V15 Mar.Sci. Inside
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Guide to Harmful and Toxic Creatures in the Goa of Jordan
Published by the Royal Marine Conservation Society of Jordan. P. O. Box 831051, Abdel Aziz El Thaalbi St., Shmesani 11183. Amman Copyright: © The Royal Marine Conservation Society of Jordan Reproduction of this publication for educational and other non- commercial purposes is authorized without prior written approval from the copyright holder provided the source is fully acknowledged. ISBN: 978-9957-8740-1-8 Deposit Number at the National Library: 2619/6/2016 Citation: Eid, E and Al Tawaha, M. (2016). A Guide to Harmful and Toxic Creature in the Gulf of Aqaba of Jordan. The Royal Marine Conservation Society of Jordan. ISBN: 978-9957-8740-1-8. Pp 84. Material was reviewed by Dr Nidal Al Oran, International Research Center for Water, Environment and Energy\ Al Balqa’ Applied University,and Dr. Omar Attum from Indiana University Southeast at the United State of America. Cover page: Vlad61; Shutterstock Library All photographs used in this publication remain the property of the original copyright holder, and it should not be reproduced or used in other contexts without permission. 1 Content Index of Creatures Described in this Guide ......................................................... 5 Preface ................................................................................................................ 6 Part One: Introduction ......................................................................................... 8 1.1 The Gulf of Aqaba; Jordan ......................................................................... 8 1.2 Aqaba; -
Patterns and Processes in the Evolutionary History of Parrotfishes
bs_bs_banner Biological Journal of the Linnean Society, 2012, ••, ••–••. With 5 figures Patterns and processes in the evolutionary history of parrotfishes (Family Labridae) JOHN. H. CHOAT1*, OYA. S. KLANTEN1†, LYNNE VAN HERWERDEN1, D. ROSS ROBERTSON2‡ and KENDALL D. CLEMENTS3 1School of Tropical and Marine Biology, James Cook University, Townsville, QLD, 4811, Australia 2Smithsonian Tropical Research Institute, Ancon, Balboa, Republic of Panama 3School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand Received 5 March 2012; revised 23 May 2012; accepted for publication 23 May 2012 Phylogenetic reconstruction of the evolutionary relationships among 61 of the 70 species of the parrotfish genera Chlorurus and Scarus (Family Labridae) based on mitochondrial and nuclear gene sequences retrieved 15 well-supported clades with mid Pliocene/Pleistocene diversification. Twenty-two reciprocally monophyletic sister- species pairs were identified: 64% were allopatric, and the remainder were sympatric. Age of divergence was similar for allopatric and sympatric species pairs. Sympatric sister pairs displayed greater divergence in morphol- ogy, ecology, and sexually dimorphic colour patterns than did allopatric pairs, suggesting that both genetic drift in allopatric species pairs and ecologically adaptive divergence between members of sympatric pairs have played a role in diversification. Basal species typically have small geographical ranges and are restricted to geographically and ecologically peripheral reef habitats. We found little evidence that a single dominant process has driven diversification, nor did we detect a pattern of discrete, sequential stages of diversification in relation to habitat, ecology, and reproductive biology. The evolution of Chlorurus and Scarus has been complex, involving a number of speciation processes. -
"Red Sea and Western Indian Ocean Biogeography" LRH: JD Dibattista
This is the peer reviewed version of the following article: Di Battista, J. and Choat, J. and Gaither, M. and Hobbs, J. and Lozano-Cortes, D. and Myers, R. and Paulay, G. et al. 2016. On the origin of endemic species in the Red Sea. Journal of Biogeography. 43 (1): pp. 13-30., which has been published in final form at http://doi.org/10.1111/jbi.12631. