Everything Is Under Control

Total Page:16

File Type:pdf, Size:1020Kb

Everything Is Under Control Everything is under control Citation for published version (APA): Heertjes, M. F. (2020). Everything is under control. Technische Universiteit Eindhoven. Document status and date: Published: 06/03/2020 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 24. Sep. 2021 Everything is under control I Prof.dr.ir. Marcel Heertjes March 6, 2020 INAUGURAL LECTURE Everything is under control DEPARTMENT OF MECHANICAL ENGINEERING INAUGURAL LECTURE PROF.DR.IR. MARCEL HEERTJES Everything is under control Presented on March 6, 2020 at Eindhoven University of Technology Everything is under control 3 Introduction ‘Everything is under control’ refers to the sheer number of controls being used nowadays in high-precision systems. One example is stage systems in wafer scanners (the tool used to produce microchips), which have hundreds of control loops for their motion control [1]. This number is expected to increase as more and more (sub)systems are connected by control in a system-of-systems manner [2]. ‘Everything is under control’ also refers to the task that control engineering has in meeting system specifications and performances. Though control technology is often not visible from the outside as it is hidden within algorithms (hence the hidden technology [3]), high-precision systems can by no means meet specifications without this technology [4]. Lastly, ‘everything is under control’ imparts a feeling of ease, often against better judgement. Despite the impressive progress in mechatronics and hardware design, and regardless of the promotion of modern control technologies [27], the high-precision industry is still dominated by classical control concepts. In the inaugural lecture, the state-of-the-art in industrial motion control will first be highlighted using an example from a stage control system. This section aims to provide a view of where we stand in terms of motion control performance in industry and what room there is for the progression of motion control technologies. Secondly, two control scenarios will be discussed that aim for reflection on what future motion control may look like: (machine) learning in feedforward control and hybrid integrator-gain systems in feedback control. Both scenarios have been chosen in line with worldwide trends regarding data-based control [5] and nonlinear control for linear systems [6,7] and illustrate the context of industrial nonlinear control for high-precision systems, the area in which I am a part-time professor. Lastly, some thoughts are shared on the interplay between industry and the university, especially regarding research and education. 4 Prof.dr.ir. Marcel Heertjes Everything is under control 5 of the eight signals in gray. A distinction is made between the time interval of Motion control technology – scanning, i.e. where exposure takes place under constant velocity motion, and the time interval at which the system accelerates or decelerates in order to prepare a stage example (among other things) for exposure of the next field. As the data underlying the figure were obtained from a recently-produced stage system, one may expect state-of-the-art industrial motion control and the resulting tracking performance. In motion control, one basically distinguishes between two problems: the servo/ tracking problem and the regulator problem [8]. In the servo/tracking problem, we Observation 1: error signals inside the scanning interval are smaller in want the output of the controlled system to stay as close as possible to a reference magnitude than error signals outside of the scanning interval. trajectory. Think of the commanded meander pattern used in wafer scanners to This observation is in line with the fact that (servo) performance in wafer scanners enable exposure along the wafer [1]. In the regulator (or disturbance rejection) is mainly relevant when exposure takes place, i.e. in the scanning interval. A closer problem, the output of the controlled system subject to disturbances should be as look, however, reveals that the error at the beginning of the scanning interval is close as possible to a predetermined value. The servo/tracking problem is often significantly larger than the error closer to the end of the scanning interval, hence tackled by feedforward control, whereas the regulator problem is dealt with by the presence of a settling effect. feedback control. Observation 2: error signals both inside and outside of the scanning interval For many motion control systems, a significant source of servo error stems from the show reproducible behavior. servo problem, i.e. the setpoint profiles that we essentially provide ourselves. As a At the larger error levels, the spread among the different error signals becomes testament to this claim, consider Figure 1, which depicts an industrial wafer stage relatively small (the signals look alike), indicating the presence of reproducible system on its left. This shows the short-stroke stage during exposure of one of its behavior. There is a strong correlation between the setpoint (acceleration) profile many fields on the wafer. and the system’s response. As the setpoint is known beforehand and as we have a good understanding of the system through identification [9], we should be able to avoid this setpoint-induced part from occurring in the system’s response. 