Introduction to Systems Engineering V

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Systems Engineering V Introduction to Systems Engineering V. Arrichiello “It seems natural to begin the discussion with an immediate formal definition of systems engineering. However, systems engineering is an amorphous, slippery subject that does not lend itself well to such formal, didactic treatment . ” Hendrik Wade Bode: The Systems Approach, in Applied Science – Technological Progress, report to the Committee on Science and Astronautics, US House of Representatives (1967) 2 ©2014 Vincenzo Arrichiello - INCOSE Italia Systems Engineering WHEN? WHY? WHO? WHERE? WHAT? HOW? 3 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Cultural Context 4 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Cultural Context 1940 - “Operations Research 1948 - Norbert Wiener “Cybernetics: Or Control and Communication in the Animal and the Machine” 1950 - Ludwig von Bertalanffy “An outline of General Systems Theory” Google books Ngram Viever 5 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Cultural Context General System Theory While in the past, science tried to explain observable phenomena by reducing them to an interplay of elementary units investigatable independently of each other, conceptions appear itin contemporary sc ithtience that are concerne dithd with what is somewhat vaguely termed "wholeness," i.e., problems of organization, phenomena not resolvable into local events, dynamic interactions manifest in the difference of behavior of parts when isolated or in a higher configuration, etc.; in short, "systems" of various orders not understandable by investigation of their respective parts in isolation. Hence the appearance, in all fields of science, of notions like wholeness, holistic, organismic, gestalt, etc., which all signify that, in the last resort, we must think in terms of systems of elements in mutual interaction. Ludwig von Bertalanffy, General System Theory: Foundations, Development, Applications, 1968, Braziller. 6 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Cultural Context General System Theory The meaning of the somewhat mystical expression, "the w ho le is more th an th e sum of par ts"i" is s imp ly thtthat constitutive characteristics are not explainable from the characteristics of isolated parts. The characteristics of the complex, therefore, compared to those of the elements, appear as "new" or "emergent." Ludwig von Bertalanffy, General System Theory: Foundations, Development, Applications, 1968, Braziller. 7 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Cultural Context General System Theory Open system is defined as a system in exchange of matter with its environment, presenting import and export, building-up and breaking-down of its material components. The basis of the open-system model is the dynamic interaction of its components. Ludwig von Bertalanffy, General System Theory: Foundations, Development, Applications, 1968, Braziller. 8 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Cultural Context General System Theory Technology has been led to think not in terms of single machines but in those of "systems." A steam engine, automobile, or radio receiver was within the competence of the engineer trained in the respective specialty. But when it comes to ballistic missiles or space vehicles, they have to be assembled from components originating in heterogeneous technologies, mechanical, electronic, chemical, etc.; relations of man and machine come into play; and innumerable financial, economic, social and political problems are thrown into the bargain. Ludwig von Bertalanffy, General System Theory: Foundations, Development, Applications, 1968, Braziller. 9 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Cultural Context General System Theory Technology has been led to think not in terms of single machines but in those of "systems." A steam engine, automobile, or radio receiver was within the competence of the engineer trained in the respective specialty. But when it comes to ballistic missiles or space vehicles, they have to be assembled from components originating in heterogeneous technologies, mechanical, electronic, chemical, etc.; relations of man and machine come into play; and innumerable financial, economic, social and political problems are thrown into the bargain. Thus, a "systems approach" became necessary. A certain objective is given; to find ways and means for its realization requires the systems specialist (or team of specialists) to consider alternative solutions and to choose those promising optim iza tion a t maxiffiidiiltimum efficiency and minimal cost itin a tremen dldously complex network of interactions. Ludwig von Bertalanffy, General System Theory: Foundations, Development, Applications, 1968, Braziller. 10 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Cultural Context Cybernetics In the newer study of automata, whether in the metal or in the flesh, … we deal with automata effectively coupled to the external world, not merely by their energy flow, their metabolism, but also by a flow of impressions, of incoming messages, and of the acti ons of out goi ng messages. To sum up: the many automata of the present age are coupled to the outside world both for the reception of impressions and for the performance of actions. They contain sense organs, effectors, and the equivalent of a nervous system to integrate the transfer of information from the one to the other. They lend themselves very well to description in physiological terms. [Organic Analogy] Norbert Wiener, Cybernetics: Or Control and Communication in the Animal and the Machine, 1948, MIT Press 11 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Cultural Context Cybernetics The behavioristic approach consists in the examination of the