Patterns and Processes in the Evolutionary History of Parrotfishes

Total Page:16

File Type:pdf, Size:1020Kb

Patterns and Processes in the Evolutionary History of Parrotfishes bs_bs_banner Biological Journal of the Linnean Society, 2012, ••, ••–••. With 5 figures Patterns and processes in the evolutionary history of parrotfishes (Family Labridae) JOHN. H. CHOAT1*, OYA. S. KLANTEN1†, LYNNE VAN HERWERDEN1, D. ROSS ROBERTSON2‡ and KENDALL D. CLEMENTS3 1School of Tropical and Marine Biology, James Cook University, Townsville, QLD, 4811, Australia 2Smithsonian Tropical Research Institute, Ancon, Balboa, Republic of Panama 3School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand Received 5 March 2012; revised 23 May 2012; accepted for publication 23 May 2012 Phylogenetic reconstruction of the evolutionary relationships among 61 of the 70 species of the parrotfish genera Chlorurus and Scarus (Family Labridae) based on mitochondrial and nuclear gene sequences retrieved 15 well-supported clades with mid Pliocene/Pleistocene diversification. Twenty-two reciprocally monophyletic sister- species pairs were identified: 64% were allopatric, and the remainder were sympatric. Age of divergence was similar for allopatric and sympatric species pairs. Sympatric sister pairs displayed greater divergence in morphol- ogy, ecology, and sexually dimorphic colour patterns than did allopatric pairs, suggesting that both genetic drift in allopatric species pairs and ecologically adaptive divergence between members of sympatric pairs have played a role in diversification. Basal species typically have small geographical ranges and are restricted to geographically and ecologically peripheral reef habitats. We found little evidence that a single dominant process has driven diversification, nor did we detect a pattern of discrete, sequential stages of diversification in relation to habitat, ecology, and reproductive biology. The evolution of Chlorurus and Scarus has been complex, involving a number of speciation processes. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ••, ••–••. ADDITIONAL KEYWORDS: adaptive radiation – evolution – sexual selection – speciation – reef fish. INTRODUCTION tionary trajectories, diverging sequentially along axes of habitat, trophic morphology, and communication Adaptive radiations are episodes of phenotypic diver- (Streelman & Danley, 2003). Under this model, the sification in rapidly multiplying lineages that result first two stages (ecological) are driven by natural in ecologically divergent groups of species (Schluter, selection, and the third (reproductive) is driven by 2000). A pervasive theme in the vertebrate literature sexual selection (Streelman & Danley, 2003). One of concerns the concept of radiation as a series of stages, the primary exemplars for this model of adaptive in which diversification proceeds through discrete radiation was the evolution of parrotfishes, compris- sequences of phenotypic differentiation (Streelman ing a speciose group of fishes confined largely to coral et al., 2002; Streelman & Danley, 2003; Sallan & reefs (Streelman et al., 2002; Streelman & Danley, Friedman, 2012). The most relevant example in this 2003). As a result, the processes of sequential diver- context is the model of radiation by stages in which sification under this radiation in stages model have different vertebrate radiations follow similar evolu- been applied to the evolution of reef fish faunas, especially the Labridae (Smith et al., 2008; Kazanci- og˘lu et al., 2009). However, recent studies suggest *Corresponding author. E-mail: [email protected] that aspects of this model require reconsideration. †Current address: School of Medicine, The University of Sydney, Building F13, Sydney, NSW 2006, Australia First, the concept of sequential action of natural and ‡Mailing address: STRI, Unit 0948, APO AA 34002, USA sexual selection could be profitably re-examined to © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ••, ••–•• 1 2 J. H. CHOAT ET AL. determine whether these processes are contempora- The evidence for a recent and rapid diversification in neous and interacting, rather than separate in scarines (Alfaro et al., 2009; Kazanciog˘lu et al., 2009), time (The Marie Curie Speciation Network*, 2012). coupled with the analysis of morphological evolution of Second, explicit tests have questioned the concept of the pharyngeal and oral jaws (Price et al., 2010), has radiation in stages (Sallan & Friedman, 2012). Third, focused attention on the processes underlying their the extent to which alternative evolutionary processes speciation. Initial studies (Streelman et al., 2002) iden- such as neutral divergence after geographical isola- tified a pattern of diversification that represented a tion have been important in the evolution of parrot- classical example of an adaptive radiation, with a fishes requires further examination (Robertson et al., signature