Bony Fish Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Median Fin Patterning in Bony Fish: Caspase-3 Role in Fin Fold Reabsorption
Eastern Illinois University The Keep Undergraduate Honors Theses Honors College 2017 Median Fin Patterning in Bony Fish: Caspase-3 Role in Fin Fold Reabsorption Kaitlyn Ann Hammock Follow this and additional works at: https://thekeep.eiu.edu/honors_theses Part of the Animal Sciences Commons Median fin patterning in bony fish: caspase-3 role in fin fold reabsorption BY Kaitlyn Ann Hammock UNDERGRADUATE THESIS Submitted in partial fulfillment of the requirement for obtaining UNDERGRADUATE DEPARTMENTAL HONORS Department of Biological Sciences along with the HonorsCollege at EASTERN ILLINOIS UNIVERSITY Charleston, Illinois 2017 I hereby recommend this thesis to be accepted as fulfilling the thesis requirement for obtaining Undergraduate Departmental Honors Date '.fHESIS ADVI 1 Date HONORSCOORDmATOR f C I//' ' / ·12 1' J Date, , DEPARTME TCHAIR Abstract Fish larvae develop a fin fold that will later be replaced by the median fins. I hypothesize that finfold reabsorption is part of the initial patterning of the median fins,and that caspase-3, an apoptosis marker, will be expressed in the fin fold during reabsorption. I analyzed time series of larvae in the first20-days post hatch (dph) to determine timing of median findevelopment in a basal bony fish- sturgeon- and in zebrafish, a derived bony fish. I am expecting the general activation pathway to be conserved in both fishesbut, the timing and location of cell death to differ.The dorsal fin foldis the firstto be reabsorbed in the sturgeon starting at 2 dph and rays formed at 6dph. This was closely followed by the anal finat 3 dph, rays at 9 dph and only later, at 6dph, does the caudal fin start forming and rays at 14 dph. -
Respiratory Disorders of Fish
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Disorders of the Respiratory System in Pet and Ornamental Fish a, b Helen E. Roberts, DVM *, Stephen A. Smith, DVM, PhD KEYWORDS Pet fish Ornamental fish Branchitis Gill Wet mount cytology Hypoxia Respiratory disorders Pathology Living in an aquatic environment where oxygen is in less supply and harder to extract than in a terrestrial one, fish have developed a respiratory system that is much more efficient than terrestrial vertebrates. The gills of fish are a unique organ system and serve several functions including respiration, osmoregulation, excretion of nitroge- nous wastes, and acid-base regulation.1 The gills are the primary site of oxygen exchange in fish and are in intimate contact with the aquatic environment. In most cases, the separation between the water and the tissues of the fish is only a few cell layers thick. Gills are a common target for assault by infectious and noninfectious disease processes.2 Nonlethal diagnostic biopsy of the gills can identify pathologic changes, provide samples for bacterial culture/identification/sensitivity testing, aid in fungal element identification, provide samples for viral testing, and provide parasitic organisms for identification.3–6 This diagnostic test is so important that it should be included as part of every diagnostic workup performed on a fish. -
Barnacle Feeding Frenzy
Science Unit: Marine Biodiversity: Global Ocean to the Salish Sea Lesson 4: Barnacle Feeding Frenzy Summary: Students observe live barnacles feeding (it’s often a wonderful surprise for students to discover that barnacles are living things!) They then conduct an inquiry and collect data to determine if barnacle feeding speed changes in two water temperatures. Lesson type: Live animal observations Grade level: Presented to grade 3; appropriate for grades K – 12 with age appropriate modifications Duration of lesson: 75 min Developed by: Jonathan Kellogg (Scientist); Andrea Teschner and Gillian Wilson-Haffenden (Teachers) Developed for: Lord Kitchener Elementary School Year: 2016-2017 Notes: Requires live barnacles from a local beach and sea water at two temperatures Connections to BC Curriculum Biodiversity in the local environment, Making observations