Full Text in Pdf Format

Total Page:16

File Type:pdf, Size:1020Kb

Full Text in Pdf Format MARINE ECOLOGY PROGRESS SERIES Vol. 164: 263-271,1998 Published April 9 Mar Ecol Prog Ser Intraspecific and interspecific relationships between host size and the abundance of parasitic larval gnathiid isopods on coral reef fishes Alexandra S. Grutter 'l*, Robert poulin2 'Department of Parasitology, The University of Queensland. Brisbane, Queensland 4072, Australia 'Department of Zoology, University of Otago. PO Box 56. Dunedin. New Zealand ABSTRACT: Parasitic gnathud isopod larvae on coral reef teleosts and elasmobranchs were quantified at Lizard and Heron Islands (Great Barrier Reef), and Moreton Bay, Australia. The relationship between gnathlid abundance and host size was examined across and within species. Of the 56 species examined. 70 % had gnathiids, with counts ranging from 1 to 200 per fish and the elasmobranchs hav- ing the highest numbers. Pomacentrids rarely had gnathiids. In contrast, most labrids had gnathiids. Gnathiid abundance was positively correlated with host size in the species Chlorurus sordidus, Ctenochaetus stnatus, Hernigyrnnus melapterus, Siganus dollatus, and Thalassorna lunare, but not for Scolopsis b~lineatus.Mean gnathlid abundance per host species also correlated with host size across species, even after controlling for the potential confounding effects of uneven sampling effort and host phylogeny Thus host size explains much of the intraspecific and interspecific variation In gnathiid abundance on fish. KEY WORDS: Gnathiidae . Ectoparasites . Coral reef fish . Host-parasite interactions . Fish size . Great Barrier Reef INTRODUCTION gnathiids on fish (Grutter 1996a). When present in 'large' numbers (Paperna & Por 1977) and when fish Until recently, there was little evidence that para- have 'around a hundred' (Mugridge & Stallybrass sites were important in fish cleaning behavior (Losey 1983),gnathiids can cause fish mortality in captive fish 1987), however, current studies on the Great Barrier (Paperna & Por 1977). Gnathiids, in 'numerous num- Reef, Australia, show that parasites, in particular bers', also affect stingrays in the wild, causing destruc- gnathiid isopod larvae, play a significant role in clean- tion and inflammation of the mucosal tissues and a ing interactions. Ninety percent of the items in the propagation of bacilli (Honma & Chiba 1991). That diet of the cleaner wrasse Labroides dimidiatus are cleaner fish may control these potentially deleterious gnathiids (Grutter 1997a) and each of these cleaner parasites has important implications for understanding fish eats on average 1200 parasites per day (Grutter the ecological significance of cleaning, as studies to 1996a).Larger gnathiids are also selectively preyed on date have been unable to experimentally demonstrate by this cleaner fish (Grutter 1997b). Most importantly, any benefit of cleaning to the host (Youngbluth 1968, the high predation rate, relative to the number of Losey 1972, Gorlick et al. 1987, Grutter 1996b, 1997~). gnathiids on fish and their infection rate, suggests that Information on gnathiids, therefore, is needed to L. dimidiatus have an effect on the abundance of understand their role in cleaning. Research on gnathiids has likely been hindered by their complicated life history. Gnathiids are only para- sitic as larvae, feeding on host blood and other fluids, O Inter-Research 1998 Resale of full article not permitted 264 lMar Ecol Prog Ser 164: 263-271, 1998 and return to the benthos to moult after each of the 3 Elasmobranchs were collected on the reef flat (0.5 to larval stages (blonod 1926, Upton 1987, Klitgaard 2 m depth) at Heron Island by herding rays and sharks 1991). Adults are benthjc and do not feed. Because lnto a net. Sharks and rays at Heron Island were held adult males and females are so different from each In a 4.5 x 4.5 m pool for 1 to 5 wk prior to the removal other, species descriptions are based on males. About of gnathiids. Rays from hloreton Bay were collected one fourth of the 155 gnathiid species described world- with a commercial twin-otter board trawl. Lengths of wide are from Australia (Cohen & Poore 1994 and ref- sharks are measured as total length. The size of rays erences therein). Of these, 5 have been described from was measured along the widest (wings) part of the the Great Barrier Reef. Despite the richness of gnathiid body. These measurement methods and the one above specles in Australia, 1ittl.e is known of their ecology, were chosen because they best estimated the relative particularly of the parasi.tic stages. sizes of the hosts. Although ~nformation on what fish species are Gnathiid removal. To remove gnathiids, larger fish cleaned by Labroides dimidiatus is available (Grutter (>60 mm) (except those collected at Heron Island in & Poulin 1998),it is not known from which fish species March 1996, see below) were soaked in the anaes- these cleaners obtain gnathiids. On the Great Barrier thetic chloretone for 30 to 60 min and all