycine Betaine Degradation with Methanogenesis
    Microorganisms 2015, 3, 500-517; doi:10.3390/microorganisms3030500 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Article A Three-Component Microbial Consortium from Deep-Sea Salt-Saturated Anoxic Lake Thetis Links Anaerobic Glycine Betaine Degradation with Methanogenesis Violetta La Cono 1, Erika Arcadi 1, Gina La Spada 1, Davide Barreca 2, Giuseppina Laganà 2, Ersilia Bellocco 2, Maurizio Catalfamo 1, Francesco Smedile 1, Enzo Messina 1, Laura Giuliano 1,3 and Michail M. Yakimov 1,* 1 Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina 98122, Italy; E-Mails: [email protected] (V.L.C.); [email protected] (E.A.); [email protected] (G.L.S.); [email protected] (M.C.); [email protected] (F.S.); [email protected] (E.M.); [email protected] (L.G.) 2 Department of Organic and Biological Chemistry, University of Messina, Salita Sperone 31, Villaggio S. Agata, Messina 98166, Italy; E-Mails: [email protected] (D.B.); [email protected] (G.L.); [email protected] (E.B.) 3 Mediterranean Science Commission (CIESM), 16 bd de Suisse, MC 98000, Monaco * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-090-6015-437. Academic Editors: Ricardo Amils and Elena González Toril Received: 1 July 2015 / Accepted: 1 September 2015 / Published: 9 September 2015 Abstract: Microbial communities inhabiting the deep-sea salt-saturated anoxic lakes of the Eastern Mediterranean operate under harsh physical-chemical conditions that are incompatible with the lifestyle of common marine microorganisms.
    [Show full text]
  • Characterization of an Adapted Microbial Population to the Bioconversion of Carbon Monoxide Into Butanol Using Next-Generation Sequencing Technology
    Characterization of an adapted microbial population to the bioconversion of carbon monoxide into butanol using next-generation sequencing technology Guillaume Bruant Research officer, Bioengineering group Energy, Mining, Environment - National Research Council Canada Pacific Rim Summit on Industrial Biotechnology and Bioenergy December 8 -11, 2013 Butanol from residue (dry): syngas route biomass → gasification → syngas → catalysis → synfuels (CO, H2, CO2, CH4) (alcohols…) Biocatalysis vs Chemical catalysis potential for higher product specificity may be less problematic when impurities present less energy intensive (low pressure and temperature) Anaerobic undefined mixed culture vs bacterial pure culture mesophilic anaerobic sludge treating agricultural wastes (Lassonde Inc, Rougemont, QC, Canada) PRS 2013 - 2 Experimental design CO Alcohols Serum bottles incubated at Next Generation RDP Pyrosequencing mesophilic temperature Sequencing (NGS) pipeline 35°C for 2 months Ion PGMTM sequencer http://pyro.cme.msu.edu/ sequences filtered CO continuously supplied Monitoring of bacterial and to the gas phase archaeal populations RDP classifier atmosphere of 100% CO, http://rdp.cme.msu.edu/ 1 atm 16S rRNA genes Ion 314TM chip classifier VFAs & alcohol production bootstrap confidence cutoff low level of butanol of 50 % Samples taken after 1 and 2 months total genomic DNA extracted, purified, concentrated PRS 2013 - 3 NGS: bacterial results Bacterial population - Phylum level 100% 80% Other Chloroflexi 60% Synergistetes %
    [Show full text]
  • Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2014-07-01 Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules Ryan M. Taylor Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biochemistry Commons, and the Chemistry Commons BYU ScholarsArchive Citation Taylor, Ryan M., "Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules" (2014). Theses and Dissertations. 5585. https://scholarsarchive.byu.edu/etd/5585 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules Ryan M. Taylor A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy John T. Prince, Chair Mark Clement Steven W. Graves Barry M. Willardson Dixon J. Woodbury Department of Chemistry and Biochemistry Brigham Young University July 2014 Copyright © 2014 Ryan M. Taylor All Rights Reserved ABSTRACT Bioinformatic Solutions to Complex Problems in Mass Spectrometry Based Analysis of Biomolecules Ryan M. Taylor Department of Chemistry and Biochemistry, BYU Doctor of Philosophy Biological research has benefitted greatly from the advent of omic methods. For many biomolecules, mass spectrometry (MS) methods are most widely employed due to the sensitivity which allows low quantities of sample and the speed which allows analysis of complex samples. Improvements in instrument and sample preparation techniques create opportunities for large scale experimentation.