output of the object and of the relations of this output to the input. By output is meant any change produced in the surroundings by the object. By input, conversely, is meant any event external to the object that modifies this object in any manner. … a uniform behavioristic analysis is applicable to both machines and living organisms, regardless o fthf the comp lex ity o fthf the be hav ior. Rosenblueth A., Wiener N. and Bigelow J., Behavior, Purpose and Teleology, 1943, Philosophy of Science, 10 12 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Cultural Context Cybernetics The terms "black box" and "white box" are convenient and figurative expressions of not very well determined usage. I shall understand by a black box a piece of apparatus, such as four-terminal networks with two input and two outpu t term ina ls, w hic h per forms a de fin ite opera tion on the presen t an d pas t of the input potential, but for which we do not necessarily have any information of the structure by which this operation is performed. On the other hand, a white box will be similar network in which we have built in the relation between input and output potentials in accordance with a definite structural plan for securing a previously determined input-output relation Norbert Wiener, Cybernetics: Or Control and Communication in the Animal and the Machine, 1948, MIT Press 13 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Cultural Context Operations Research An objective of Operations Research is to provide managers of the organization with a scientific basis for solving problems involving the interaction of components of the organization in the best interest of the organization as a whole. The comprehensiveness of O.R.'s aim is an example of a "systems" approach, since "system" implies an interconnected complex of functionally related components. ... to see a system as a whole means not only to see all its components and their interrelationships but also all aspects of its operations . Churchman C.W., Ackoff R.L., Arnoff E.L., "Introduction to Operations Research", John Wiley & Sons, 1957 14 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Cultural Context Operations Research Mixed Team Approach Although mathematicians, physicists and engineers were essential, the best of the groups also contained physiologists, biochemists, psychologists, and a variety of representatives of other fldfhbfields of the bioc hemica l an d socia l sciences. … it was found that members of such diverse groups could work together and could form a unit which was much greater than the mere sum of its parts. Warren Weaver “Science and complexity,” American Scientist, 36 (1948) 15 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Technological Context 16 ©2014 Vincenzo Arrichiello - INCOSE Italia Historical Context "On Guard! The Story of SAGE", IBM Corporation, Military Products Division, (ca. 1956), The Internet Archive, Prelinger Archives 17 ©2014 Vincenzo Arrichiello - INCOSE Italia Historical Context "On Guard! The Story of SAGE", IBM Corporation, Military Products Division, (ca. 1956), The Internet Archive, Prelinger Archives 18 ©2014 Vincenzo Arrichiello - INCOSE Italia Historical Context "On Guard! The Story of SAGE", IBM Corporation, Military Products Division, (ca. 1956), The Internet Archive, Prelinger Archives 19 ©2014 Vincenzo Arrichiello - INCOSE Italia Historical Context "On Guard! The Story of SAGE", IBM Corporation, Military Products Division, (ca. 1956), The Internet Archive, Prelinger Archives 20 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Historical Context 21 ©2014 Vincenzo Arrichiello - INCOSE Italia When? Systems Engineering was mainly developed "out of necessity" by these programs ICBM SAGE APOLLO 22 ©2014 Vincenzo Arrichiello - INCOSE Italia Intercontinental Ballistic Missile Program (ICBM) The Air Force ballistic missile
Recommended publications
  • Control Engineering for High School Students and Teachers: an Online Platform Development
    Control Engineering for High School Students and Teachers: An Online Platform Development Farhad Farokhi and Iman Shames Contents Report ............................................ 1 1 Introduction . 1 2 Courses . 1 3 Interviews . 2 4 Educational games . 3 5 Remote laboratory . 4 6 Conclusions and future work . 5 Appendix .......................................... 6 A Example course 1: Feedback theory . 6 B Example course 2: Models . 9 C Example course 3: On/off control . 12 D Remote laboratory (RLAB) manual . 13 1 Introduction Based on our teen years and feedback from many of our colleagues and friends, we believe that the control engineering, although being a major building block of automated system in many processes and infrastructures, is a fairly alien subject to the students, parents, and teachers. Therefore, there is a need for introducing feedback control and its application to high school students and their teachers to recruit the next generation of engineers and scientists in this field. We also believe that the academic community has a responsibility to disseminate the information cheaply, if not freely, to a wide range of interested audience, be it students, parents, or teachers, across the globe. This way, we can guarantee that people from different socio- economic backgrounds and in different countries can make informed decisions regarding their careers and those of their friends and families. Motivated by these needs, in this project, we have attempted at developing an online platform for the students and their educators to read about the control engineering, watch lectures by researchers from academia and industry, access interviews with successful people in the control engineering community, and play online games to test their understanding and to possibly learn about the applications of the automatic control.