Liquids were Reef, few fish species have been examined for gnathi- filtered at 57 pm (except for some species collected ids (7 species in Grutter 1994, and 2 recorded in Lester prior to June 1996 for which a 57 pm or a 200 pm filter h Sewell 1989).Elsewhere they have been found on a was used; see Grutter 1994 for species and filters wide variety of fish, ranging from large ela.smobranchs used). Th.ese methods were modified for some of the In Japan (Honma et al. 1991) to small blennies in Eng- species due to high mucus loads (Scaridae: the whole land (Davies 1981). fish and gills were scanned using a dissecting micro- There is evidence that gnathiid abundance is corre- scope) or difficulties In removing all parasites from gills lated with host size within the labrid species Hemi- (Hemigymnus melapterus: gills were removed and gymnus melapterus (Grutter 1996a) and among 6 other examined separately) (see Grutter 1994, 199513 for fish species (Grutter 1994). Larger fish with more para- modifications). Relatively small fish species (<60 mm) sites are cleaned more often and longer (Grutter were fixed whole and scanned under a microscope for 1995a). Understanding the relationship between host parasites following Grutter (1996b). Parasites and size and gnathiid abundance may explain variation in small fish were fixed in 5 % Formalin in seawater. gnathi1.d abundance among fish and provide insight To reduce processing time when removing gnathlids into the role of gnathiids in cleaning behavior. This from fish, gnathiid removal without an anaesthetic study quantified the abundance of gnathiids on a wide bath was tested. Fish collected in March 1996 were range of fish species collected at Lizard Island, Heron rinsed and all fins and gills scraped with the tip of a Island, and Moreton Bay, Australia, and examined the squirt bottle. All liquids were filtered at 57 pm. A sub- relationship between gnathiid abundance and host set of fish (38 individuals from 19 species) was exam- size both within and among species. ined under a microscope after the rinse to determine if any gnathiids remained. Only 1 gnathiid was found remaining compared to 31 gnathiids removed, indicat- MATERIALS AND METHODS ing a 3 % loss. To remove gnathiids from elasmobranchs, flsh tvere Fish collection. Fish were collected from shallow pithed and their gills exclsed and examined for gnathi- reefs (2 to 7 m) at Lizard Island (14" 40' S, 145" 26' E) in ids with a stereo microscope. The buccal and gill cavi- October 1991, June and August 1992, January 1993 ties and surface of the fish were also examined. and October 1994, at Heron Island (23"27'S, Gnathiids were gently pulled off using forceps. 151°55'E) in June 1993, March and April 1996, and Gnathiid abundances greater than 50 are likely mini- July and August 1996, and at Moreton Bay (Brisbane, mum estimates as gnathiids tvere observed in the bot- Queensland) in May and June 1996. Teleost fish were tom of the pool in which the elasmobranchs were held collected by herding one flsh at a time into a net and indicating that some gnathiids had left their hosts. capturing it with a handnet following Grutter (1994, Statistical analysis. The relationship between 1995b). Fish were sealed in plastic bags to avold gnathiid abundance and host size was assessed both gnathiid loss during handling and transport. Fish spe- within and among flsh species. For the withln-species cies were selected based on their ease of collection and analyses, data on fishes of the 6 most common species availability and from as wide a range of families as collected at all times were used (Acanthochromispoly- possible and are therefore not a random sample. Stan- acanthus was omitted because it was rarely infected). dard length was used as the measure of teleost host To determine whether or not to pool data from both size. locations, the effect of location on abundance was Grutter & Poulin: Host slze an1cl abundance of parasitic isopods 265 tested using analysis of covariance (ANCOVA) with (1994). Relationships among contrasts were assessed fish standard length as the covariable. Additional spec- using correlations and regressions forced through the imens of Hemigymnus rnelapterus (n = 7) collected origin (see Garland et al. 1992 for details and justifica- from similar sites at Lizard Island were included in the tion). Estimates of gnathiid abundance corrected for analyses to increase the sample size but were not sample size were obtained by using the residuals of a included in other analyses due to their small sample regression of contrasts in gnathiid abundance on con- size at each collection time Simple linear correlation trasts in sample size. coefficients between host size and gnathiid abundance The comparative analyses described above were were computed within each species. Uninfected and repeated after the exclusion of fish species on which no infected fish were included in correlation analyses and gnathiids were found. These may be either true cases when calculating mean abundances per species.