    [Show full text]
  • EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
    EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated
    [Show full text]
  • Supplementary Figure Legends for Rands Et Al. 2019
    Supplementary Figure legends for Rands et al. 2019 Figure S1: Display of all 485 prophage genome maps predicted from Gram-Negative Firmicutes. Each horizontal line corresponds to an individual prophage shown to scale and color-coded for annotated phage genes according to the key displayed in the right- side Box. The left vertical Bar indicates the Bacterial host in a colour code. Figure S2: Projection of virome sequences from 183 human stool samples on A. Acidaminococcus intestini RYC-MR95, and B. Veillonella parvula UTDB1-3. The first panel shows the read coverage (Y-axis) across the complete Bacterial genome sequence (X-axis; with bp coordinates). Predicted prophage regions are marked with red triangles and magnified in the suBsequent panels. Virome reads projected outside of prophage prediction are listed in Table S4. Figure S3: The same display of virome sequences projected onto Bacterial genomes as in Figure S2, But for two different Negativicute species: A. Dialister Marseille, and B. Negativicoccus massiliensis. For non-phage peak annotations, see Table S4. Figure S4: Gene flanking analysis for the lysis module from all prophages predicted in all the different Bacterial clades (Table S2), a total of 3,462 prophages. The lysis module is generally located next to the tail module in Firmicute prophages, But adjacent to the packaging (terminase) module in Escherichia phages. 1 Figure S5: Candidate Mu-like prophage in the Negativicute Propionispora vibrioides. Phage-related genes (arrows indicate transcription direction) are coloured and show characteristics of Mu-like genome organization. Figure S6: The genome maps of Negativicute prophages harbouring candidate antiBiotic resistance genes MBL (top three Veillonella prophages) and tet(32) (bottom Selenomonas prophage remnant); excludes the ACI-1 prophage harbouring example characterised previously (Rands et al., 2018).
    [Show full text]
  • Fermentation of Triacetin and Glycerol by Acetobacterium Sp. : No Energy Is Conserved by Acetate Excretion
    Fermentation of triacetin and glycerol by Acetobacterium sp. No energy is conserved by acetate excretion* R. Emde and B. Schink** Fachbereich Biologie-Mikrobiologie, Philipps-Universitfit, D-3550 Marburg, Federal Republic of Germany Abstract. Two strains of homoacetogenic bacteria similar residue with coenzyme A to acetyl CoA (Wood et al. 1986; to Acetobacterium carbinolicum were enriched and isolated Fuchs 1986). However, the way how energy is conserved from freshwater and marine sediment samples with triacctin during autotrophic growth is not yet understood. One ATP (glycerol triacetylester) as sole carbon and energy source. can be synthetized by acetate kinase, however, one ATP has Also the type strains of A. carbinolicum and A. woodii were also to be spent in the formyl tetrahydrofolate synthetase found to be able to grow with triacetin, and to convert reaction (Fuchs 1986). The reduction of CO2 to CO with H2 it nearly exclusively to acetate. The triacetin-hydrolyzing as electron donor requires energy as well which is provided enzyme was inducible, and was localized in the cytoplasmic by the membrane proton motive force (Diekert et al. 1986). fraction of both species at an activity of 0.21-0.26 U mg It has been suggested that the methylene tetrahydrofolate protein -1. During fermentation of glycerol, varying reductase reaction is coupled to an electron transport reac- amounts of 1,3-propranediol were produced which could be tion. This reaction should establish a proton motive force kept at a minimum in a glycerol-limited chemostat. Growth sufficient to allow an overall energy conservation of 0.5 - 1 yields in batch and continuous culture experiments varied ATP per acetate produced (Fuchs 1986).
