Università Degli Studi Di Padova Padua
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bernard M. Oliver Oral History Interview
http://oac.cdlib.org/findaid/ark:/13030/kt658038wn Online items available Bernard M. Oliver Oral History Interview Daniel Hartwig Stanford University. Libraries.Department of Special Collections and University Archives Stanford, California November 2010 Copyright © 2015 The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Note This encoded finding aid is compliant with Stanford EAD Best Practice Guidelines, Version 1.0. Bernard M. Oliver Oral History SCM0111 1 Interview Overview Call Number: SCM0111 Creator: Oliver, Bernard M., 1916- Title: Bernard M. Oliver oral history interview Dates: 1985-1986 Physical Description: 0.02 Linear feet (1 folder) Summary: Transcript of an interview conducted by Arthur L. Norberg covering Oliver's early life, his education, and work experiences at Bell Laboratories and Hewlett-Packard. Subjects include television research, radar, information theory, organizational climate and objectives at both companies, Hewlett-Packard's associations with Stanford University, and Oliver's association with William Hewlett and David Packard. Language(s): The materials are in English. Repository: Department of Special Collections and University Archives Green Library 557 Escondido Mall Stanford, CA 94305-6064 Email: [email protected] Phone: (650) 725-1022 URL: http://library.stanford.edu/spc Information about Access Reproduction is prohibited. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94304-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. -
Control Engineering for High School Students and Teachers: an Online Platform Development
Control Engineering for High School Students and Teachers: An Online Platform Development Farhad Farokhi and Iman Shames Contents Report ............................................ 1 1 Introduction . 1 2 Courses . 1 3 Interviews . 2 4 Educational games . 3 5 Remote laboratory . 4 6 Conclusions and future work . 5 Appendix .......................................... 6 A Example course 1: Feedback theory . 6 B Example course 2: Models . 9 C Example course 3: On/off control . 12 D Remote laboratory (RLAB) manual . 13 1 Introduction Based on our teen years and feedback from many of our colleagues and friends, we believe that the control engineering, although being a major building block of automated system in many processes and infrastructures, is a fairly alien subject to the students, parents, and teachers. Therefore, there is a need for introducing feedback control and its application to high school students and their teachers to recruit the next generation of engineers and scientists in this field. We also believe that the academic community has a responsibility to disseminate the information cheaply, if not freely, to a wide range of interested audience, be it students, parents, or teachers, across the globe. This way, we can guarantee that people from different socio- economic backgrounds and in different countries can make informed decisions regarding their careers and those of their friends and families. Motivated by these needs, in this project, we have attempted at developing an online platform for the students and their educators to read about the control engineering, watch lectures by researchers from academia and industry, access interviews with successful people in the control engineering community, and play online games to test their understanding and to possibly learn about the applications of the automatic control. -
EE C128 Chapter 10
