Current Knowledge on the European Mudminnow, Umbra Krameri Walbaum, 1792 (Pisces: Umbridae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Corrective Notice to the European Mudminnow (Umbra Krameri
1 Corrective notice to the European mudminnow (Umbra krameri, Walbaum 1792) 2 record from the Black Sea 3 4 5 Juraj Hajdú 1, Levente Várkonyi 2, Ján Ševc1, Tamás Müller 2*, 6 7 1 Faculty of Humanities and Natural Sciences, University of Prešov, Ul. 17. Novembra 1, 8 Prešov, Slovakia, [email protected] 9 2 Department of Aquaculture, Institute of Environmental and Landscape Management 10 Faculty of Agriculture and Environmental Science, Szent István University, 11 Páter K. u. 1, 2100 Gödöllő, Hungary, [email protected] 12 13 Abstract 14 15 Raykov et al. (2012) recorded the European mudminnow (Umbra krameri) from the Black 16 Sea, at a depth of 36.3–41 m. Morphometric comparison of the pictured specimen with 10 17 adult U. krameri and published data was conducted which excluded its taxonomic affiliation 18 to Umbridae family. 19 20 Keywords: morphometric parameters; endangered fish; taxonomic revision, 21 22 23 24 25 26 27 28 Introduction 29 30 European mudminnow (Umbra krameri) is an endemic stagnophil species of the Danube and 31 Dniester river drainages (Lelek 1987), inhabiting marshes and lowland waters densely 32 overgrown by aquatic vegetation (Wilhelm 2003, Pekárik et al. 2014). The species is 33 threatened by extinction in many of its original habitats (Simić et al. 2007). According to 34 IUCN Red List it is categorized as "Vulnerable" since its isolated and decrescent populations 35 are estimated to have declined by more than 30% in the past 10 years (Freyhof 2011). Raykov 36 et al. (2012) reported the first record of U. -
Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra. -
Median Fin Patterning in Bony Fish: Caspase-3 Role in Fin Fold Reabsorption
Eastern Illinois University The Keep Undergraduate Honors Theses Honors College 2017 Median Fin Patterning in Bony Fish: Caspase-3 Role in Fin Fold Reabsorption Kaitlyn Ann Hammock Follow this and additional works at: https://thekeep.eiu.edu/honors_theses Part of the Animal Sciences Commons Median fin patterning in bony fish: caspase-3 role in fin fold reabsorption BY Kaitlyn Ann Hammock UNDERGRADUATE THESIS Submitted in partial fulfillment of the requirement for obtaining UNDERGRADUATE DEPARTMENTAL HONORS Department of Biological Sciences along with the HonorsCollege at EASTERN ILLINOIS UNIVERSITY Charleston, Illinois 2017 I hereby recommend this thesis to be accepted as fulfilling the thesis requirement for obtaining Undergraduate Departmental Honors Date '.fHESIS ADVI 1 Date HONORSCOORDmATOR f C I//' ' / ·12 1' J Date, , DEPARTME TCHAIR Abstract Fish larvae develop a fin fold that will later be replaced by the median fins. I hypothesize that finfold reabsorption is part of the initial patterning of the median fins,and that caspase-3, an apoptosis marker, will be expressed in the fin fold during reabsorption. I analyzed time series of larvae in the first20-days post hatch (dph) to determine timing of median findevelopment in a basal bony fish- sturgeon- and in zebrafish, a derived bony fish. I am expecting the general activation pathway to be conserved in both fishesbut, the timing and location of cell death to differ.The dorsal fin foldis the firstto be reabsorbed in the sturgeon starting at 2 dph and rays formed at 6dph. This was closely followed by the anal finat 3 dph, rays at 9 dph and only later, at 6dph, does the caudal fin start forming and rays at 14 dph. -
Ecology and Conservation of Mudminnow Species Worldwide
FEATURE Ecology and Conservation of Mudminnow Species Worldwide Lauren M. Kuehne Ecología y conservación a nivel mundial School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195 de los lucios RESUMEN: en este trabajo, se revisa y resume la ecología Julian D. Olden y estado de conservación del grupo de peces comúnmente School of Aquatic and Fishery Sciences, University of Washington, Box conocido como “lucios” (anteriormente conocidos como 355020, Seattle, WA 98195, and Australian Rivers Institute, Griffith Uni- la familia Umbridae, pero recientemente reclasificados en versity, QLD, 4111, Australia. E-mail: [email protected] la Esocidae) los cuales se constituyen de sólo cinco espe- cies distribuidas en tres continentes. Estos peces de cuerpo ABSTRACT: We review and summarize the ecology and con- pequeño —que viven en hábitats de agua dulce y presentan servation status of the group of fishes commonly known as movilidad limitada— suelen presentar poblaciones aisla- “mudminnows” (formerly known as the family Umbridae but das a lo largo de distintos paisajes y son sujetos a las típi- recently reclassified as Esocidae), consisting of only five species cas amenazas que enfrentan las especies endémicas que distributed on three continents. These small-bodied fish—resid- se encuentran en contacto directo con los impactos antro- ing in freshwater habitats and exhibiting limited mobility—often pogénicos como la contaminación, alteración de hábitat occur in isolated populations across landscapes and are subject e introducción de especies no nativas. Aquí se resume el to conservation threats common to highly endemic species in conocimiento actual acerca de la distribución, relaciones close contact with anthropogenic impacts, such as pollution, filogenéticas, ecología y estado de conservación de cada habitat alteration, and nonnative species introductions. -