    [Show full text]
  • EE C128 Chapter 10
    Lecture abstract EE C128 / ME C134 – Feedback Control Systems Topics covered in this presentation Lecture – Chapter 10 – Frequency Response Techniques I Advantages of FR techniques over RL I Define FR Alexandre Bayen I Define Bode & Nyquist plots I Relation between poles & zeros to Bode plots (slope, etc.) Department of Electrical Engineering & Computer Science st nd University of California Berkeley I Features of 1 -&2 -order system Bode plots I Define Nyquist criterion I Method of dealing with OL poles & zeros on imaginary axis I Simple method of dealing with OL stable & unstable systems I Determining gain & phase margins from Bode & Nyquist plots I Define static error constants September 10, 2013 I Determining static error constants from Bode & Nyquist plots I Determining TF from experimental FR data Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 1 / 64 Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 2 / 64 10 FR techniques 10.1 Intro Chapter outline 1 10 Frequency response techniques 1 10 Frequency response techniques 10.1 Introduction 10.1 Introduction 10.2 Asymptotic approximations: Bode plots 10.2 Asymptotic approximations: Bode plots 10.3 Introduction to Nyquist criterion 10.3 Introduction to Nyquist criterion 10.4 Sketching the Nyquist diagram 10.4 Sketching the Nyquist diagram 10.5 Stability via the Nyquist diagram 10.5 Stability via the Nyquist diagram 10.6 Gain margin and phase margin via the Nyquist diagram 10.6 Gain margin and phase margin via the Nyquist diagram 10.7 Stability, gain margin, and
    [Show full text]
  • Download Chapter 161KB
    Memorial Tributes: Volume 3 HENDRIK WADE BODE 50 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 3 HENDRIK WADE BODE 51 Hendrik Wade Bode 1905–1982 By Harvey Brooks Hendrik Wade Bode was widely known as one of the most articulate, thoughtful exponents of the philosophy and practice of systems engineering—the science and art of integrating technical components into a coherent system that is optimally adapted to its social function. After a career of more than forty years with Bell Telephone Laboratories, which he joined shortly after its founding in 1926, Dr. Bode retired in 1967 to become Gordon McKay Professor of Systems Engineering (on a half-time basis) in what was then the Division of Engineering and Applied Physics at Harvard. He became professor emeritus in July 1974. He died at his home in Cambridge on June 21, 1982, at the age of seventy- six. He is survived by his wife, Barbara Poore Bode, whom he married in 1933, and by two daughters, Dr. Katharine Bode Darlington of Philadelphia and Mrs. Anne Hathaway Bode Aarnes of Washington, D.C. Hendrik Bode was born in Madison, Wisconsin, on December 24, 1905. After attending grade school in Tempe, Arizona, and high school in Urbana, Illinois, he went on to Ohio State University, from which he received his B.A. in 1924 and his M.A. in 1926, both in mathematics. He joined Bell Labs in 1926 to work on electrical network theory and the design of electric filters. While at Bell, he also pursued graduate studies at Columbia University, receiving his Ph.D.
    [Show full text]
  • Measuring the Control Loop Response of a Power Supply Using an Oscilloscope ––
    Measuring the Control Loop Response of a Power Supply Using an Oscilloscope –– APPLICATION NOTE MSO 5/6 with built-in AFG AFG Signal Injection Transformers J2100A/J2101A VIN VOUT TPP0502 TPP0502 5Ω RINJ T1 Modulator R1 fb – comp R2 + + VREF – Measuring the Control Loop Response of a Power Supply Using an Oscilloscope APPLICATION NOTE Most power supplies and regulators are designed to maintain a Introduction to Frequency Response constant voltage over a specified current range. To accomplish Analysis this goal, they are essentially amplifiers with a closed feedback loop. An ideal supply needs to respond quickly and maintain The frequency response of a system is a frequency-dependent a constant output, but without excessive ringing or oscillation. function that expresses how a reference signal (usually a Control loop measurements help to characterize how a power sinusoidal waveform) of a particular frequency at the system supply responds to changes in output load conditions. input (excitation) is transferred through the system. Although frequency response analysis may be performed A generalized control loop is shown in Figure 1 in which a using dedicated equipment, newer oscilloscopes may be sinewave a(t) is applied to a system with transfer function used to measure the response of a power supply control G(s). After transients due to initial conditions have decayed loop. Using an oscilloscope, signal source and automation away, the output b(t) becomes a sinewave but with a different software, measurements can be made quickly and presented magnitude B and relative phase Φ. The magnitude and phase as familiar Bode plots, making it easy to evaluate margins and of the output b(t) are in fact related to the transfer function compare circuit performance to models.