    [Show full text]
  • A 22Nd Amino Acid Encoded Through a Genetic Code Expansion
    Emerging Topics in Life Sciences (2018) https://doi.org/10.1042/ETLS20180094 Review Article Pyrrolysine in archaea: a 22nd amino acid encoded through a genetic code expansion Jean-François Brugère1,2, John F. Atkins3,4, Paul W. O’Toole2 and Guillaume Borrel5 1Université Clermont Auvergne, Clermont-Ferrand F-63000, France; 2School of Microbiology and APC Microbiome Institute, University College Cork, Cork, Ireland; 3School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; 4Department of Human Genetics, University of Utah, Salt Lake City, UT, U.S.A.; 5Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, Paris, France Correspondence: Jean-François Brugère ( [email protected]) The 22nd amino acid discovered to be directly encoded, pyrrolysine, is specified by UAG. Until recently, pyrrolysine was only known to be present in archaea from a methanogenic lineage (Methanosarcinales), where it is important in enzymes catalysing anoxic methyla- mines metabolism, and a few anaerobic bacteria. Relatively new discoveries have revealed wider presence in archaea, deepened functional understanding, shown remark- able carbon source-dependent expression of expanded decoding and extended exploit- ation of the pyrrolysine machinery for synthetic code expansion. At the same time, other studies have shown the presence of pyrrolysine-containing archaea in the human gut and this has prompted health considerations. The article reviews our knowledge of this fascinating exception to the ‘standard’ genetic code. Introduction It is now more than half a century ago since the genetic code was deciphered [1,2]. The understanding gained of how just four different nucleobases could specify the 20 universal amino acids to synthesise effective proteins reveals a fundamental feature of extant life.
    [Show full text]
  • Unique Characteristics of the Pyrrolysine System in the 7Th Order
    Unique Characteristics of the Pyrrolysine System in the 7th Order of Methanogens: Implications for the Evolution of a Genetic Code Expansion Cassette Guillaume Borrel, Nadia Gaci, Pierre Peyret, Paul W. O’Toole, Simonetta Gribaldo, Jean-François Brugère To cite this version: Guillaume Borrel, Nadia Gaci, Pierre Peyret, Paul W. O’Toole, Simonetta Gribaldo, et al.. Unique Characteristics of the Pyrrolysine System in the 7th Order of Methanogens: Implications for the Evolution of a Genetic Code Expansion Cassette. Archaea, Hindawi Publishing Corporation, 2014, 2014, pp.1 - 11. 10.1155/2014/374146. hal-01612761 HAL Id: hal-01612761 https://hal.archives-ouvertes.fr/hal-01612761 Submitted on 8 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Hindawi Publishing Corporation Archaea Volume 2014, Article ID 374146, 11 pages http://dx.doi.org/10.1155/2014/374146 Research Article Unique Characteristics of the Pyrrolysine System in the 7th Order of Methanogens: Implications for the Evolution of a Genetic Code Expansion Cassette Guillaume Borrel,1,2 Nadia Gaci,1 Pierre Peyret,1 Paul W. O’Toole,2 Simonetta Gribaldo,3 and Jean-François Brugère1 1 1EA-4678 CIDAM, Clermont Universite,´ Universite´ d’Auvergne, Place Henri Dunant, 63001 Clermont-Ferrand, France 2 Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland 3 Institut Pasteur, Department of Microbiology, UnitedeBiologieMol´ eculaire´ du Gene` chez les Extremophiles,ˆ 28 rue du Dr.