about living things in the local environment, Collect simple data, Identify questions about familiar objects that can be investigated scientifically, Make predictions based on prior knowledge, Knowledge of local First Peoples, Use tables, simple bar graphs, or other formats to represent data and show simple patterns and trends, Compare results with predictions, suggesting possible reasons for findings. Objectives a) Observe live barnacles feeding in a cup of seawater and document these observations b) Predict and determine how barnacle behaviour changes with different seawater temperatures c) Learn how barnacles use their cirri (feet) to move water over their body when feeding Materials • Clear plastic cocktail • Small barnacle covered rocks • Drawing or Graphing paper cups (1 rock per student pair) • Small cooler to hold • Food colouring • Seawater to fill milk jugs. Allow one barnacles to warm to room temperature, but • Two 4L milk jugs keep the other in the refrigerator. -
Current Knowledge on the European Mudminnow, Umbra Krameri Walbaum, 1792 (Pisces: Umbridae)
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 1995 Band/Volume: 97B Autor(en)/Author(s): Wanzenböck Josef Artikel/Article: Current knowledge on the European mudminnow, Umbra krameri Walbaum, 1792 (Pisces: Umbridae). 439-449 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 97 B 439 - 449 Wien, November 1995 Current knowledge on the European mudminnow, Umbra krameri WALBAUM, 1792 (Pisces: Umbridae) J. Wanzenböck* Abstract The present paper summarizes the current knowledge on the European mudminnow {Umbra krameri WALBAUM, 1792) with respect to systematics, taxonomy, and ecology. Key words: Umbridae, Umbra krameri, systematics, taxonomy, ecology. Zusammenfassung Die vorliegende Arbeit faßt den derzeitigen Wissensstand über den Europäischen Hundsfisch {Umbra kra- meri WALBAUM, 1792) unter Berücksichtigung systematischer, taxonomischer und ökologischer Aspekte zusammen. Names, taxonomy, and systematics Scientific name: Umbra krameri WALBAUM, 1792 Common names: Based on BLANC & al. (1971) and LINDBERG & HEARD (1972). Names suggested by the author are given at first, those marked with an asterix (*) are given in BLANC & al. (1971). German: Europäischer Hundsfisch, Hundsfisch*, Ungarischer Hundsfisch Hungarian: Lâpi póc* Czech: Tmavec hnëdy*, Blatnâk tmavy Slovak: Blatniak* Russian: Evdoshka, Umbra* Ukrainian: Boboshka (Dniestr), Evdoshka, Lezheboka -
The Genome of the Largest Bony Fish, Ocean Sunfish (Mola Mola), Provides Insights Into Its Fast Growth Rate
The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate Pan, Hailin; Yu, Hao; Ravi, Vydianathan; Li, Cai; Lee, Alison P.; Lian, Michelle M.; Tay, Boon- Hui; Brenner, Sydney; Wang, Jian; Yang, Huanming; Zhang, Guojie; Venkatesh, Byrappa Published in: GigaScience DOI: 10.1186/s13742-016-0144-3 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Pan, H., Yu, H., Ravi, V., Li, C., Lee, A. P., Lian, M. M., Tay, B-H., Brenner, S., Wang, J., Yang, H., Zhang, G., & Venkatesh, B. (2016). The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate. GigaScience, 5, [36]. https://doi.org/10.1186/s13742-016-0144-3 Download date: 29. sep.. 2021 Pan et al. GigaScience (2016) 5:36 DOI 10.1186/s13742-016-0144-3 RESEARCH Open Access The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate Hailin Pan1,2†, Hao Yu1,2†, Vydianathan Ravi3†, Cai Li1,2, Alison P. Lee3, Michelle M. Lian3, Boon-Hui Tay3, Sydney Brenner3, Jian Wang4,5, Huanming Yang4,5, Guojie Zhang1,2,6* and Byrappa Venkatesh3,7* Abstract Background: The ocean sunfish (Mola mola), which can grow up to a length of 2.7 m and weigh 2.3 tons, is the world’s largest bony fish. It has an extremely fast growth rate and its endoskeleton is mainly composed of cartilage. Another unique feature of the sunfish is its lack of a caudal fin, which is replaced by a broad and stiff lobe that results in the characteristic truncated appearance of the fish. -
Lecture 8 – Head and Jaw Osteology