30 For wafer scanners, the importance of both observations stems from its relationship exposure field wafer with key performance indicators like machine overlay and throughput. Consider, short-stroke stage for example, the time needed to expose one field, which in Figure 1 equals 2.8 0 0.0476 seconds. Exposing 105 fields per wafer would thus lead to an upper -2.8 bound on throughput of about 720 wafers per hour, which exceeds the scanner’s specifications by a rough factor of three. Imagine the increase in throughput if one could simply expose while still accelerating (or decelerating). From a control point of view, however, one would experience a large hinderance due to the increase -30 0 0.0378 0.0854 0.1 of error magnitudes outside of the scanning interval, as previously discussed. But what if we could avoid the setpoint-induced error responses, leaving the Figure 1. (a) Wafer stage system. (b) Servo tracking performance of a stage system. magnitudes both inside and outside of the scanning interval equally small? On the righthand side, the figure shows the pointwise mean (in red) of eight measured servo error signals which resulted from applying eight identical setpoint For industrial high-precision mechatronics, the stage example considered does not profiles, as indicated by the scaled, dashed curve. The figure also shows the spread stand on its own. In fact, its system performance extrapolates well to many other application areas for the obvious reason of similarity in both system and control 6 Prof.dr.ir. Marcel Heertjes Everything is under control 7 design. Be it a CD player, wafer stage, component mounter or photocopier, all are Take a look at Figure 3, which shows a sample of 30 recently-produced stage represented by double integrator-based systems according to Newton’s second systems. In the sample, three different types are considered. Within each type, law and all use PID-based control designs [25]. ten different stage systems have been randomly selected. The figure shows the estimated benefit of the mean error responses in RMS values by (a) removing 3dB So, let’s continue with the stage example by considering the regulator problem as the reproducible part and (b) removing the frequency content below fbw . This well. Take Figure 2, which shows the frequency content of the previously-discussed shows room for improvement by factors of 2.4 × 3.1 = 7.4 (type 1), 2.9 × 1.9 = 5.5 error responses through cumulative power spectral density analysis. (type 2) and 4.2 × 3.8 = 16.0 (type 3), respectively. Also, the response outside of the scanning interval no longer significantly differs from the response inside the 30 2.8 scanning interval if one treats the reproducible part with appropriate care. 2.1 2.8 0 -2.8 100 10-1 -30 0 0 0.0378 0.0854 0.1 2.525250 2500 Figure 2. Frequency-domain evaluation. 10-2 Figure 3.
Recommended publications
  • Control Engineering for High School Students and Teachers: an Online Platform Development
    Control Engineering for High School Students and Teachers: An Online Platform Development Farhad Farokhi and Iman Shames Contents Report ............................................ 1 1 Introduction . 1 2 Courses . 1 3 Interviews . 2 4 Educational games . 3 5 Remote laboratory . 4 6 Conclusions and future work . 5 Appendix .......................................... 6 A Example course 1: Feedback theory . 6 B Example course 2: Models . 9 C Example course 3: On/off control . 12 D Remote laboratory (RLAB) manual . 13 1 Introduction Based on our teen years and feedback from many of our colleagues and friends, we believe that the control engineering, although being a major building block of automated system in many processes and infrastructures, is a fairly alien subject to the students, parents, and teachers. Therefore, there is a need for introducing feedback control and its application to high school students and their teachers to recruit the next generation of engineers and scientists in this field. We also believe that the academic community has a responsibility to disseminate the information cheaply, if not freely, to a wide range of interested audience, be it students, parents, or teachers, across the globe. This way, we can guarantee that people from different socio- economic backgrounds and in different countries can make informed decisions regarding their careers and those of their friends and families. Motivated by these needs, in this project, we have attempted at developing an online platform for the students and their educators to read about the control engineering, watch lectures by researchers from academia and industry, access interviews with successful people in the control engineering community, and play online games to test their understanding and to possibly learn about the applications of the automatic control.