    [Show full text]
  • MT November 2011
    DECEMBER 2011% VOLUME 5, ISSUE 1 The Microbial Taxonomist A Newsletter Published by Bergey’s Manual Trust Fred A. Rainey Elected to Chair of BMT Fred A. Rainey is a native of Join BISMiS or renew your Belfast, Northern Ireland. He membership today! See forms obtained a BSc(Hons) in at end of this newsletter or Microbiology and Microbial join online at: Technology in 1988 from University www.bergeys.org/bismis.html of Warwick. Fred's doctoral studies were carried out at the Thermophile Research Laboratory at the University of Waikato, VOLUME 5 NEWS Hamilton, New Zealand. In 1991 Fred joined the group of Erko Volume 5 of Bergey’s Manual of Stackebrandt at the University of Systematic Bacteriology, which Queensland, Brisbane, Australia. In focuses on the Actinobacteria, is associate and since 2000 as a 1993, when Erko Stackebrandt in the final stages of production. trustee (and secretary). He has became the Director and CEO of contributed many chapters to This volume is the largest of the German Collection of Volumes 1–5 of the 2nd edition of the three that I have managed, Microorganisms and Cell Cultures Bergey's Manual of Systematic and will be more than 2000 (DSMZ), Fred joined the DSMZ Bacteriology and was an Associate pages in length, with 431 figures and set up the molecular Editor of Volume 3, which covered and 320 tables. Its size is such identification laboratory and the Firmicutes. Since his PhD that it will need to be bound in services. studies Fred has been involved in two separate parts. It was at the beginning of 1997 bacterial systematics and has The first round of proofs was that Fred moved to the United authored or coauthored over 200 sent out to the authors in six States and accepted his first papers in the field as well as some batches beginning in August; I academic appointment at 85 book chapters.
    [Show full text]
  • Phylogenomic Analysis Supports the Ancestral Presence of LPS-Outer Membranes in the Firmicutes
    Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes. Luisa Cs Antunes, Daniel Poppleton, Andreas Klingl, Alexis Criscuolo, Bruno Dupuy, Céline Brochier-Armanet, Christophe Beloin, Simonetta Gribaldo To cite this version: Luisa Cs Antunes, Daniel Poppleton, Andreas Klingl, Alexis Criscuolo, Bruno Dupuy, et al.. Phy- logenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes.. eLife, eLife Sciences Publication, 2016, 5, pp.e14589. 10.7554/eLife.14589.020. pasteur-01362343 HAL Id: pasteur-01362343 https://hal-pasteur.archives-ouvertes.fr/pasteur-01362343 Submitted on 8 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCH ARTICLE Phylogenomic analysis supports the ancestral presence of LPS-outer membranes in the Firmicutes Luisa CS Antunes1†, Daniel Poppleton1†, Andreas Klingl2, Alexis Criscuolo3, Bruno Dupuy4, Ce´ line Brochier-Armanet5, Christophe Beloin6, Simonetta Gribaldo1* 1Unite´ de
    [Show full text]
  • Oxidation of Primary Aliphatic Alcohols by Acetobacterium Carbinolicum Sp
    Archives of Arch Microbiol (1984) 140:147-152 Microbiology Springer-Verlag 1984 Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe Barbara Eichler and Bernhard Schink Fakult/it f/Jr Biologic, Universit/it Konstanz, Postfach 5560, D-7750 Konstanz, Federal Republic of Germany Abstract. Four strains of new homoacetogenic bacteria were absence of sulfate to acetate and propionate using carbon enriched and isolated from freshwater sediments and sludge dioxide as electron acceptor (Laanbroek et al. 1982). A with ethanol, propanol, 1,2-propanediol, or 1,2-butanediol similar fermentation pattern was reported for an unidenti- as substrates. All strains were Gram-positive nonsporeform- fied anaerobic bacterium (Samain et al. 1982) and for ing rods and grew well in carbonate-buffered defined media Pelobacter propionicus (Schink i 984 a). under obligately anaerobic conditions. Optimal growth occurred at 27 ~C around pH 7.0. H2/CO2, primary aliphatic Clostridium aceticum oxidizes ethanol to acetate and uses alcohols C1- C5, glucose, fructose, lactate, pyruvate, ethyl- carbon dioxide as electron acceptor to form further acetate ene glycol, 1,2-propanediol, 2,3-butanediol, acetoin, glyc- (Wieringa 1940; Braun et al. 1981), according to the equa- erol, and methyl groups ofmethoxylated benzoate derivates tion: and betaine were fermented to acetate or, in case of primary 2CH3CH2OH + 2HCO~ 3CH3COO- + H + + 2H20. alcohols C3-C5 and 1,2-propanediol, to acetate and the respective fatty acid. In coculture with methanogens In the present study, a new anaerobic bacterium physiologi- methane was formed, probably due to interspecies hydrogen cally similar to C. aceticum is described which ferments transfer.
    [Show full text]