Lecture 8 – Head and Jaw osteology More derived fishes (Ray finned fishes) The variability of the jaw structure of bony fishes provides an explanation for the extensive adaptive radiation in the group and why they are so diverse and occupy almost every aquatic niche available. Skull diversity (A) carp, Cyprinus carpio, (B) vampire characin, Hydrolycus scomberoides, (C) catfish Arius felis. (D) cod Gadus morhua. (E) large-mouth bass, Micropterus salmoides (F) The parrotfish Scarus guacamaia. Scale bar = 10 mm WESTNEAT 2004 From an evolutionary standpoint, fishes were the first animals to develop bony jaws. Versatile jaws and multiple feeding strategies allowed fishes to fill, or radiate into, a diverse range of niches. They have evolved to feed in all possible ways – sucking, biting, scraping, nipping, crushing etc. The head of a teleost has 5 main regions: Cranium, jaws, cheeks, hydroid arch, opercula. The head of a fish has five main regions • 1) The CRANIUM is composed of the bones providing direct support and protection to the brain and the visual, Anterior Posterior olfactory, and auditory organs. Below the cranium is the parashenoid bone. • Parasphenoid plays a role in the jaws as Features of the neurocranium sensu lato (from Caranx it acts as a hard melampygus, lateral aspect, left, and posterior aspect, right). A = prevomer, B = ethmoid, C = frontal, D = palate supraoccipital, E = pterotic, F = exoccipital, G = basioccipital, H = foramen magnum, I = parasphenoid, J = orbit. The five main regions Bowfin 2) The JAWS • Lower Jaw – has an Angular articular and dentary bone • Angular articular- The paired bones form the posterior part of either side of the lower jaw and articulate with the suspensorium. -
Thursday, August 31, 2017 Time
Soundings JUNE 2016 American Cetacean Society – Monterey Bay Chapter AUGUST 2017 PO Box H E, Pacific Grove, CA 93950 MONTHLY MEETING AT HOPKINS MARINE STATION, INSIDE THIS ISSUE LECTURE HALL BOAT WORKS BUILDING CALENDAR ……………….......2 (ACROSS FROM THE AMERICAN TIN CANNERY OUTLET STORES) MEETING IS OPEN TO THE PUBLIC THE RHYTHMS THAT MAKE ELEPHANT SEALS RUN OR Thursday, August 31, 2017 FIGHT………………………....2 Time: 7:30 PM WHY DON’T WHALES GET PLEASE JOIN US AT 7:00 FOR REFRESHMENTS OUT OF THE WAY?...................3 Speaker: Kip Evans PLASTIC GARBAGE PATCH Exploring Our Greatest Frontier BIGGER THAN MEXICO FOUND IN PACIFIC…….....…….…......4 Award-winning filmmaker, photographer, and explorer Kip Evans has led or participated in more GRUESOME CASES OF GREAT WHITE SHARKS HAVING than sixty expeditions throughout the world, THEIR LIVERS RIPPED OUT including recent assignments in Spain, Costa Rica, AND EATEN BY ORCAS ARE ON Chile, and the Galapagos Islands. As a THE RISE……………...………5 photographer, he has worked on dozens of National Geographic Society projects since 1998, including ORCA SURVIVAL DEPENDS ON the five-year Sustainable Seas project to explore PROTECTING CHINOOK and document the U.S. National Marine SALMON…..………..…………6 Sanctuaries. Kip’s images have been featured in books, exhibits, calendars, advertisements, and SIGHTINGS……………..…......7 magazines worldwide, including National Geographic magazine, Patagonia, and Outside. In MEMBERSHIP…………..…......8 2014, Kip lived underwater for 17 days in the Aquarius underwater laboratory as an aquanaut with Mission 31. Since 2008, Kip has been the director of Your local ACS chapter expeditions and photography for Mission Blue. Kip was recently honored as the needs you! 2017 Ocean Champion by the San Francisco Ocean Film Festival. -
Invasive Species of the Pacific Northwest
Invasive Species of the Pacific Northwest: Green Sunfish Lepomis cyanellus Derek Arterburn FISH 423: Olden 12.5.14 Figure 1: Adult Green sunfish Lepomis cyanellus . Photo from http://www.freshwater-fishing- news.com/fish-species-north -america/green-sunfish/ Classification Lepomis cyanellus may have a few teeth, Order: Perciformes which can be found on the tongue. Family: Centrarchidae Additional distinguishing marks are the 7-12 Genus: Lepomis parallel diffused dark bars running ventral to Species: cyanellus dorsal along the side of L. cyanellus, and the bluish-green pattern. The bluish-green Identification coloration