Recommended publications
  • A New Stingray from South Africa
    Nature Vol. 289 22 January 1981 221 A new stingray from South Africa from Alwyne Wheeler ICHTHYOLOGISTS are accustomed to the regular description of previously un­ recognized species of fishes, which if not a daily event at least happens so frequently as not to cause great comment. Previously undescribed genera are like­ wise not infrequently published, but higher categories are increasingly less common. The discovery of a new stingray, which is so different from all known rays as to require both a new family and a new suborder to accommodate its distinctive characters, is therefore a remarkable event. A recent paper by P.e. Heemstra and M.M. Smith (Ichthyological Bulletin oj the J. L.B. Smith Institute of Ichthyology 43, I; 1980) describes this most striking ray as Hexatrygon bickelli and discusses its differences from other batoid fishes. Surprisingly, this remarkable fish was not the result of some organized deep-sea fishing programme, but was found lying on the beach at Port Elizabeth. It was fresh but had suffered some loss of skin by sand abrasion on the beach, and the margins of its fins appeared desiccated in places. The way it was discovered leaves a tantalising question as to its normal habitat, but Heemstra and Smith suggest that it may live in moderately deep water of 400-1,000m. This suggestion is Ventral view of Hexatrygon bickelli supported by its general appearance (small eyes, thin black dorsal skin, f1acid an acellular jelly, while the underside is chimaeroids Rhinochimaera and snout) and the chemistry of its liver-oil. richly supplied with well developed Harriota, and there can be little doubt The classification of Hexatrygon ampullae of Lorenzini.
    [Show full text]
  • Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011
    August 2012 Indo-Pacific Division Indonesia Report No 6/12 Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011 Report Compiled By: Purwanto, Muhajir, Joanne Wilson, Rizya Ardiwijaya, and Sangeeta Mangubhai August 2012 Indo-Pacific Division Indonesia Report No 6/12 Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011 Report Compiled By: Purwanto, Muhajir, Joanne Wilson, Rizya Ardiwijaya, and Sangeeta Mangubhai Published by: TheNatureConservancy,Indo-PacificDivision Purwanto:TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia.Email: [email protected] Muhajir: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia.Email: [email protected] JoanneWilson: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia. RizyaArdiwijaya:TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur, Bali,Indonesia.Email: [email protected] SangeetaMangubhai: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2, Sanur,Bali,Indonesia.Email: [email protected] Suggested Citation: Purwanto,Muhajir,Wilson,J.,Ardiwijaya,R.,Mangubhai,S.2012.CoralReefMonitoringinKofiau andBooIslandsMarineProtectedArea,RajaAmpat,WestPapua.2009-2011.TheNature Conservancy,Indo-PacificDivision,Indonesia.ReportN,6/12.50pp. © 2012012012201 222 The Nature Conservancy AllRightsReserved.Reproductionforanypurposeisprohibitedwithoutpriorpermission. AllmapsdesignedandcreatedbyMuhajir. CoverPhoto:
    [Show full text]
  • Chondrichthyes: Dasyatidae)