Lecture abstract EE C128 / ME C134 – Feedback Control Systems Topics covered in this presentation Lecture – Chapter 10 – Frequency Response Techniques I Advantages of FR techniques over RL I Define FR Alexandre Bayen I Define Bode & Nyquist plots I Relation between poles & zeros to Bode plots (slope, etc.) Department of Electrical Engineering & Computer Science st nd University of California Berkeley I Features of 1 -&2 -order system Bode plots I Define Nyquist criterion I Method of dealing with OL poles & zeros on imaginary axis I Simple method of dealing with OL stable & unstable systems I Determining gain & phase margins from Bode & Nyquist plots I Define static error constants September 10, 2013 I Determining static error constants from Bode & Nyquist plots I Determining TF from experimental FR data Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 1 / 64 Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 2 / 64 10 FR techniques 10.1 Intro Chapter outline 1 10 Frequency response techniques 1 10 Frequency response techniques 10.1 Introduction 10.1 Introduction 10.2 Asymptotic approximations: Bode plots 10.2 Asymptotic approximations: Bode plots 10.3 Introduction to Nyquist criterion 10.3 Introduction to Nyquist criterion 10.4 Sketching the Nyquist diagram 10.4 Sketching the Nyquist diagram 10.5 Stability via the Nyquist diagram 10.5 Stability via the Nyquist diagram 10.6 Gain margin and phase margin via the Nyquist diagram 10.6 Gain margin and phase margin via the Nyquist diagram 10.7 Stability, gain margin, and -
Download Chapter 161KB
Memorial Tributes: Volume 3 HENDRIK WADE BODE 50 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 3 HENDRIK WADE BODE 51 Hendrik Wade Bode 1905–1982 By Harvey Brooks Hendrik Wade Bode was widely known as one of the most articulate, thoughtful exponents of the philosophy and practice of systems engineering—the science and art of integrating technical components into a coherent system that is optimally adapted to its social function. After a career of more than forty years with Bell Telephone Laboratories, which he joined shortly after its founding in 1926, Dr. Bode retired in 1967 to become Gordon McKay Professor of Systems Engineering (on a half-time basis) in what was then the Division of Engineering and Applied Physics at Harvard. He became professor emeritus in July 1974. He died at his home in Cambridge on June 21, 1982, at the age of seventy- six. He is survived by his wife, Barbara Poore Bode, whom he married in 1933, and by two daughters, Dr. Katharine Bode Darlington of Philadelphia and Mrs. Anne Hathaway Bode Aarnes of Washington, D.C. Hendrik Bode was born in Madison, Wisconsin, on December 24, 1905. After attending grade school in Tempe, Arizona, and high school in Urbana, Illinois, he went on to Ohio State University, from which he received his B.A. in 1924 and his M.A. in 1926, both in mathematics. He joined Bell Labs in 1926 to work on electrical network theory and the design of electric filters. While at Bell, he also pursued graduate studies at Columbia University, receiving his Ph.D. -
Nanoscale Transistors Fall 2006 Mark Lundstrom Electrical
SURF Research Talk, June 16, 2015 Along for the Ride – reflections on the past, present, and future of nanoelectronics Mark Lundstrom [email protected] Electrical and Computer Engineering Birck Nanotechnology Center Purdue University, West Lafayette, Indiana USA Lundstrom June 2015 what nanotransistors have enabled “If someone from the 1950’s suddenly appeared today, what would be the most difficult thing to explain to them about today?” “I possess a device in my pocket that is capable of assessing the entirety of information known to humankind.” “I use it to look at pictures of cats and get into arguments with strangers.” Curious, by Ian Leslie, 2014. transistors The basic components of electronic systems. >100 billion transistors Lundstrom June 2015 transistors "The transistor was probably the most important invention of the 20th Century, and the story behind the invention is one of clashing egos and top secret research.” -- Ira Flatow, Transistorized! http://www.pbs.org/transistor/ Lundstrom June 2015 “The most important moment since mankind emerged as a life form.” Isaac Asimov (speaking about the “planar process” used to manufacture ICs - - invented by Jean Hoerni, Fairchild Semiconductor, 1959). IEEE Spectrum Dec. 2007 Lundstrom June 2015 Integrated circuits "In 1957, decades before Steve Jobs dreamed up Apple or Mark Zuckerberg created Facebook, a group of eight brilliant young men defected from the Shockley Semiconductor Company in order to start their own transistor business…” Silicon Valley: http://www.pbs.org/wgbh/americanexperience/films/silicon/ -