takes place on the mainly black/dark brown/olive body, composed of Adult Green Sunfish, Lepomis ctenoid scales, which fades to a lighter cyanellus, commonly reach a total length of ventral color. The dark sides of L. cyanellus 31cm, with juveniles ranging from 12-15cm. are contrast with a yellow/cream ventral Adult Green Sunfish have been known to coloration (Cockerell 1913). The thick reach a maximum weight of one kilogram caudal peduncle is without an adipose fin, (2.2lbs). L. cyanellus is a deep bodied, and the peduncle runs to a rounded, slightly laterally compressed species, with a lateral forked, homocercal caudal fin. The paired line running from the operculum to the fins on Lepomis cyanellus are derived in caudal peduncle. The posterior of the orientation. The Green Sunfish has lateral operculum has a characteristic dark spot placement of the pectoral fins with vertical relatively the same size as the eye, and the insertion, anterior pelvic fins, and spines same size spot may also be found at the base found on the anal and dorsal fins. -
Percomorph Phylogeny: a Survey of Acanthomorphs and a New Proposal
BULLETIN OF MARINE SCIENCE, 52(1): 554-626, 1993 PERCOMORPH PHYLOGENY: A SURVEY OF ACANTHOMORPHS AND A NEW PROPOSAL G. David Johnson and Colin Patterson ABSTRACT The interrelationships of acanthomorph fishes are reviewed. We recognize seven mono- phyletic terminal taxa among acanthomorphs: Lampridiformes, Polymixiiformes, Paracan- thopterygii, Stephanoberyciformes, Beryciformes, Zeiformes, and a new taxon named Smeg- mamorpha. The Percomorpha, as currently constituted, are polyphyletic, and the Perciformes are probably paraphyletic. The smegmamorphs comprise five subgroups: Synbranchiformes (Synbranchoidei and Mastacembeloidei), Mugilomorpha (Mugiloidei), Elassomatidae (Elas- soma), Gasterosteiformes, and Atherinomorpha. Monophyly of Lampridiformes is justified elsewhere; we have found no new characters to substantiate the monophyly of Polymixi- iformes (which is not in doubt) or Paracanthopterygii. Stephanoberyciformes uniquely share a modification of the extrascapular, and Beryciformes a modification of the anterior part of the supraorbital and infraorbital sensory canals, here named Jakubowski's organ. Our Zei- formes excludes the Caproidae, and characters are proposed to justify the monophyly of the group in that restricted sense. The Smegmamorpha are thought to be monophyletic principally because of the configuration of the first vertebra and its intermuscular bone. Within the Smegmamorpha, the Atherinomorpha and Mugilomorpha are shown to be monophyletic elsewhere. Our Gasterosteiformes includes the syngnathoids and the Pegasiformes -
Anatomy and Go Fish! Background
Anatomy and Go Fish! Background Introduction It is important to properly identify fi sh for many reasons: to follow the rules and regulations, for protection against sharp teeth or protruding spines, for the safety of the fi sh, and for consumption or eating purposes. When identifying fi sh, scientists and anglers use specifi c vocabulary to describe external or outside body parts. These body parts are common to most fi sh. The difference in the body parts is what helps distinguish one fi sh from another, while their similarities are used to classify them into groups. There are approximately 29,000 fi sh species in the world. In order to identify each type of fi sh, scientists have grouped them according to their outside body parts, specifi cally the number and location of fi ns, and body shape. Classifi cation Using a system of classifi cation, scientists arrange all organisms into groups based on their similarities. The fi rst system of classifi cation was proposed in 1753 by Carolus Linnaeus. Linnaeus believed that each organism should have a binomial name, genus and species, with species being the smallest organization unit of life. Using Linnaeus’ system as a guide, scientists created a hierarchical system known as taxonomic classifi cation, in which organisms are classifi ed into groups based on their similarities. This hierarchical system moves from largest and most general to smallest and most specifi c: kingdom, phylum, class, order, family, genus, and species. {See Figure 1. Taxonomic Classifi cation Pyramid}. For example, fi sh belong to the kingdom Animalia, the phylum Chordata, and from there are grouped more specifi cally into several classes, orders, families, and thousands of genus and species. -