Huchen (Hucho Hucho) ERSS
Huchen (Hucho hucho) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, April 2011 Revised, January 2019, February 2019 Web Version, 4/30/2019 Photo: Liquid Art. Licensed under CC-SA 4.0 International. Available: https://commons.wikimedia.org/wiki/File:Danube_Salmon_-_Huchen_(Hucho_hucho).jpg. (January 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019): “Europe: Danube drainage [Austria, Bosnia and Herzegovina, Bulgaria, Croatia, Germany, Hungary, Italy, Romania, Serbia, Slovakia, Slovenia, Switzerland, and Ukraine].” “Population has declined [in Slovenia] due to pollution and river regulation. Conservation measures include artificial propagation and stocking [Povz 1996]. Status of threat: Regionally extinct [Bianco and Ketmaier 2016].” 1 “Considered locally extinct (extirpated) in 1990 [in Switzerland] [Vilcinskas 1993].” “Extinct in the wild in 2000 [in Czech Republic] [Lusk and Hanel 2000]. This species is a native species in the basin of the Black Sea (the rivers Morava and Dyje). At present, its local and time- limited occurrence depends on the stocking material from artificial culture. Conditions that will facilitate the formation of a permanent population under natural conditions are not available [Lusk et al. 2004]. […] Status of threat: extinct in the wild [Lusk et al. 2011].” From Freyhof and Kottelat (2008): “The species is severely fragmented within the Danube drainage, where most populations exclusively depend on stocking and natural reproduction is very limited due to habitat alterations and flow regime changes.” From Grabowska et al. (2010): “The exceptional case is huchen (or Danubian salmon), Hucho hucho. The huchen’s native range in Poland was restricted to two small rivers (Czarna Orawa and Czadeczka) of the Danube River basin, […]” Status in the United States Froese and Pauly (2019) report an introduction to the United States between 1870 and 1874 that did not result in an established population. -
Bony Fish Guide
This guide will help you to complete the Bony Fish Observation Worksheet. Bony Fish Guide Fish (n.) An ectothermic (cold-blooded) vertebrate (with a backbone) aquatic (lives in water) animal that moves with the help of fins (limbs with no fingers or toes) and breathes with gills. This definition might seem very broad, and that is because fish are one of the most diverse groups of animals on the planet—there are a lot of fish in the sea (not to mention rivers, lakes and ponds). In fact, scientists count at least 32,000 species of fish—more than any other type of vertebrate. Fish are split into three broad classes: Jawless Fish Cartilaginous Fish Bony Fish (hagfish, lampreys, etc.) (sharks, rays, skates, etc.) (all other fish) This guide will focus on the Bony Fish. There are at least 28,000 species of bony fish, and they are found in almost every naturally occurring body of water on the planet. Bony fish range in size: • Largest: ocean sunfish (Mola mola), 11 feet, over 5,000 pounds • Smallest: dwarf pygmy goby (Pandaka pygmaea), ½ inch, a fraction of an ounce (This image is life size.) The following guide will help you learn more about the bony fish you can find throughout the New England Aquarium. Much of the guide is keyed to the Giant Ocean Tank, but can be applied to many kinds of fish. Even if you know nothing about fish, you can quickly learn a few things: The shape of a fish’s body, the position of its mouth and the shape of its tail can give you many clues as to its behavior and adaptations. -
History of Fishes - Structural Patterns and Trends in Diversification