of natural and sexual selection (Streelman & 2006). The main aim of the present study was to Danley, 2003). These studies suggested that partition- examine the pattern of species-level divergences in ing by habitat occurred in the deepest evolutionary the most speciose clades of parrotfishes aiming to nodes, with sparisomatinine (primarily Sparisoma and determine the extent to which they conform to a Calotomus) species being associated with seagrass model of adaptive radiation as an explanation for the habitats, and scarinines (Bolbometopon, Cetoscarus, diversity of this group. Hipposcarus, Chlorurus, and Scarus) associated with The parrotfishes are a clade of speciose (ten genera, coral reefs. Trophic diversification was visualized in 99 recognized species; Parenti & Randall, (2011) terms of the development of scraping or excavating but morphologically uniform (Bellwood, 1994) perci- feeding modes linked to the fusion of dental plates and form fishes notable both for their abundance on jaw articulations that provided flexibility (for scraping) present day tropical reef systems and their pre- and increased power (for excavating) calcareous reef sumed functional importance (Bellwood & Wain- substrata. Streelman & Danley (2003) further pro- wright, 2002).They were previously recognized as a posed that the dominant element in the more recent distinct family, the Scaridae, closely related to the diversification of lineages within the scarine clade Labridae and comprising two sub-familial groups: the involved socio-sexual behaviour (male territoriality scarines and sparisomatines. Phylogenetic analysis and breeding systems), and associated colour pattern (Westneat & Alfaro, 2005) revealed that the parrot- development, with sexual selection the primary fishes are nested within a monophyletic Labridae and process. are sister to cheiline labrids. Parrotfishes (scarinae) Subsequent studies (Alfaro et al., 2009; Kazanci- are therefore referred to as scarine labrids in the og˘lu et al., 2009; Price et al., 2010) analyzed rates of present study. morphological change in the scarine labrids and the The most speciose elements of this taxon, the extent to which modification of the pharyngeal and genera Scarus, Chlorurus, and Sparisoma, display a oral jaws may be implicated in the diversification of pattern of recent diversification that is restricted speciose clades of parrotfishes. These studies con- largely to the last 3.5 million years (Robertson et al., cluded that that, although changes in the pharyngeal 2006; Smith et al., 2008; Alfaro et al., 2009). The (Alfaro et al., 2009) and especially the oral jaws (Price distribution of diversity is uneven in terms of taxo- et al., 2010) of scarinine parrotfishes occurred at a nomic structure and biogeography. A single genus, greater rate than observed in other labrid taxa, and, Scarus, accounts for over 50% of the species, and 70% in the latter case, were correlated with lineage diver- of all known scarines occur in the Tropical East sification, these changes were not the underlying Pacific and Indo-West Pacific biogeographical regions cause of the cladogenesis that characterizes some (Parenti & Randall, 2000, 2011). Parrotfish are rela- groups of parrotfishes. Alfaro et al. (2009) and Kazan- tively uniform in terms of morphology and foraging ciog˘lu et al. (2009) concluded that the pattern of modes, usually grazing in multi-specific schools over increased rates of diversification was better explained rock and calcareous substrata, (Bellwood & Choat, by the evolution of extreme dichromatism (and other 1990; Bellwood, 1994). This morphological uniformity social and behavioural characters relating to sexual contrasts with the complex reproductive biology of selection) within Scarus and Chlorurus. This conclu- parrotfishes; most are protogynous hermaphrodites, sion was consistent with the sequential pattern of with many taxa manifesting distinctive sexually diversification proposed by Streelman & Danley dimorphic colour patterns (Choat & Robertson, 1975; (2003). Robertson & Warner, 1978; Kazanciog˘lu & Alonzo, Previous phylogenetic analyses (approximately 2010) and plasticity in somatic growth (Gust, 2004; 50% of the known species of Chlorurus and Scarus) Munday et al., 2004). This combination of taxonomic, focussed on the roles of ecological diversification and ecological, and reproductive characteristics has sexual selection as factors driving diversification. The prompted a number of studies on their evolutionary role of geographical isolation as a process driving history, with nine phylogenetic analyses emerging diversification has not been considered in detail. over the last decade. Identification of sister taxa, analysis of geographical
Recommended publications
  • "Red Sea and Western Indian Ocean Biogeography"