Full Text in Pdf Format
MARINE ECOLOGY PROGRESS SERIES Vol. 164: 263-271,1998 Published April 9 Mar Ecol Prog Ser Intraspecific and interspecific relationships between host size and the abundance of parasitic larval gnathiid isopods on coral reef fishes Alexandra S. Grutter 'l*, Robert poulin2 'Department of Parasitology, The University of Queensland. Brisbane, Queensland 4072, Australia 'Department of Zoology, University of Otago. PO Box 56. Dunedin. New Zealand ABSTRACT: Parasitic gnathud isopod larvae on coral reef teleosts and elasmobranchs were quantified at Lizard and Heron Islands (Great Barrier Reef), and Moreton Bay, Australia. The relationship between gnathlid abundance and host size was examined across and within species. Of the 56 species examined. 70 % had gnathiids, with counts ranging from 1 to 200 per fish and the elasmobranchs hav- ing the highest numbers. Pomacentrids rarely had gnathiids. In contrast, most labrids had gnathiids. Gnathiid abundance was positively correlated with host size in the species Chlorurus sordidus, Ctenochaetus stnatus, Hernigyrnnus melapterus, Siganus dollatus, and Thalassorna lunare, but not for Scolopsis b~lineatus.Mean gnathlid abundance per host species also correlated with host size across species, even after controlling for the potential confounding effects of uneven sampling effort and host phylogeny Thus host size explains much of the intraspecific and interspecific variation In gnathiid abundance on fish. KEY WORDS: Gnathiidae . Ectoparasites . Coral reef fish . Host-parasite interactions . Fish size . Great Barrier Reef INTRODUCTION gnathiids on fish (Grutter 1996a). When present in 'large' numbers (Paperna & Por 1977) and when fish Until recently, there was little evidence that para- have 'around a hundred' (Mugridge & Stallybrass sites were important in fish cleaning behavior (Losey 1983),gnathiids can cause fish mortality in captive fish 1987), however, current studies on the Great Barrier (Paperna & Por 1977). -
JAGE-691 Fish Cognition and Consciousness Colin Allen [email protected] Phone
JAGE-691 Fish Cognition and Consciousness Colin Allen [email protected] phone: +1-812-606-0881 fax: +1-812-855-3631 Program in Cognitive Science and Department of History and Philosophy of Science Indiana University, Bloomington, IN 47405 USA ABSTRACT. Questions about fish consciousness and cognition are receiving increasing attention. In this paper, I explain why one must be careful to avoid drawing conclusions too hastily about this hugely di- verse set of species. Keywords. Fish, learning, cognition, consciousness 1. Introduction to the controversy The cognitive and mental capacities of fish are a current topic of scientific controversy, and consciousness is the most contentious of topics. In a recent review article, Michel Cabanac and coauthors (Cabanac et al. 2009) argue that consciousness did not emerge until the early Amniota, the group of species that includes mammals, birds, and "reptiles.” The latter term is in scare quotes because biologists consider it a paraphy- letic group (i.e., a group that contains just a subset of the descendants of its common ancestor) that is im- proper for classification purposes due to its exclusion of the birds, which descended from the saurians. Amniotes are characterized by an embryonic membrane that makes terrestrial reproduction feasible. The amphibians, lacking this adaptation, are constrained to place their eggs in an aqueous environment for proper development. These biological details are important because of the nature of some of the evidence that Cabanac et al. bring to bear on the question of consciousness in fish – evidence that I shall maintain seems skewed towards other adaptations that have to do with terrestrial life.