History of fishes - Structural Patterns and Trends in Diversification AGNATHANS = Jawless • Class – Pteraspidomorphi • Class – Myxini?? (living) • Class – Cephalaspidomorphi – Osteostraci – Anaspidiformes – Petromyzontiformes (living) Major Groups of Agnathans • 1. Osteostracida 2. Anaspida 3. Pteraspidomorphida • Hagfish and Lamprey = traditionally together in cyclostomata Jaws = GNATHOSTOMES • Gnathostomes: the jawed fishes -good evidence for gnathostome monophyly. • 4 major groups of jawed vertebrates: Extinct Acanthodii and Placodermi (know) Living Chondrichthyes and Osteichthyes • Living Chondrichthyans - usually divided into Selachii or Elasmobranchi (sharks and rays) and Holocephali (chimeroids). • • Living Osteichthyans commonly regarded as forming two major groups ‑ – Actinopterygii – Ray finned fish – Sarcopterygii (coelacanths, lungfish, Tetrapods). • SARCOPTERYGII = Coelacanths + (Dipnoi = Lung-fish) + Rhipidistian (Osteolepimorphi) = Tetrapod Ancestors (Eusthenopteron) Close to tetrapods Lungfish - Dipnoi • Three genera, Africa+Australian+South American ACTINOPTERYGII Bichirs – Cladistia = POLYPTERIFORMES Notable exception = Cladistia – Polypterus (bichirs) - Represented by 10 FW species - tropical Africa and one species - Erpetoichthys calabaricus – reedfish. Highly aberrant Cladistia - numerous uniquely derived features – long, independent evolution: – Strange dorsal finlets, Series spiracular ossicles, Peculiar urohyal bone and parasphenoid • But retain # primitive Actinopterygian features = heavy ganoid scales (external -
Life History Patterns and Biogeography: An
LIFE HISTORY PATTERNS AND Lynne R. Parenti2 BIOGEOGRAPHY: AN INTERPRETATION OF DIADROMY IN FISHES1 ABSTRACT Diadromy, broadly defined here as the regular movement between freshwater and marine habitats at some time during their lives, characterizes numerous fish and invertebrate taxa. Explanations for the evolution of diadromy have focused on ecological requirements of individual taxa, rarely reflecting a comparative, phylogenetic component. When incorporated into phylogenetic studies, center of origin hypotheses have been used to infer dispersal routes. The occurrence and distribution of diadromy throughout fish (aquatic non-tetrapod vertebrate) phylogeny are used here to interpret the evolution of this life history pattern and demonstrate the relationship between life history and ecology in cladistic biogeography. Cladistic biogeography has been mischaracterized as rejecting ecology. On the contrary, cladistic biogeography has been explicit in interpreting ecology or life history patterns within the broader framework of phylogenetic patterns. Today, in inferred ancient life history patterns, such as diadromy, we see remnants of previously broader distribution patterns, such as antitropicality or bipolarity, that spanned both marine and freshwater habitats. Biogeographic regions that span ocean basins and incorporate ocean margins better explain the relationship among diadromy, its evolution, and its distribution than do biogeographic regions centered on continents. Key words: Antitropical distributions, biogeography, diadromy, eels, -
European Mudminnow Conservation Program
4. Future conservation goals Sponsors EUROPEAN MUDMINNOW CONSERVATION PROGRAM • to come to know environmental requirements of mudminnow (physicochemical, biological and (HUNGARY ) ecological investigations in natural habitats) • artificial propagation, larvae and juvenile rearing under controlled conditions • investigate the ecology of fish (i.e. growth, reproduction, feeding) Local government of National Civil Fund • introductions for increase number of stocks in village Szada natural habitats • creating new habitats (ponds) in Pilot Demonstration Area • genome conservation of different rescued endangered populations: sperm cryopreservation and introductions of propagated fishes into separated ponds of Pilot Demonstration Area • monitoring biological processes of new ponds in the Pilot Demonstration Area • widespread media communication about outcomes of project • make a film about our program for public and education. Stocking of bred mudminnow in Pilot Demonstration Area Tavirózsa Association for Environmental Protection 2011 and Nature Conservation Szent István University (SzIU) Faculty of Agricultural and Environmental Sciences Institute of Environmental and Landscape Management Department of Aquaculture Program manager: Sándor Tatár (Tavirózsa Association) E-mail: [email protected] 5 months old (own propagated) mudminnows Postal address: H-2112 Veresegyház, Pf. 99. www.tavirozsa-egyesulet.hu Photos: Csaba Posztós/Photomania, Sándor Tatár © 2008-2011, Tavirózsa Association • Reproduction on captivity (26 adults from 1. Conservation -
Materials and Methods