    1 Ichthyological Exploration of Freshwaters/IEF-1089/pp. 1-6 Published 16 February 2019 LSID: http://zoobank.org/urn:lsid:zoobank.org:pub:DFACCD8F-33A9-414C-A2EC-A6DA8FDE6BEF DOI: http://doi.org/10.23788/IEF-1089 Contemporary distribution records of the giant freshwater stingray Urogymnus polylepis in Borneo (Chondrichthyes: Dasyatidae) Yuanita Windusari*, Muhammad Iqbal**, Laila Hanum*, Hilda Zulkifli* and Indra Yustian* Stingrays (Dasyatidae) are found in marine (con- species entering, or occurring in freshwater. For tinental, insular shelves and uppermost slopes, example, Fluvitrygon oxyrhynchus and F. signifer one oceanic species), brackish and freshwater, and were only known from five or fewer major riverine are distributed across tropical to warm temperate systems (Compagno, 2016a-b; Last et al., 2016a), waters of the Atlantic, Indian and Pacific oceans though recent surveys yielded a single record of (Nelson et al., 2016). Only a small proportion of F. oxyrhynchus and ten records of F. signifier in the dasyatid rays occur in freshwater, and include Musi drainage, South Sumatra, indicating that obligate freshwater species (those found only in both species are more widely distributed than freshwater) and euryhaline species (those that previously expected (Iqbal et al., 2017, 2018). move between freshwater and saltwater) (Last et Particularly, the dasyatid fauna of Borneo al., 2016a). Recently, a total of 89 species of Dasy- includes the giant freshwater stingray Urogymnus atidae has been confirmed worldwide (Last et al., polylepis. The occurrence of U. polylepis in Borneo 2016a), including 14 species which are known to has been reported from Sabah and Sarawak in enter or live permanently in freshwater habitats of Malaysia and the Mahakam basin in Kaliman- Southeast Asia [Brevitrygon imbricata, Fluvitrygon tan of Indonesia (Monkolprasit & Roberts, 1990; kittipongi, F.
    [Show full text]
  • Bony Fish Guide
    This guide will help you to complete the Bony Fish Observation Worksheet. Bony Fish Guide Fish (n.) An ectothermic (cold-blooded) vertebrate (with a backbone) aquatic (lives in water) animal that moves with the help of fins (limbs with no fingers or toes) and breathes with gills. This definition might seem very broad, and that is because fish are one of the most diverse groups of animals on the planet—there are a lot of fish in the sea (not to mention rivers, lakes and ponds). In fact, scientists count at least 32,000 species of fish—more than any other type of vertebrate. Fish are split into three broad classes: Jawless Fish Cartilaginous Fish Bony Fish (hagfish, lampreys, etc.) (sharks, rays, skates, etc.) (all other fish) This guide will focus on the Bony Fish. There are at least 28,000 species of bony fish, and they are found in almost every naturally occurring body of water on the planet. Bony fish range in size: • Largest: ocean sunfish (Mola mola), 11 feet, over 5,000 pounds • Smallest: dwarf pygmy goby (Pandaka pygmaea), ½ inch, a fraction of an ounce (This image is life size.) The following guide will help you learn more about the bony fish you can find throughout the New England Aquarium. Much of the guide is keyed to the Giant Ocean Tank, but can be applied to many kinds of fish. Even if you know nothing about fish, you can quickly learn a few things: The shape of a fish’s body, the position of its mouth and the shape of its tail can give you many clues as to its behavior and adaptations.