    [Show full text]
  • Affine Laws and Learning Approaches for Witsenhausen
    Special Topics Seminar Affine Laws and Learning Approaches for Witsenhausen Counterexample Hajir Roozbehani Dec 7, 2011 Outline I Optimal Control Problems I Affine Laws I Separation Principle I Information Structure I Team Decision Problems I Witsenhausen Counterexample I Sub-optimality of Affine Laws I Quantized Control I Learning Approach Linear Systems Discrete Time Representation In a classical multistage stochastic control problem, the dynamics are x(t + 1) = Fx(t) + Gu(t) + w(t) y(t) = Hx(t) + v(t); where v(t) and y(t) are independent sequences of random variables and u(t) = γ(y(t)) is the control law (or decision rule). A cost function J(γ; x(0)) is to be minimized. Linear Systems Discrete Time Representation In a classical multistage stochastic control problem, the dynamics are x(t + 1) = Fx(t) + Gu(t) + w(t) y(t) = Hx(t) + v(t); where v(t) and y(t) are independent sequences of random variables and u(t) = γ(y(t)) is the control law (or decision rule). A cost function J(γ; x(0)) is to be minimized. Success Stories with Affine Laws LQR Consider a linear dynamical system n m x(t + 1) = Fx(t) + Gu(t); x(t) 2 R ; u(t) 2 R with complete information and the task of finding a pair (x(t); u(t)) that minimizes the functional T X 0 0 J(u(t)) = [x(t) Qx(t) + u(t) Ru(t)]; t=0 subject to the described dynamical constraints and for Q > 0; R > 0. This is a convex optimization problem with an affine solution: 0 u∗(t) = −R−1B P(t)x(t); where P(t) is to be found by solving algebraic Riccati equations.
    [Show full text]
  • Symbolic Analysis of Linear Electric Circuits with Maxima
    Dejan V. Tošić, Milka M. Potrebić, Symbolic analysis of linear electric circuits with Maxima CAS, Application of Free Software and Open Hardware, PSSOH 2019, International Conference, University of Belgrade – School of Electrical Engineering, Belgrade, Serbia, Oct. 26, 2019. http://pssoh.etf.bg.ac.rs/ Symbolic analysis of linear electric circuits with Maxima CAS Dejan V. Tošić, Milka M. Potrebić University of Belgrade – School of Electrical Engineering, Belgrade, Serbia [email protected], [email protected] Application of Free Software and Open Hardware, PSSOH 2019, International Conference, University of Belgrade – School of Electrical Engineering, Belgrade, Serbia, Oct. 26, 2019. http://pssoh.etf.bg.ac.rs/ Dejan V. Tošić, Milka M. Potrebić, Symbolic analysis of linear electric circuits with Maxima CAS, Application of Free Software and Open Hardware, PSSOH 2019, International Conference, University of Belgrade – School of Electrical Engineering, Belgrade, Serbia, Oct. 26, 2019. http://pssoh.etf.bg.ac.rs/ What is symbolic simulation ● Symbolic simulation or analysis is a formal technique to calculate the behavior or a characteristic of a system (e.g. digital system, electronic circuit, or continuous-time system) with an independent variable (sample index, time, or frequency), the dependent variables (sample values, signals, voltages, and currents), and (some or all) the element values represented by symbols. ● A symbolic simulator is a computer program that receives the system description as input and can automatically carry out the symbolic analysis and thus generate the symbolic expression for the desired system characteristic. ● P. Lin, Symbolic Network Analysis. Amsterdam, The Netherlands: Elsevier, 1991. ● G. Gielen and W. Sansen, Symbolic Analysis for Automated Design of Analog Integrated Circuits.