    A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea Item Type Article Authors DiBattista, Joseph; Roberts, May B.; Bouwmeester, Jessica; Bowen, Brian W.; Coker, Darren James; Lozano-Cortés, Diego; Howard Choat, J.; Gaither, Michelle R.; Hobbs, Jean-Paul A.; Khalil, Maha T.; Kochzius, Marc; Myers, Robert F.; Paulay, Gustav; Robitzch Sierra, Vanessa S. N.; Saenz Agudelo, Pablo; Salas, Eva; Sinclair-Taylor, Tane; Toonen, Robert J.; Westneat, Mark W.; Williams, Suzanne T.; Berumen, Michael L. Citation A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea 2015:n/a Journal of Biogeography Eprint version Post-print DOI 10.1111/jbi.12649 Publisher Wiley Journal Journal of Biogeography Rights This is the peer reviewed version of the following article: DiBattista, J. D., Roberts, M. B., Bouwmeester, J., Bowen, B. W., Coker, D. J., Lozano-Cortés, D. F., Howard Choat, J., Gaither, M. R., Hobbs, J.-P. A., Khalil, M. T., Kochzius, M., Myers, R. F., Paulay, G., Robitzch, V. S. N., Saenz-Agudelo, P., Salas, E., Sinclair-Taylor, T. H., Toonen, R. J., Westneat, M. W., Williams, S. T. and Berumen, M. L. (2015), A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. Journal of Biogeography., which has been published in final form at http:// doi.wiley.com/10.1111/jbi.12649. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving. Download date 23/09/2021 15:38:13 Link to Item http://hdl.handle.net/10754/583300 1 Special Paper 2 For the virtual issue, "Red Sea and Western Indian Ocean Biogeography" 3 LRH: J.
    [Show full text]
  • Most Impaired" Coral Reef Areas in the State of Hawai'i
    Final Report: EPA Grant CD97918401-0 P. L. Jokiel, K S. Rodgers and Eric K. Brown Page 1 Assessment, Mapping and Monitoring of Selected "Most Impaired" Coral Reef Areas in the State of Hawai'i. Paul L. Jokiel Ku'ulei Rodgers and Eric K. Brown Hawaii Coral Reef Assessment and Monitoring Program (CRAMP) Hawai‘i Institute of Marine Biology P.O.Box 1346 Kāne'ohe, HI 96744 Phone: 808 236 7440 e-mail: [email protected] Final Report: EPA Grant CD97918401-0 April 1, 2004. Final Report: EPA Grant CD97918401-0 P. L. Jokiel, K S. Rodgers and Eric K. Brown Page 2 Table of Contents 0.0 Overview of project in relation to main Hawaiian Islands ................................................3 0.1 Introduction...................................................................................................................3 0.2 Overview of coral reefs – Main Hawaiian Islands........................................................4 1.0 Ka¯ne‘ohe Bay .................................................................................................................12 1.1 South Ka¯ne‘ohe Bay Segment ...................................................................................62 1.2 Central Ka¯ne‘ohe Bay Segment..................................................................................86 1.3 North Ka¯ne‘ohe Bay Segment ....................................................................................94 2.0 South Moloka‘i ................................................................................................................96 2.1 Kamalō
    [Show full text]
  • Estimates of Sponge Consumption Rates on an Indo-Pacific Reef
    Vol. 672: 123–140, 2021 MARINE ECOLOGY PROGRESS SERIES Published August 19 https://doi.org/10.3354/meps13786 Mar Ecol Prog Ser Estimates of sponge consumption rates on an Indo-Pacific reef Charlotte Mortimer1, Matthew Dunn2, Abdul Haris3, Jamaluddin Jompa3, James Bell1,* 1School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand 2The National Institute of Water and Atmospheric Research (NIWA), Wellington 6021, New Zealand 3Universitas Hasanuddin, Department of Marine Science, Makassar 90245, Indonesia ABSTRACT: Determining predator diets is essential for understanding the strength of top-down processes and how they cascade through food webs. This is especially important for sponges, key members of benthic communities, whose dominance has increased in recent years on some coral reefs. However, the diversity of spongivorous fishes and the sponges they consume are relatively unknown. Here, we estimated sponge consumption by spongivorous fishes in the Wakatobi Marine National Park, Indonesia. We deployed cameras to identify fish biting at the dominant reef sponge Xestospongia spp. and then used gut content analysis and fish abundance estimates to quantify sponge consumption. In total, 33 species from 10 families of reef fish were identified taking bites from Xestospongia spp.; however, the 2 most prolific sponge-grazers, Ctenochaetus binotatus and Chaetodon kleinii, had no sponge in their guts, showing that for some fish, bites on sponge surfaces are not reliable evidence of sponge consumption. Gut contents indicated that Pygoplites diacanthus was an obligate spongivore, while Pomacanthus imperator, P. xanthometo- pon, Zanclus cornutus and Siganus punctatus regularly consumed sponges. Sponge consumption by these 5 spongivores was estimated at 46.6 ± 18.3 g sponge 1000 m−2 d−1.