Wireless Telegraphy and Radio Wireless Information Network and National Broadcast System
Wireless Telegraphy and Radio Wireless Information Network and National Broadcast System CEE 102: Prof. Michael G. Littman Course Administrator: Hiba Abdel-Jaber [email protected] Computers allowed for NOTETAKING ONLY Please - NO Cell Phones, Texting, Internet use 1 Consumer Goods 1900 - 1980 Economics and Politics 2 Consumer Goods 1900 - 1980 RMS Titanic with Marconi Antenna Economics and Politics 3 Marconi - Wireless messages at sea RMS Titanic with Marconi Antenna 4 transmitter receiver Marconi - Wireless messages at sea Heinrich Hertz’s Experiment - 1888 § Spark in transmitter initiates radio burst § Spark in receiver ring detects radio burst 5 transmitter receiver DEMO Marconi - Wireless messages at sea Heinrich Hertz’s Experiment - 1888 § Spark in transmitter initiates radio burst § Spark in receiver ring detects radio burst 6 transmitter receiver Heinrich Hertz’s Experiment - 1888 § Spark in transmitter initiates radio burst § Spark in receiver ring detects radio burst 7 Electromagnetic Wave wave-speed frequency wavelength Time or Length 8 Electromagnetic Wave wave-speed frequency Wireless Telegraph Hertz Discovery wavelength Marconi Patents Marconi Demonstrations Time or Length 9 Marconi’s Wireless Telegraph Wireless Telegraph Hertz Discovery Marconi Patents Marconi Demonstrations 10 Marconi’s Wireless Telegraph Wireless Telegraph Hertz Discovery DEMO Marconi Patents Marconi Demonstrations 11 Marconi’s Wireless Telegraph 12 13 Marconi’s Patent for Tuning coherer 14 Tuning Circuit Marconi’s Patent for Tuning L C coherer 1 1 ν = 2π LC 15 Transmitting antenna Marconi’s Patent for Tuning coherer Cornwall (England) 16 KITE Receiving antenna Transmitting antenna Saint John’s (Newfoundland) Cornwall (England) …..dot……….……dot……......…….dot…... December 12, 1901 17 KITE Receiving antenna Saint John’s (Newfoundland) Marconi gets Nobel Prize in 1909 …..dot……….……dot……......…….dot….. -
Amateur Radio at Stanford ITS ROLE in COMPETITIVE ADVANTAGE
Amateur Radio at Stanford ITS ROLE IN COMPETITIVE ADVANTAGE 1927 2021 D. B. Leeson, W6NL April 13, 2021 © W6YX via Zoom History – A Guide to the Future § Decision Tree – Life, Career, Education, Business › Chain of contingent events, in competition › Each step depends on prior decisions & environment § Strategy – Optimize Choices › Strategy – Plan before objective is in view › Tactics – Carry out strategy after objective is at hand § Study Paths of Others – A Guide to Choices › Identify their strategies – See how it worked out › I focus on history, but can apply to present 1 Strategy Ideas & Examples § Significant Strategic Concepts › Limit competition – Segments & differentiation § Radio Technology is Unique › A differentiating skill – Then & now § Amateur Radio Experience › An engaging exercise in radio technology • Making and operating CubeSat Microwave › Basis of culture & key events – Stanford & Silicon Valley § History Examples Bear This Out › Career & institutional successes have flowed from amateur radio Moonbounce “EME” Amateur Digital Worldwide CubeSats in space 2 Elements of Competitive Strategy § Segmentation – Part of Customers/Market with Defining Limits › Limit competition – By location, experiences, technology, organization › Fortress concept – Safe inside, no advantage outside • Compete where you can win § Differentiation – Strength Against Others in Segment › Identify needed advantages – Singular skills, relationships, culture, location › Build from experience – Learn from self, colleagues, mentors • Experiences in one -
Measuring the Control Loop Response of a Power Supply Using an Oscilloscope ––