    [Show full text]
  • Mirostat:Aneural Text Decoding Algorithm That Directly Controls Perplexity
    Published as a conference paper at ICLR 2021 MIROSTAT:ANEURAL TEXT DECODING ALGORITHM THAT DIRECTLY CONTROLS PERPLEXITY Sourya Basu∗ Govardana Sachitanandam Ramachandrany Nitish Shirish Keskary Lav R. Varshney∗;y ∗Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign ySalesforce Research ABSTRACT Neural text decoding algorithms strongly influence the quality of texts generated using language models, but popular algorithms like top-k, top-p (nucleus), and temperature-based sampling may yield texts that have objectionable repetition or incoherence. Although these methods generate high-quality text after ad hoc pa- rameter tuning that depends on the language model and the length of generated text, not much is known about the control they provide over the statistics of the output. This is important, however, since recent reports show that humans pre- fer when perplexity is neither too much nor too little and since we experimen- tally show that cross-entropy (log of perplexity) has a near-linear relation with repetition. First we provide a theoretical analysis of perplexity in top-k, top-p, and temperature sampling, under Zipfian statistics. Then, we use this analysis to design a feedback-based adaptive top-k text decoding algorithm called mirostat that generates text (of any length) with a predetermined target value of perplexity without any tuning. Experiments show that for low values of k and p, perplexity drops significantly with generated text length and leads to excessive repetitions (the boredom trap). Contrarily, for large values of k and p, perplexity increases with generated text length and leads to incoherence (confusion trap). Mirostat avoids both traps.
    [Show full text]
  • Università Degli Studi Di Padova Padua
    Università degli Studi di Padova Padua Research Archive - Institutional Repository Negative Feedback, Amplifiers, Governors, and More Original Citation: Availability: This version is available at: 11577/3257394 since: 2018-02-15T15:55:12Z Publisher: Institute of Electrical and Electronics Engineers Inc. Published version: DOI: 10.1109/MIE.2017.2726244 Terms of use: Open Access This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only) (Article begins on next page) Historical by Massimo Guarnieri Negative Feedback, Amplifiers, Governors, and More Massimo Guarnieri he invention of the negative feed- Henry (1797–1878) and Samuel Morse (1873–1961), the holder of a similar back amplifier by Harold S. Black (1791–1872) and was very successful patent of 1916. In the final courtroom T (1898–1983) in 1928 is consid- against the attenuation of telegraph digi- battle in 1934, the Supreme Court ruled ered one of the great achievements in tal signals. in favor of De Forest. Meanwhile, in electronics. In fact, it is listed among Telephone lines, which started to 1922, Armstrong introduced the su- the IEEE Milestones, where it is cred- be laid in the 1880s, were also prone perregenerative receiver, which used ited to Bell Labs. Black was hired by to attenuation. However, their signals a larger part of the signal to obtain Western Electric in 1921 and as- were analog, so regeneration based on an even higher amplification (gain signed to work on the Type C system, a just an electrochemical battery and around 1 million).
    [Show full text]
  • Eric Serge Sanches
    PROGRAMA FRANCISCO EDUARDO MOURÃO SABOYA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA ESCOLA DE ENGENHARIA UNIVERSIDADE FEDERAL FLUMINENSE Tese de Doutorado UMA CONTRIBUIÇÃO AO ESTUDO E CONTROLE DE UM MOTOR DE RELUTÂNCIA CHAVEADO DE FLUXO AXIAL COM UM SÓ ESTATOR ERIC SERGE SANCHES DEZEMBRO DE 2015 ERIC SERGE SANCHES UMA CONTRIBUIÇÃO AO ESTUDO E CONTROLE DE UM MOTOR DE RELUTÂNCIA CHAVEADO DE FLUXO AXIAL COM UM SÓ ESTATOR Tese de Doutorado apresentada ao Programa Francisco Eduardo Mourão Saboya de Pós - Graduação em Engenharia Mecânica da UFF como parte dos requisitos para a obtenção do título de Doutor em Ciências em Engenharia Mecânica Orientador: Prof. Dr. José Andrés Santisteban Larrea (PGMEC/UFF ) UNIVERSIDADE FEDERAL FLUMINENSE NITERÓI, 16 DE DEZEMBRO DE 2015 À minha família e aos amigos que direta ou indiretamente contribuíram para a concretização deste sonho. AGRADECIMENTOS Ao Professor José Andrés Santisteban Larrea um agradecimento do fundo do meu coração pelo auxílio inestimável na realização deste sonho, pois quando perdia o rumo ele me indicava o norte. À Professora Stella Maris pelo apoio prestado nos primeiros passos desta empreitada. Aos Professores do Programa de Pós-Graduação em Engenharia Mecânica (PGMEC) da Universidade Federal Fluminense pelos ensinamentos ministrados. Ao Professores do Departamento de Engenharia Elétrica da Universidade Federal Fluminense, em especial Márcio Sens, Guilherme Sotelo e Vitor Hugo, pelo apoio e incentivo prestados durante a realização desta pesquisa. Aos amigos engenheiros e técnicos Itamar e equipe (AMRJ), Almir, Fabrício, Silvio, Amaro, Branquinho, Pedro, Medeiros, Christopher Grey, Roberto Brandão, Gustavo e José Carlos, pela ajuda na parte experimental desta pesquisa e constante incentivo.