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving at http://olabout.wiley.com/WileyCDA/Sec 1 1 Synthesis 2 For the virtual issue, "Red Sea and Western Indian Ocean Biogeography" 3 LRH: J. D. DiBattista et al. 4 RRH: Origins of Red Sea endemism 5 6 On the origin of endemic species in the Red Sea 7 Joseph D. DiBattista1,2*, J. Howard Choat3, Michelle R. Gaither4, Jean-Paul A. Hobbs2, Diego F. 8 Lozano-Cortés1, Robert F. Myers5, Gustav Paulay6, Luiz A. Rocha7, Robert J. Toonen8, Mark W. 9 Westneat9, Michael L. Berumen1 10 1Red Sea Research Center, Division of Biological and Environmental Science and Engineering, 11 King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia, 2Department 12 of Environment and Agriculture, Curtin University, PO Box U1987, Perth, WA 6845, Australia, 13 3School of Marine and Tropical Biology, James Cook University, Townsville QLD 4811, 14 Australia, 4School of Biological and Biomedical Sciences, Durham University, Durham DH1 15 3LE, United Kingdom, 5Seaclicks/Coral Graphics, Wellington FL 33411, USA, 6Florida Museum 16 of Natural History, Gainesville, FL 32611-7800, USA, 7Section of Ichthyology, California 17 Academy of Sciences, San Francisco, CA 94118, USA, 8Hawai‘i Institute of Marine Biology, 18 Kāne‘ohe, HI 96744, USA, 9Department of Organismal Biology and Anatomy, University of 19 Chicago, Chicago, IL 60637, USA 20 21 22 23 24 25 26 27 *Correspondence: Joseph D. -
Monitoring Program Report Ras Mohammed National Park 2005
Monitoring Program report Ras Mohammed National Park 2005 A joint publication by; Baseline Conservation Value Index assessment of Ras Mohammed National Park July- September 2005 Coral Reef Research Unit (Room 2.12A) University of Essex (UK) Department of Biological Sciences Wivenhoe Park Colchester Essex, CO4 3SQ UK http://www.crru.org http://www.essex.ac.uk E-mail: [email protected] Edited by Dr. David J. Smith & Steve M cMellor 2 TABLE OF CONTENTS TABLE OF CONTENTS……………………………………………………3 ACKNOWLEDGEMENTS……………………………………………..…..5 LIST OF TABLES……………………………………………………….….6 LIST OF FIGURES…………………………………………………………7 LIST OF TERMS & ABBREVIATIONS…………………………………..8 EXECUTIVE SUMMARY……………………………………………..…..9 Coral diversity and cover ..................................................................................9 Fish diversity & abundance...............................................................................10 CVI Classifications............................................................................................11 Threats.......................................................................................................... …12 SWOT analysis………………………………………………………………..12 Conclusion…………………………………………………………………….13 CHAPTER 1. INTRODUCTION.......................................................................15 Project background ...........................................................................................15 Area description.................................................................................................16 Description -
A Review of the Muraenid Eels (Family Muraenidae) from Taiwan with Descriptions of Twelve New Records1
Zoological Studies 33(1) 44-64 (1994) A Review of the Muraenid Eels (Family Muraenidae) from Taiwan with Descriptions of Twelve New Records1 2 2 Hong-Ming Chen ,3 , Kwang-Tsao Shao ,4 and Che-Tsung Chen" 21nstitute of Zoology, Academia Sinica, Nankang, Taipei, Taiwan 115, R.O.C_ 31nstitute of Fisheries, National Taiwan Ocean University, Keelung, Taiwan 202, R.O.C. 41nstitute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan 202, R.O.C. (Accepted June 3, 1993) Hong-Ming Chen, Kwang-Tsao Shao and Che-Tsung Chen (1994) A review of the muraenid eels (Family Muraenidae) from Taiwan with descriptions of twelve new records. Zoological Studies 33(1): 44-64. A total of 42 species belonging to 9 genera and 2 subfamilies of the family Muraenidae are indigenous to Taiwan. The 12 species: Enchelycore bikiniensis, Gymnothorax brunneus, G. javanicus, G_ margaritophorus, G. melatremus, G. nudivomer, G. reevesii, G. zonipectis, Strophidon sathete, Uropterygius macrocephalus, U. micropterus, and U. tigrinus are first reported in this paper. The 7 species: Enchelycore lichenosa, E. schismatorhynchus, Gymnothorax buroensis, G. hepaticus, G. meleagris, G. richardsoni and Siderea thyrsoidea whose Taiwan existence was doubted or lacked specimens in the past are also recorded. Additionly, many species misidentifications or improper use of junior synonyms in previously literature stand corrected in this paper. Two previously recorded species Gymnothorax monostigmus and G. polyuranodon are, lacking Taiwan specimens, excluded. Color photographs, dentition patterns, synopsis, key, diagnosis, and remarks for all 42 species are provided in this paper. Key words: Moray eels, Fish taxonomy, Fish fauna, Anguilliformes. The Muraenidae fishes, commonly called the Gymnothorax /eucostigma species. -
Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S. -
A Checklist of the Moray Eels of the World (Teleostei: Anguilliformes: Muraenidae)