    [Show full text]
  • Disney•Pixar's “Finding Dory”
    Educator’s Guide GRADES 2-6 Created in partnership with the Educational Team isney•Pixar’s “Finding Dory” welcomes back to the big convinced his biological sonar skills are on the fritz; and Dscreen everyone’s favorite forgetful blue tang Dory Destiny (voice of Kaitlin Olson), a nearsighted whale shark. (voice of Ellen DeGeneres), who’s living happily in the reef Deftly navigating the complex inner workings of the MLI, with Marlin (voice of Albert Brooks) and Nemo (voice Dory and her friends discover the magic within their flaws, of Hayden Rolence). When Dory suddenly remembers friendships and family. that she has a family out there who may be looking for Directed by Andrew Stanton (“Finding Nemo,” “WALL•E”), her, the trio takes off on a life-changing adventure across co-directed by Angus MacLane (“Toy Story OF TERROR!”), the ocean to California’s prestigious Marine Life Institute and produced by Lindsey Collins (co-producer “WALL•E”), (MLI), a rehabilitation center and aquarium. In an effort to Disney•Pixar’s “Finding Dory” swims home on Digital find her mom (voice of Diane Keaton) and dad (voice of HD October 25 and on Blu-ray™ November 15. For Eugene Levy), Dory enlists the help of three of the MLI’s more information, like us on Facebook, https://www. most intriguing residents: Hank (voice of Ed O’Neill), a facebook.com/PixarFindingDory, and follow us on Twitter, cantankerous octopus who frequently gives employees https://twitter.com/findingdory and Instagram, https:// the slip; Bailey (voice of Ty Burrell), a beluga whale who is instagram.com/DisneyPixar.
    [Show full text]
  • Life History Compendium of Exploited Hawaiian Fishes
    Life History Compendium of Exploited Hawaiian Fishes Prepared for Fisheries Local Action Strategy and Division of Aquatic Resources Prepared by K. Longenecker Hawai‘i Biological Survey Bishop Museum 1525 Bernice Street Honolulu, Hawai‘i 96817 R. Langston Windward Community College 45-720 Keahaala Road Kaneohe, Hawai‘i 96744 July 2008 1 Table of Contents INTRODUCTION .......................................................................................................................... 3 METHODS ..................................................................................................................................... 3 Description of life history parameters: ....................................................................................... 4 RESULTS ....................................................................................................................................... 6 HOLOCENTRIDAE ................................................................................................................... 7 Myripristis amaena (Castelnau, 1873) [3] .............................................................................. 7 Sargocentron diadema (Lacepède, 1802) [13] ..................................................................... 10 CARANGIDAE ........................................................................................................................ 13 Caranx ignobilis (Forsskål, 1775) [17] ................................................................................. 13 Caranx melampygus
    [Show full text]
  • Westminsterresearch Haemogregarina Bigemina
    WestminsterResearch http://www.westminster.ac.uk/westminsterresearch Haemogregarina bigemina (Protozoa : Apicomplexa : Adeleorina) – Past, present and future Davies A.J., Smit N.J., Hayes P.M., Seddon A.M. and Wertheim D.F. This is the publisher version of an article published in Folia Parasitologica 51 (2/3) 99- 108 2004. The final definitive version is available online at:https://dx.doi.org/10.14411/fp.2004.015 © 2004 Parazitologický ústav AVČR. The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners. Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/). In case of abuse or copyright appearing without permission e-mail [email protected] FOLIA PARASITOLOGICA 51: 99–108, 2004 REVIEW ARTICLE Haemogregarina bigemina (Protozoa: Apicomplexa: Adeleorina) – past, present and future Angela J. Davies1, Nico J. Smit2, Polly M. Hayes1, Alan M. Seddon1 and David Wertheim3 1School of Life Sciences and 3School of Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK; 2Department of Zoology, Rand Afrikaans University, P.O. Box 524, Auckland Park 2006, South Africa Key words: Haemogregarina bigemina, haemogregarines, development, transmission, Gnathia, isopods Abstract. This paper reviews past, current and likely future research on the fish haemogregarine, Haemogregarina bigemina Laveran et Mesnil, 1901. Recorded from 96 species of fishes, across 70 genera and 34 families, this broad distribution for H. bigemina is questioned.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Length-Weight Relationships of Thirteen Species of Parrotfish (Family Scaridae) Inhabiting the Egyptian Coasts of the Red Sea