    [Show full text]
  • Disney•Pixar's “Finding Dory”
    Educator’s Guide GRADES 2-6 Created in partnership with the Educational Team isney•Pixar’s “Finding Dory” welcomes back to the big convinced his biological sonar skills are on the fritz; and Dscreen everyone’s favorite forgetful blue tang Dory Destiny (voice of Kaitlin Olson), a nearsighted whale shark. (voice of Ellen DeGeneres), who’s living happily in the reef Deftly navigating the complex inner workings of the MLI, with Marlin (voice of Albert Brooks) and Nemo (voice Dory and her friends discover the magic within their flaws, of Hayden Rolence). When Dory suddenly remembers friendships and family. that she has a family out there who may be looking for Directed by Andrew Stanton (“Finding Nemo,” “WALL•E”), her, the trio takes off on a life-changing adventure across co-directed by Angus MacLane (“Toy Story OF TERROR!”), the ocean to California’s prestigious Marine Life Institute and produced by Lindsey Collins (co-producer “WALL•E”), (MLI), a rehabilitation center and aquarium. In an effort to Disney•Pixar’s “Finding Dory” swims home on Digital find her mom (voice of Diane Keaton) and dad (voice of HD October 25 and on Blu-ray™ November 15. For Eugene Levy), Dory enlists the help of three of the MLI’s more information, like us on Facebook, https://www. most intriguing residents: Hank (voice of Ed O’Neill), a facebook.com/PixarFindingDory, and follow us on Twitter, cantankerous octopus who frequently gives employees https://twitter.com/findingdory and Instagram, https:// the slip; Bailey (voice of Ty Burrell), a beluga whale who is instagram.com/DisneyPixar.
    [Show full text]
  • Stingray Injuries
    Stingray Injuries FINDLAY E. RUSSELL, M.D. inflicted by stingrays are com¬ the integumentary sheath surrounding the INJURIESmon in several areas of the coastal waters spine is ruptured and the venom escapes into of North America (1-4). Approximately 750 the victim's tissues. In withdrawing the spine, people a year along our coasts are stung by the integumentary sheath may be torn free and these elasmobranchs. The largest number of remain in the wound. stings are reported from southern California, Unlike the injuries inflicted by many venom¬ the Gulf of California, the Gulf of Mexico, and ous animals, wounds produced by the stingray the south Atlantic coast (5). may be large and severely lacerated, requiring Of 1,097 stingray injuries reported over a 5- extensive debridement and surgical closure. A year period in the United States (5, tf), 232 sting no wider than 5 mm. may produce a were seen by a physician at some time during wound 3.5 cm. long (#), and larger stings may the course of the recovery of the victim. Sixty- produce wounds 7 inches long (7). Occasion¬ two patients were hospitalized; the majority of ally, the sting itself may be broken off in the these required surgical closure of their wounds wound. or treatment for secondary infection, or both. The sting, or caudal spine, is a bilaterally ser¬ At least 10 of the 62 victims were hospitalized rated dentinal structure located on the dorsal for treatment for overexuberant first aid care. surface of the animal's tail. The sharp serra¬ Only eight patients were hospitalized for the tions are curved cephalically and as such are treatment of the systemic effects produced by responsible for the lacerating effects as the sting the venom.
    [Show full text]
  • Biology, Husbandry, and Reproduction of Freshwater Stingrays
    Biology, husbandry, and reproduction of freshwater stingrays. Ronald G. Oldfield University of Michigan, Department of Ecology and Evolutionary Biology Museum of Zoology, 1109 Geddes Ave., Ann Arbor, MI 48109 U.S.A. E-mail: [email protected] A version of this article was published previously in two parts: Oldfield, R.G. 2005. Biology, husbandry, and reproduction of freshwater stingrays I. Tropical Fish Hobbyist. 53(12): 114-116. Oldfield, R.G. 2005. Biology, husbandry, and reproduction of freshwater stingrays II. Tropical Fish Hobbyist. 54(1): 110-112. Introduction In the freshwater aquarium, stingrays are among the most desired of unusual pets. Although a couple species have been commercially available for some time, they remain relatively uncommon in home aquariums. They are often avoided by aquarists due to their reputation for being fragile and difficult to maintain. As with many fishes that share this reputation, it is partly undeserved. A healthy ray is a robust animal, and problems are often due to lack of a proper understanding of care requirements. In the last few years many more species have been exported from South America on a regular basis. As a result, many are just recently being captive bred for the first time. These advances will be making additional species of freshwater stingray increasingly available in the near future. This article answers this newly expanded supply of wild-caught rays and an anticipated increased The underside is one of the most entertaining aspects of a availability of captive-bred specimens by discussing their stingray. In an aquarium it is possible to see the gill slits and general biology, husbandry, and reproduction in order watch it eat, as can be seen in this Potamotrygon motoro.