Zootaxa 3474: 1–64 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Monograph ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:413B8A6B-E04C-4509-B30A-5A85BF4CEE44 ZOOTAXA 3474 A checklist of the moray eels of the world (Teleostei: Anguilliformes: Muraenidae) DAVID G. SMITH Smithsonian Institution, Museum Support Center, MRC-534, 4210 Silver Hill Road, Suitland, MD 20746, Email: [email protected] Magnolia Press Auckland, New Zealand Accepted by M. R. de Carvalho: 7 Aug. 2012; published: 7 Sept. 2012 DAVID G. SMITH A checklist of the moray eels of the World (Teleostei: Anguilliformes: Muraenidae) (Zootaxa 3474) 64 pp.; 30 cm. 7 Sept. 2012 ISBN 978-1-77557-002-8 (paperback) ISBN 978-1-77557-003-5 (Online edition) FIRST PUBLISHED IN 2012 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2012 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3474 © 2012 Magnolia Press SMITH Table of contents Introduction . 3 Methods . 4 Family Muraenidae Rafinesque 1810 . 4 Subfamily Muraeninae . 4 Genus Diaphenchelys McCosker & Randall 2007 . -
Sanganeb Atoll, Sudan a Marine National Park with Scientific Criteria for Ecologically Significant Marine Areas Abstract
Sanganeb Atoll, Sudan A Marine National Park with Scientific Criteria for Ecologically Significant Marine Areas Abstract Sanganeb Marine National Park (SMNP) is one of the most unique reef structures in the Sudanese Red Sea whose steep slopes rise from a sea floor more than 800 m deep. It is located at approximately 30km north-east of Port Sudan city at 19° 42 N, 37° 26 E. The Atoll is characterized by steep slopes on all sides. The dominated coral reef ecosystem harbors significant populations of fauna and flora in a stable equilibrium with numerous endemic and endangered species. The reefs are distinctive of their high number of species, diverse number of habitats, and high endemism. The atoll has a diverse coral fauna with a total of 86 coral species being recorded. The total number of species of algae, polychaetes, fish, and Cnidaria has been confirmed as occurring at Sanganeb Atoll. Research activities are currently being conducted; yet several legislative decisions are needed at the national level in addition to monitoring. Introduction (To include: feature type(s) presented, geographic description, depth range, oceanography, general information data reported, availability of models) Sanganeb Atoll was declared a marine nation park in 1990. Sanganeb Marine National Park (SMNP) is one of the most unique reef structures in the Sudanese Red Sea whose steep slopes rise from a sea floor more than 800 m deep (Krupp, 1990). With the exception of the man-made structures built on the reef flat in the south, there is no dry land at SMNP (Figure 1). The Atoll is characterized by steep slopes on all sides with terraces in their upper parts and occasional spurs and pillars (Sheppard and Wells, 1988). -
Fish Movement in the Red Sea and Implications for Marine Protected Area Design
Fish Movement in the Red Sea and Implications for Marine Protected Area Design Thesis by Irene Antonina Salinas Akhmadeeva In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia April, 2021 2 EXAMINATION COMMITTEE PAGE The thesis of Irene Antonina Salinas Akhmadeeva is approved by the examination committee. Committee Chairperson: Prof. Michael L. Berumen Committee Co-Chair: Dr. Alison Green Committee Members: Dr. Darren Coker, Prof. Rusty Brainard 3 COPYRIGHT © April 2021 Irene Antonina Salinas Akhmadeeva All Rights Reserved 4 ABSTRACT Fish Movement in the Red Sea and Implications for Marine Protected Area Design Irene Antonina Salinas Akhmadeeva The Red Sea is valued for its biodiversity and the livelihoods it provides for many. It now faces overfishing, habitat degradation, and anthropogenic induced climate-change. Marine Protected Areas (MPAs) became a powerful management tool to protect vulnerable species and ecosystems, re-establish their balance, and enhance marine populations. For this, they need to be well designed and managed. There are 15 designated MPAs in the Red Sea but their level of enforcement is unclear. To design an MPA it is necessary to know if it will protect species of interest by considering their movement needs. In this thesis I aim at understanding fish movement in the Red Sea, specifically home range (HR) to inform MPA size designation. With not much empirical data available on HR for Red Sea fish, I used a Machine Learning (ML) classification model, trained with empirical literature HR measurements with Maximum Total Length (L Max), Aspect Ratio (AR) of the caudal fin, and Trophic Level as predictor variables. -