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 23(5): 357 - 366 (2019) www.ejabf.journals.ekb.eg Length-Weight Relationships of Thirteen Species of Parrotfish (Family Scaridae) inhabiting the Egyptian coasts of the Red Sea. Amal M. Amin*, Azza A. El-Ganainy and Manal M. Sabrah National Institute of Oceanography and Fisheries, Suez, Egypt. *Corresponding Author: [email protected] ARTICLE INFO ABSTRACT Article History: Length-weight data of population are basic parameters for any Received: Sept. 8, 2019 monitoring study of fishes since it provides important information about the Accepted: Nov. 27, 2019 structure of the populations. Also, it is important for fish stock assessment Online: Dec. 2019 essential for estimating growth rates, age structure, calculate the standing _______________ stocks biomass, condition indices and several other aspects of fish population dynamics. Therefore, we investigated the length-weight relationships of 13 Keywords: parrotfish species (Family Scaridae) collected seasonally from the Egyptian Red Sea Red Sea coast during 2014/2016. The" b "values of the length-weight Scaridae relationships ranged from 2.17 to 3.88 with a mean value of 2.729±0.0788 Chlorurus geuozonatus (S.E.) for the studied species. Chlorurus geuozonatus showed a positive Calotomus viridescens allometric growth while Calotomus viridescens; Cetoscarus bicolor; Parrotfish Chlorurus sordidus; Chlorurus gibbus; Hipposcarus harid; Scarus frenatus; growth type Scarus ferrugineus; Scarus fuscopurpuerus; Scarus ghobban; scarus niger and Scarus psittacus were show a negative allometric growth. Isometric growth was represented by two species Hipposcarus harid and Scarus colon. 98% of the studied species had "R²" values higher than 0.90, which indicated the increase in length will contribute with increase in weight.
    [Show full text]
  • Metadata for Hawaii Environmental Sensitivity Index (ESI)
    HYDRO Hawaii ESI: HYDRO (Hydrology Polygons and Lines) Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Publication_Date: 200111 Title: Hawaii ESI: HYDRO (Hydrology Polygons and Lines) Edition: Second Geospatial_Data_Presentation_Form: Vector digital data Series_Information: Series_Name: None Issue_Identification: Hawaii Publication_Information: Publication_Place: Seattle, Washington Publisher: National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Other_Citation_Details: Prepared by Research Planning, Inc., Columbia, South Carolina for the National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Description: Abstract: This data set contains vector arcs and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Hawaii. The HYDRO data layer contains all annotation used in producing the atlas. The annotation features are categorized into
    [Show full text]
  • Dissertation Introduction
    COMMUNITY STRUCTURE, LIFE HISTORY, AND MOVEMENT PATTERNS OF PARROTFISHES: LARGE PROTOGYNOUS FISHERY SPECIES A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‛I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGY) DECEMBER 2008 By Kathrine G. Howard Dissertation Committee: James D. Parrish, Chairperson Charles Birkeland David Carlon Kathleen Cole Matthew McGranaghan We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Zoology (Ecology, Evolution and Conservation Biology). DISSERTATION COMMITTEE ___________________________ Chairperson ___________________________ ___________________________ ___________________________ ___________________________ ii ACKNOWLEDGMENTS I would like to thank my committee members and especially Dr. James Parrish for guidance and support. Thanks also to Kelly Boyle, Tim Clark, Jeremy Claisse, T. Erin Cox, Emily Donham, Sean Fujimoto, Jim Hawhee, Danielle Jayewardene, Luc Mehl, Amanda Meyer, Susan Knight, Ling Ong, Matt Ross, Brett Schumacher, Linda Thurston, and Nick Whitney for specimen collection, contributions in the field, and lab assistance. Special thanks to Megan Bushnell, Dr. J.Howard Choat, Dr. Kathleen Cole, Jeremy Claisse, and Dr. Ross Langston for guidance and assistance with laboratory techniques. Additional thanks to Pat Aldrich and Jeremy Claisse for statistical assistance. This work benefited from discussion with Dr. Alan Friedlander. Logistical support for research conducted on Oahu was provided by the Hawai‛i Cooperative Fishery Research Unit, William Aila, and Paul Sensano. Thanks also to Kaloko-Honokohau National Park and Hawai‛i Division of Aquatic Resources for logistical assistance on the island of Hawai‛i.