1 Phylogeography and population genetics of the European mudminnow 2 (Umbra krameri) with a time-calibrated phylogeny for the family Umbridae 3 4 Saša Marić1, David Stanković2,3, Josef Wanzenböck4, Radek Šanda5, Tibor Erős6, Péter 5 Takács6, András Specziár6, Nenad Sekulić7, Doru Bănăduc8, Marko Ćaleta9, Ilya Trombitsky10, 6 Laslo Galambos11, Sandor Sipos12, Aleš Snoj2* 7 8 1 Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg 16, 11001 9 Belgrade, Serbia 10 2 Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, SI- 11 1230 Domžale, Slovenia 12 3 Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy 13 4 Research Institute for Limnology, University of Innsbruck, Mondseestraße 9, 5310 Mondsee, 14 Austria 15 5 National Museum, Department of Zoology, Václavské náměstí 68, 115 79 Prague 1, Czech 16 Republic; 17 6 Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 18 3, H-8237 Tihany, Hungary 19 7 Institute for Nature Conservation of Serbia, Dr Ivana Ribara 91, 11070 Novi Beograd, Serbia 20 8 Faculty of Sciences, Lucian Blaga University of Sibiu, Dr. Ion Raţiu 5-7, RO-550012, Sibiu, 21 Romania 22 9 Faculty of Teacher Education, University of Zagreb, Savska cesta 77, 10000 Zagreb, Croatia 1 23 10 Eco-TIRAS International Association of Dniester River Keepers, Teatrala 11A, Chisinau 24 2012, Moldova 25 11 Institute for Nature Conservation of Vojvodina, Radnička 20a, 21000 Novi Sad, Serbia 26 12 Department of Biology and Ecology, Faculty of Science, University of Novi Sad, Trg D. 27 Obradovića 2, Novi Sad, Serbia 28 29 30 * Corresponding author: Aleš Snoj 31 Telephone number: 00 386 1 3203 912 32 Fax number: 00 386 1 3203 888 33 E-mail: [email protected] 34 35 36 37 38 39 40 41 42 43 Abstract 2 44 The genetic structure of European mudminnow populations throughout the species range was examined using 45 mitochondrial DNA and seven microsatellite loci. -
Updated National Strategy for the Protection of Biodiversity to 2020
Updated National Strategy for the Protection of Biodiversity to 2020 Slovak Republic 2014 Table of contents 1. Introduction ..................................................................................................................................................... 3 Global framework for the protection of biodiversity and its implementation in Slovakia .................................. 3 Biodiversity loss and its consequences........................................................................................................... 4 Failure to meet the target to reduce or halt biodiversity loss by 2010 ............................................................. 5 Setting a new target to be achieved by 2020 on a global and European scale............................................... 5 The role of the Updated National Strategy for the Protection of Biodiversity to 2020 ..................................... 6 2. Long-term vision and further consideration of the Updated National Strategy for the Protection of Biodiversity to 2020 ............................................................................................................................................................ 8 Long-term vision for the protection of biodiversity in Slovakia to 2050............................................................ 8 Basis for the Updated National Strategy for the Protection of Biodiversity to 2020......................................... 8 3. Evaluation of the current status of the biodiversity protection in Slovakia...................................................... -
JOINTS and MUSCLES of the DORSAL FIN of TILAPIA NILOTICA L. (FAM. CICHLIDAE). by P. J. GEERLINK and J. J. VIDELER (Zoological La
JOINTS AND MUSCLES OF THE DORSAL FIN OF TILAPIA NILOTICA L. (FAM. CICHLIDAE). by P. J. GEERLINK AND J. J. VIDELER (ZoologicalLaboratory, Universityof Groningen,The Netherlands) SUMMARY The dorsal fin of the teleost fish Tilapia nilotica is described, emphasizing the joints of the spines and soft rays. Both kinds of joints are composed of the same basic elements. In the spine joint one axis of movement is present; in the soft ray joint there are two axes perpendicular to each other. An account is given of the musculature of the dorsal fin. Separate muscles are distinguished, situated between the inclinator muscles of the spines, for which the name interinclinatorial muscles is introduced. Their function is not clear. INTRODUCTION There are many publications describing the comparative anatomy of the dorsal fins of teleost fishes. A number of questions, however, concerning the immediate relation between structure and movements of the fin remain unclarified. In order to elucidate this kind of problem attention should be focussed on the fin structure and movement of one single species. Only a few authors have done this (e.g. HOOGLAND, 1951, who investigated the fixing mechanism of the dorsal spines of Gasterosteus aculeatus). The aim of this paper is to describe and compare some anatomical details of the two parts of the dorsal fin of Tilapia nilotica. Many Per- ciform fishes have dorsal fins consisting of two different parts or even two different fins occur. Tilapia nilotica has one single dorsal fin; the rostral part containing spiny rays and having restricted movability; the caudal part having flexible, segmented, soft rays, which can move in different directions.