Reef Fish Communities in the Central Red Sea Show Evidence of Asymmetrical Fishing Pressure
Reef fish communities in the central Red Sea show evidence of asymmetrical fishing pressure Item Type Article Authors Kattan, Alexander; Coker, Darren James; Berumen, Michael L. Citation Kattan A, Coker DJ, Berumen ML (2017) Reef fish communities in the central Red Sea show evidence of asymmetrical fishing pressure. Marine Biodiversity. Available: http:// dx.doi.org/10.1007/s12526-017-0665-8. Eprint version Post-print DOI 10.1007/s12526-017-0665-8 Publisher Springer Nature Journal Marine Biodiversity Rights The final publication is available at Springer via http:// dx.doi.org/10.1007/s12526-017-0665-8 Download date 28/09/2021 05:49:13 Link to Item http://hdl.handle.net/10754/623011 Article title: Reef fish communities in the central Red Sea show evidence of asymmetrical fishing pressure Journal: Marine Biodiversity (Special Issue: Red Sea Biodiversity) Author names: Alexander Kattan*, Darren J. Coker, Michael L. Berumen *Affiliation: Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia *Email address: [email protected] ESM 2. List of species recorded as well as their trophic guild assignment, a/b values (see Methods), and ubiquity across all study sites. Trophic Guild a value b value Ubiquity Acanthuridae Acanthurus gahhm (Forsskål, 1775) Herbivore 0.023 3.060 83.3% Acanthurus nigrofuscus (Forsskål, 1775) Herbivore 0.023 3.060 80.0% Acanthurus sohal (Forsskål, 1775) Herbivore 0.023 3.060 6.7% Ctenochaetus -
Fao Species Catalogue
FAO Fisheries Synopsis No. 125, Volume 8 FIR/S125 Vol. 8 FAO SPECIES CATALOGUE VOL. 8. FUSILIER FISHES OF THE WORLD AN ANNOTATED AND ILLUSTRATED CATALOGUE OF CAESIONID SPECIES KNOWN TO DATE xxxXXXX u n vA/yyvw 'Avvï^r / X)(x//Æ ^^m ■/ ^ / ¡1A r / y 1/ ¡/I XX y A A /V h*/Í/ WÜ* XW x7/JLíVY I b X A \ vV ^v\ v jX a r t i n i f "2 S 9 l ^ ' ! / • s i l « ) « ® ' ^ 'IW Ífc g i " '•'Aí'&fl * '» w ;« > 5 s M ÏÏXKXXXY, X V vTTW \ \ \ / * V vV *V vV \M A ® 3 ® & ''Vv'/F A A í / I * ürywi/íAU; y y x/yvy , 'A* » i \ '( v\Á#»/ / Y¥[ a/\/) WY y v v ¡£i¿W ' * ■ ^'M 'V v^rW 1 UNITED NATIONS DEVELOPMENT PROGRAMME ^ 5 ^ FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS FAQ Fisheries Synopsis No. 125, Volume 8 FIR/S125 Vol. 8 FAO SPECIES CATALOGUE VOL. 8 FUSILIER FISHES OF THE WORLD An Annotated and Illustrated Catalogue of Caesionid Species Known to Date prepared by Kent E. Carpenter Mariculture and Fisheries Department Kuwait Institute for Scientific Research P.O. Box 1638 Salmiya 22017 K u w a it FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1988 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city of area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Stuttgarter Beiträge Zur Naturkunde
Stuttgarter Beiträge zur Naturkunde Serie A (Biologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-7000 Stuttgart 1 Stuttgarter Bcitr. Naturk. Ser. A Nr. 473 25 S. Stuttgart, 15. 6. 1992 Types in the Fish Collection of the Staatliches Museum für Naturkunde in Stuttgart. Part 2. The Klunzinger Collection By Konald rricke, StuKgart Summary \ ^ The second part of a catalogue of types stored in the lisit coliection orTne Staathches Museum für Naturkunde in Stuttgart includes the types of Carl Benjamin Klunzinger's collection from the Red Sea, and Ferdinand von Müller's collection of Australian and New Zealand fishes described by Klunzinger. The fish collection originally contained types of 88 nominal Klunzinger species; types of 13 of them were problably lost during "World War II. At present, the SMNS collection contains types of 75 nominal Klunzinger species, i.e. a total of 30 holotype and 147 syntype specimens. 3 syntypes of a small Bleeker collection (Engraulididae, Exocoetidae) recently acquired are additionally presented in the catalogue. Key words: Pisces; Type catalogue; Klunzinger, C. B.; Müller, F. v.; Red Sea; Australia; New Zealand; Staatliches Museum für Naturkunde in Stuttgart Zusammenfassung Der zweite Teil eines Typenkatalogs der Fischsammlung des Staatlichen Museums für Naturkunde in Stuttgart behandelt die Typen der Sammlungen des Arztes Carl Benjamin Klunzinger vom Roten Meer sowie Typen aus der Sammlung des Barons Ferdinand von Müller, die aus Australien und Neuseeland stammen und von Klunzinger beschrieben wurden. Dieser Sammlungsteil enthielt ursprünglich die Typen von 88 nominellen Fischarten, von denen 13 vermutlich während des Zweiten Weltkrieges verloren gingen. Die Sammlung des SMNS enthält heute die Typen von 75 nominellen Arten, die von C.