    [Show full text]
  • Bode Plot Performance Specifications
    © Copyright F.L. Lewis 2007 All rights reserved EE 4314 - Control Systems Updated: Monday, November 12, 2007 Bode Plot Performance Specifications The Bode Plot was developed by Hendrik Wade Bode in 1938 while he worked at Bell Labs. Here we shall show how performance specifications in terms of Bode plots in the frequency domain are related to time domain performance. Bandwidth and Rise Time The Bode plot of the transfer function α 10 Hs()== ss++α 10 is shown. The break frequency occurs at 10 rad/sec, the magnitude of the pole. Bode Diagram 0 -3db -5 System: sys Frequency (rad/sec): 9.98 Magnitude (dB): -3 -10 -15 -20 Magnitude (dB)Magnitude -25 -30 -35 -40 0 ωB -30 Phase (deg) -60 -90 -1 0 1 2 3 10 10 10 10 10 Frequency (rad/sec) The 3dB cutoff frequency, or bandwidth, ωB is the frequency at which the frequency magnitude response has decreased by 3dB from its low frequency value. In this example ωB ==α 10rad / s . The impulse response of this system is ht()== e−−αtt e /τ , where the time constant is τ ==1/αω 1/ B . 1 The step response rise time is given by tr = 2.2τ . The settling time is ts = 5τ . The time constant is inversely related to the bandwidth. Therefore, as bandwidth increases, the system response becomes faster. COMPLEX POLE PAIR A transfer function with a complex pair of poles and no finite zeros can be written as ω 2 ω 2 ω 2 H (s) = n = n ≡ n . 2 2 2 2 s + 2αs + ω n s + 2ζω n s + ω n Δ(s) The numerator is chosen to scale the transfer function so that the DC gain (e.g.
    [Show full text]
  • Control Systems
    Control Systems en.wikibooks.org December 26, 2019 On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. A URI to this license is given in the list of figures on page 345. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license. The list of contributors is included in chapter Contributors on page 337. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page 355, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page 345. This PDF was generated by the LATEX typesetting software. The LATEX source code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from the PDF file, you can use the pdfdetach tool including in the poppler suite, or the http://www. pdflabs.com/tools/pdftk-the-pdf-toolkit/ utility. Some PDF viewers may also let you save the attachment to a file. After extracting it from the PDF file you have to rename it to source.7z.
    [Show full text]
  • Arxiv:1809.08747V1 [Quant-Ph] 24 Sep 2018 Adit N Wsaepwrhnln.Wt Respect with Power-Handling
    Design of an on-chip superconducting microwave circulator with octave bandwidth Benjamin J. Chapman,1,2, ∗ Eric I. Rosenthal,1, 2 and K. W. Lehnert1, 2 1JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado 80309, USA 2 Department of Physics, University of Colorado, Boulder, Colorado 80309, USA (Dated: September 25, 2018) We present a design for a superconducting, on-chip circulator composed of dynamically modulated transfer switches and delays. Design goals are set for the multiplexed readout of superconducting qubits. Simulations of the device show that it allows for low-loss circulation (insertion loss < 0.35 dB and isolation > 20 dB) over an instantaneous bandwidth of 2.3 GHz. As the device is estimated to be linear for input powers up to −65 dBm, this design improves on the bandwidth and power- handling of previous superconducting circulators [1–3] by over a factor of 50, making it ideal for integration with broadband quantum limited amplifiers [4–6]. I. INTRODUCTION to bandwidth and linearity, this represents a 50-fold im- provement over other near-lossless superconducting cir- Sophisticated signal-processing often requires that culators [1–3], well-suited for integration with broadband Lorentz reciprocity—the scattering symmetry of an quantum-limited amplifiers [4–6]. electromagnetic system under exchange of source and detector—be broken. In particular, directionally-routing propagating electromagnetic modes without adding noise II. THEORY OF OPERATION or incurring loss is vital for quantum information process- ing with superconducting circuits. The proposed circulator is composed of two transfer Although Maxwell’s equations place no restrictions on switches connected by a pair of delay lines (Fig.
    [Show full text]