    [Show full text]
  • Westminsterresearch Haemogregarina Bigemina
    WestminsterResearch http://www.westminster.ac.uk/westminsterresearch Haemogregarina bigemina (Protozoa : Apicomplexa : Adeleorina) – Past, present and future Davies A.J., Smit N.J., Hayes P.M., Seddon A.M. and Wertheim D.F. This is the publisher version of an article published in Folia Parasitologica 51 (2/3) 99- 108 2004. The final definitive version is available online at:https://dx.doi.org/10.14411/fp.2004.015 © 2004 Parazitologický ústav AVČR. The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners. Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/). In case of abuse or copyright appearing without permission e-mail [email protected] FOLIA PARASITOLOGICA 51: 99–108, 2004 REVIEW ARTICLE Haemogregarina bigemina (Protozoa: Apicomplexa: Adeleorina) – past, present and future Angela J. Davies1, Nico J. Smit2, Polly M. Hayes1, Alan M. Seddon1 and David Wertheim3 1School of Life Sciences and 3School of Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK; 2Department of Zoology, Rand Afrikaans University, P.O. Box 524, Auckland Park 2006, South Africa Key words: Haemogregarina bigemina, haemogregarines, development, transmission, Gnathia, isopods Abstract. This paper reviews past, current and likely future research on the fish haemogregarine, Haemogregarina bigemina Laveran et Mesnil, 1901. Recorded from 96 species of fishes, across 70 genera and 34 families, this broad distribution for H. bigemina is questioned.
    [Show full text]
  • Monitoring Functional Groups of Herbivorous Reef Fishes As Indicators of Coral Reef Resilience a Practical Guide for Coral Reef Managers in the Asia Pacifi C Region
    Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience A practical guide for coral reef managers in the Asia Pacifi c Region Alison L. Green and David R. Bellwood IUCN RESILIENCE SCIENCE GROUP WORKING PAPER SERIES - NO 7 IUCN Global Marine Programme Founded in 1958, IUCN (the International Union for the Conservation of Nature) brings together states, government agencies and a diverse range of non-governmental organizations in a unique world partnership: over 100 members in all, spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. The IUCN Global Marine Programme provides vital linkages for the Union and its members to all the IUCN activities that deal with marine issues, including projects and initiatives of the Regional offices and the six IUCN Commissions. The IUCN Global Marine Programme works on issues such as integrated coastal and marine management, fisheries, marine protected areas, large marine ecosystems, coral reefs, marine invasives and protection of high and deep seas. The Nature Conservancy The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Conservancy launched the Global Marine Initiative in 2002 to protect and restore the most resilient examples of ocean and coastal ecosystems in ways that benefit marine life, local communities and economies.
    [Show full text]
  • Class Wars: Chondrichthyes and Osteichthyes Dominance in Chesapeake Bay, 2002-2012
    Class Wars: Chondrichthyes and Osteichthyes dominance in Chesapeake Bay, 2002-2012. 01 July 2013 Introduction The objective of this analysis was to demonstrate a possible changing relationship between two Classes of fishes, Osteichthyes (the bony fishes) and Chondrichthyes (the cartilaginous fishes) in Chesapeake Bay based on 11 years of monitoring. If any changes between the two Classes appeared to be significant, either statistically or anecdotally, the data were explored further in an attempt to explain the variation. The Class Osteichthyes is characterized by having a skeleton made of bone and is comprised of the majority of fish species worldwide, while the Chondrichthyes skeleton is made of cartilage and is represented by the sharks, skates, and rays (the elasmobranch fishes) and chimaeras1. Many shark species are generally categorized as apex predators, while skates and rays and some smaller sharks can be placed into the mesopredator functional group (Myers et al., 2007). By definition, mesopredators prey upon a significant array of lower trophic groups, but also serve as the prey base for apex predators. Global demand for shark and consequential shark fishing mortality, estimated at 97 million sharks in 2010 (Worm et al., 2013), is hypothesized to have contributed to the decline of these apex predators in recent years (Baum et al., 2003 and Fowler et al., 2005), which in turn is suggested to have had a cascading effect on lower trophic levels—an increase in mesopredators and subsequent decrease in the prey base (Myers et al., 2007). According to 10 years of trawl survey monitoring of Chesapeake Bay, fish species composition of catches has shown a marked change over the years (Buchheister et al., 2013).