    [Show full text]
  • Monitoring Functional Groups of Herbivorous Reef Fishes As Indicators of Coral Reef Resilience a Practical Guide for Coral Reef Managers in the Asia Pacifi C Region
    Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience A practical guide for coral reef managers in the Asia Pacifi c Region Alison L. Green and David R. Bellwood IUCN RESILIENCE SCIENCE GROUP WORKING PAPER SERIES - NO 7 IUCN Global Marine Programme Founded in 1958, IUCN (the International Union for the Conservation of Nature) brings together states, government agencies and a diverse range of non-governmental organizations in a unique world partnership: over 100 members in all, spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. The IUCN Global Marine Programme provides vital linkages for the Union and its members to all the IUCN activities that deal with marine issues, including projects and initiatives of the Regional offices and the six IUCN Commissions. The IUCN Global Marine Programme works on issues such as integrated coastal and marine management, fisheries, marine protected areas, large marine ecosystems, coral reefs, marine invasives and protection of high and deep seas. The Nature Conservancy The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Conservancy launched the Global Marine Initiative in 2002 to protect and restore the most resilient examples of ocean and coastal ecosystems in ways that benefit marine life, local communities and economies.
    [Show full text]
  • Full Text in Pdf Format
    MARINE ECOLOGY PROGRESS SERIES Vol. 164: 263-271,1998 Published April 9 Mar Ecol Prog Ser Intraspecific and interspecific relationships between host size and the abundance of parasitic larval gnathiid isopods on coral reef fishes Alexandra S. Grutter 'l*, Robert poulin2 'Department of Parasitology, The University of Queensland. Brisbane, Queensland 4072, Australia 'Department of Zoology, University of Otago. PO Box 56. Dunedin. New Zealand ABSTRACT: Parasitic gnathud isopod larvae on coral reef teleosts and elasmobranchs were quantified at Lizard and Heron Islands (Great Barrier Reef), and Moreton Bay, Australia. The relationship between gnathlid abundance and host size was examined across and within species. Of the 56 species examined. 70 % had gnathiids, with counts ranging from 1 to 200 per fish and the elasmobranchs hav- ing the highest numbers. Pomacentrids rarely had gnathiids. In contrast, most labrids had gnathiids. Gnathiid abundance was positively correlated with host size in the species Chlorurus sordidus, Ctenochaetus stnatus, Hernigyrnnus melapterus, Siganus dollatus, and Thalassorna lunare, but not for Scolopsis b~lineatus.Mean gnathlid abundance per host species also correlated with host size across species, even after controlling for the potential confounding effects of uneven sampling effort and host phylogeny Thus host size explains much of the intraspecific and interspecific variation In gnathiid abundance on fish. KEY WORDS: Gnathiidae . Ectoparasites . Coral reef fish . Host-parasite interactions . Fish size . Great Barrier Reef INTRODUCTION gnathiids on fish (Grutter 1996a). When present in 'large' numbers (Paperna & Por 1977) and when fish Until recently, there was little evidence that para- have 'around a hundred' (Mugridge & Stallybrass sites were important in fish cleaning behavior (Losey 1983),gnathiids can cause fish mortality in captive fish 1987), however, current studies on the Great Barrier (Paperna & Por 1977).
    [Show full text]