Measuring the Control Loop Response of a Power Supply Using an Oscilloscope –– APPLICATION NOTE MSO 5/6 with built-in AFG AFG Signal Injection Transformers J2100A/J2101A VIN VOUT TPP0502 TPP0502 5Ω RINJ T1 Modulator R1 fb – comp R2 + + VREF – Measuring the Control Loop Response of a Power Supply Using an Oscilloscope APPLICATION NOTE Most power supplies and regulators are designed to maintain a Introduction to Frequency Response constant voltage over a specified current range. To accomplish Analysis this goal, they are essentially amplifiers with a closed feedback loop. An ideal supply needs to respond quickly and maintain The frequency response of a system is a frequency-dependent a constant output, but without excessive ringing or oscillation. function that expresses how a reference signal (usually a Control loop measurements help to characterize how a power sinusoidal waveform) of a particular frequency at the system supply responds to changes in output load conditions. input (excitation) is transferred through the system. Although frequency response analysis may be performed A generalized control loop is shown in Figure 1 in which a using dedicated equipment, newer oscilloscopes may be sinewave a(t) is applied to a system with transfer function used to measure the response of a power supply control G(s). After transients due to initial conditions have decayed loop. Using an oscilloscope, signal source and automation away, the output b(t) becomes a sinewave but with a different software, measurements can be made quickly and presented magnitude B and relative phase Φ. The magnitude and phase as familiar Bode plots, making it easy to evaluate margins and of the output b(t) are in fact related to the transfer function compare circuit performance to models. -
Affine Laws and Learning Approaches for Witsenhausen
Special Topics Seminar Affine Laws and Learning Approaches for Witsenhausen Counterexample Hajir Roozbehani Dec 7, 2011 Outline I Optimal Control Problems I Affine Laws I Separation Principle I Information Structure I Team Decision Problems I Witsenhausen Counterexample I Sub-optimality of Affine Laws I Quantized Control I Learning Approach Linear Systems Discrete Time Representation In a classical multistage stochastic control problem, the dynamics are x(t + 1) = Fx(t) + Gu(t) + w(t) y(t) = Hx(t) + v(t); where v(t) and y(t) are independent sequences of random variables and u(t) = γ(y(t)) is the control law (or decision rule). A cost function J(γ; x(0)) is to be minimized. Linear Systems Discrete Time Representation In a classical multistage stochastic control problem, the dynamics are x(t + 1) = Fx(t) + Gu(t) + w(t) y(t) = Hx(t) + v(t); where v(t) and y(t) are independent sequences of random variables and u(t) = γ(y(t)) is the control law (or decision rule). A cost function J(γ; x(0)) is to be minimized. Success Stories with Affine Laws LQR Consider a linear dynamical system n m x(t + 1) = Fx(t) + Gu(t); x(t) 2 R ; u(t) 2 R with complete information and the task of finding a pair (x(t); u(t)) that minimizes the functional T X 0 0 J(u(t)) = [x(t) Qx(t) + u(t) Ru(t)]; t=0 subject to the described dynamical constraints and for Q > 0; R > 0. This is a convex optimization problem with an affine solution: 0 u∗(t) = −R−1B P(t)x(t); where P(t) is to be found by solving algebraic Riccati equations. -
Symbolic Analysis of Linear Electric Circuits with Maxima
Dejan V. Tošić, Milka M. Potrebić, Symbolic analysis of linear electric circuits with Maxima CAS, Application of Free Software and Open Hardware, PSSOH 2019, International Conference, University of Belgrade – School of Electrical Engineering, Belgrade, Serbia, Oct. 26, 2019. http://pssoh.etf.bg.ac.rs/ Symbolic analysis of linear electric circuits with Maxima CAS Dejan V. Tošić, Milka M. Potrebić University of Belgrade – School of Electrical Engineering, Belgrade, Serbia [email protected], [email protected] Application of Free Software and Open Hardware, PSSOH 2019, International Conference, University of Belgrade – School of Electrical Engineering, Belgrade, Serbia, Oct. 26, 2019. http://pssoh.etf.bg.ac.rs/ Dejan V. Tošić, Milka M. Potrebić, Symbolic analysis of linear electric circuits with Maxima CAS, Application of Free Software and Open Hardware, PSSOH 2019, International Conference, University of Belgrade – School of Electrical Engineering, Belgrade, Serbia, Oct. 26, 2019. http://pssoh.etf.bg.ac.rs/ What is symbolic simulation ● Symbolic simulation or analysis is a formal technique to calculate the behavior or a characteristic of a system (e.g. digital system, electronic circuit, or continuous-time system) with an independent variable (sample index, time, or frequency), the dependent variables (sample values, signals, voltages, and currents), and (some or all) the element values represented by symbols. ● A symbolic simulator is a computer program that receives the system description as input and can automatically carry out the symbolic analysis and thus generate the symbolic expression for the desired system characteristic. ● P. Lin, Symbolic Network Analysis. Amsterdam, The Netherlands: Elsevier, 1991. ● G. Gielen and W. Sansen, Symbolic Analysis for Automated Design of Analog Integrated Circuits. -
Mirostat:Aneural Text Decoding Algorithm That Directly Controls Perplexity
Published as a conference paper at ICLR 2021 MIROSTAT:ANEURAL TEXT DECODING ALGORITHM THAT DIRECTLY CONTROLS PERPLEXITY Sourya Basu∗ Govardana Sachitanandam Ramachandrany Nitish Shirish Keskary Lav R. Varshney∗;y ∗Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign ySalesforce Research ABSTRACT Neural text decoding algorithms strongly influence the quality of texts generated using language models, but popular algorithms like top-k, top-p (nucleus), and temperature-based sampling may yield texts that have objectionable repetition or incoherence. Although these methods generate high-quality text after ad hoc pa- rameter tuning that depends on the language model and the length of generated text, not much is known about the control they provide over the statistics of the output. This is important, however, since recent reports show that humans pre- fer when perplexity is neither too much nor too little and since we experimen- tally show that cross-entropy (log of perplexity) has a near-linear relation with repetition. First we provide a theoretical analysis of perplexity in top-k, top-p, and temperature sampling, under Zipfian statistics. Then, we use this analysis to design a feedback-based adaptive top-k text decoding algorithm called mirostat that generates text (of any length) with a predetermined target value of perplexity without any tuning. Experiments show that for low values of k and p, perplexity drops significantly with generated text length and leads to excessive repetitions (the boredom trap). Contrarily, for large values of k and p, perplexity increases with generated text length and leads to incoherence (confusion trap). Mirostat avoids both traps. -
(Really)Creative
A Printer DesigningDesigning The Next for Bionic Greener Silicon Body Parts Buildings Valley Demo p104 Reviews p94 Business Report p84 VOL. NO. | SEPTEMBER/OCTOBER | . US (REALLY)CREATIVE Ben Milne wants to demolish the credit card DESTRUCTION industry and transform how we’ll pay for everything. Meet him and 34 other world-changing innovators under the age of 35. SO13_cover.indd 1 8/7/13 12:34 PM We didn’t reinvent the wheel, just the way they steer. ACURA_TR1013.indd 2 7/30/13 4:35 PM MU18725_ACN1-13-03981-043_RLX_Steer_15.75_10.5.indd 1 For Proofreading: RLX with Technology Package shown. Learn more at acura.com or by calling 1-800-To-Acura. ©2013 Acura. Acura, RLX and Precision All-Wheel Steer are trademarks of Honda Motor Co., Ltd. INTRODUCING THE RLX WITH PRECISION ALLWHEEL STEER.™ Designed to give the driver unprecedented control, the Precision All-Wheel Steer system aboard the RLX allows each rear wheel to independently adjust its angle through turns. It’s the most advanced steering system we’ve ever built, not to mention an industry first. It’s luxury, taken to a whole new level. The new Acura RLX. Handsomely equipped at $54,450. Excludes $895 destination, tax, title, license and registration. T:10.5” RLX with Technology Package shown. Learn more at acura.com or by calling 1-800-To-Acura. ©2013 Acura. Acura, RLX and Precision All-Wheel Steer are trademarks of Honda Motor Co., Ltd. ACURA_TR1013.indd 3 7/30/13 4:35 PM 7/23/13 6:16 PM For Proofreading: RLX with Technology Package shown.