    [Show full text]
  • Ray by Design Stingray
    Sponsored by Blue Lagoon Island & Vendors from Nassau Dolphin Encounters - Project BEACH Contest Deadline: March 4th, 2016 Beautifully graceful underwater, Southern The unique hunting abilities of a stingray – stingrays choose the turquoise waters of digging, sucking, and crushing – also benefit The Bahamas as their home. Like many other reef animals looking for lunch. These other reef animals, stingrays play an gentle winged fish are key predators in a important role in our marine ecosystem. healthy, marine habitat, so it’s time to “Rays the Roof” and start protecting our stingrays! When a stingray hunts along the bottom, it mixes the sand and stirs up hidden Learn more about this unique animal and the creatures in search of food. Sea birds challenges it faces from the MEPC 2016 Info will often follow the path of a stingray Sheet and express your feelings through art hoping to make a meal from the animals in the Marine Education Poster Contest 2016. disturbed by the ray. Call for a FREE Marine Assembly Program at your school to introduce you to the marine topic “Rays the Roof!” Ray By Design Southern stingrays can be gills As masters of disguise Stingray 101 found in tropical and (camouflage), stingrays can subtropical waters of the completely bury themselves in Animal Type: Boneless Fish southern Atlantic Ocean, the sand or soft seafloor. Caribbean and Gulf of When swimming, if viewed Diet: Carnivore Mexico. These rays have been ventral side mouth from below, the bright belly Ave. Lifespan: 15-25 years found in depths of up to 180 of the ray matches the bright feet and are usually found Unlike sharks, rays crush their sky above, helping to escape Maximum Width: 4 feet roaming the ocean alone or in food -- prey such as conch, large predatory fish such as Maximum Weight: 200+ lbs.
    [Show full text]
  • Patterns and Processes in the Evolutionary History of Parrotfishes
    bs_bs_banner Biological Journal of the Linnean Society, 2012, ••, ••–••. With 5 figures Patterns and processes in the evolutionary history of parrotfishes (Family Labridae) JOHN. H. CHOAT1*, OYA. S. KLANTEN1†, LYNNE VAN HERWERDEN1, D. ROSS ROBERTSON2‡ and KENDALL D. CLEMENTS3 1School of Tropical and Marine Biology, James Cook University, Townsville, QLD, 4811, Australia 2Smithsonian Tropical Research Institute, Ancon, Balboa, Republic of Panama 3School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand Received 5 March 2012; revised 23 May 2012; accepted for publication 23 May 2012 Phylogenetic reconstruction of the evolutionary relationships among 61 of the 70 species of the parrotfish genera Chlorurus and Scarus (Family Labridae) based on mitochondrial and nuclear gene sequences retrieved 15 well-supported clades with mid Pliocene/Pleistocene diversification. Twenty-two reciprocally monophyletic sister- species pairs were identified: 64% were allopatric, and the remainder were sympatric. Age of divergence was similar for allopatric and sympatric species pairs. Sympatric sister pairs displayed greater divergence in morphol- ogy, ecology, and sexually dimorphic colour patterns than did allopatric pairs, suggesting that both genetic drift in allopatric species pairs and ecologically adaptive divergence between members of sympatric pairs have played a role in diversification. Basal species typically have small geographical ranges and are restricted to geographically and ecologically peripheral reef habitats. We found little evidence that a single dominant process has driven diversification, nor did we detect a pattern of discrete, sequential stages of diversification in relation to habitat, ecology, and reproductive biology. The evolution of Chlorurus and Scarus has been complex, involving a number of speciation processes.
    [Show full text]