    [Show full text]
  • EE C128 Chapter 10
    Lecture abstract EE C128 / ME C134 – Feedback Control Systems Topics covered in this presentation Lecture – Chapter 10 – Frequency Response Techniques I Advantages of FR techniques over RL I Define FR Alexandre Bayen I Define Bode & Nyquist plots I Relation between poles & zeros to Bode plots (slope, etc.) Department of Electrical Engineering & Computer Science st nd University of California Berkeley I Features of 1 -&2 -order system Bode plots I Define Nyquist criterion I Method of dealing with OL poles & zeros on imaginary axis I Simple method of dealing with OL stable & unstable systems I Determining gain & phase margins from Bode & Nyquist plots I Define static error constants September 10, 2013 I Determining static error constants from Bode & Nyquist plots I Determining TF from experimental FR data Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 1 / 64 Bayen (EECS, UCB) Feedback Control Systems September 10, 2013 2 / 64 10 FR techniques 10.1 Intro Chapter outline 1 10 Frequency response techniques 1 10 Frequency response techniques 10.1 Introduction 10.1 Introduction 10.2 Asymptotic approximations: Bode plots 10.2 Asymptotic approximations: Bode plots 10.3 Introduction to Nyquist criterion 10.3 Introduction to Nyquist criterion 10.4 Sketching the Nyquist diagram 10.4 Sketching the Nyquist diagram 10.5 Stability via the Nyquist diagram 10.5 Stability via the Nyquist diagram 10.6 Gain margin and phase margin via the Nyquist diagram 10.6 Gain margin and phase margin via the Nyquist diagram 10.7 Stability, gain margin, and
    [Show full text]
  • Download Chapter 161KB
    Memorial Tributes: Volume 3 HENDRIK WADE BODE 50 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 3 HENDRIK WADE BODE 51 Hendrik Wade Bode 1905–1982 By Harvey Brooks Hendrik Wade Bode was widely known as one of the most articulate, thoughtful exponents of the philosophy and practice of systems engineering—the science and art of integrating technical components into a coherent system that is optimally adapted to its social function. After a career of more than forty years with Bell Telephone Laboratories, which he joined shortly after its founding in 1926, Dr. Bode retired in 1967 to become Gordon McKay Professor of Systems Engineering (on a half-time basis) in what was then the Division of Engineering and Applied Physics at Harvard. He became professor emeritus in July 1974. He died at his home in Cambridge on June 21, 1982, at the age of seventy- six. He is survived by his wife, Barbara Poore Bode, whom he married in 1933, and by two daughters, Dr. Katharine Bode Darlington of Philadelphia and Mrs. Anne Hathaway Bode Aarnes of Washington, D.C. Hendrik Bode was born in Madison, Wisconsin, on December 24, 1905. After attending grade school in Tempe, Arizona, and high school in Urbana, Illinois, he went on to Ohio State University, from which he received his B.A. in 1924 and his M.A. in 1926, both in mathematics. He joined Bell Labs in 1926 to work on electrical network theory and the design of electric filters. While at Bell, he also pursued graduate studies at Columbia University, receiving his Ph.D.
    [Show full text]
  • Measuring the Control Loop Response of a Power Supply Using an Oscilloscope ––
    Measuring the Control Loop Response of a Power Supply Using an Oscilloscope –– APPLICATION NOTE MSO 5/6 with built-in AFG AFG Signal Injection Transformers J2100A/J2101A VIN VOUT TPP0502 TPP0502 5Ω RINJ T1 Modulator R1 fb – comp R2 + + VREF – Measuring the Control Loop Response of a Power Supply Using an Oscilloscope APPLICATION NOTE Most power supplies and regulators are designed to maintain a Introduction to Frequency Response constant voltage over a specified current range. To accomplish Analysis this goal, they are essentially amplifiers with a closed feedback loop. An ideal supply needs to respond quickly and maintain The frequency response of a system is a frequency-dependent a constant output, but without excessive ringing or oscillation. function that expresses how a reference signal (usually a Control loop measurements help to characterize how a power sinusoidal waveform) of a particular frequency at the system supply responds to changes in output load conditions. input (excitation) is transferred through the system. Although frequency response analysis may be performed A generalized control loop is shown in Figure 1 in which a using dedicated equipment, newer oscilloscopes may be sinewave a(t) is applied to a system with transfer function used to measure the response of a power supply control G(s). After transients due to initial conditions have decayed loop. Using an oscilloscope, signal source and automation away, the output b(t) becomes a sinewave but with a different software, measurements can be made quickly and presented magnitude B and relative phase Φ. The magnitude and phase as familiar Bode plots, making it easy to evaluate margins and of the output b(t) are in fact related to the transfer function compare circuit performance to models.
    [Show full text]
  • Affine Laws and Learning Approaches for Witsenhausen
    Special Topics Seminar Affine Laws and Learning Approaches for Witsenhausen Counterexample Hajir Roozbehani Dec 7, 2011 Outline I Optimal Control Problems I Affine Laws I Separation Principle I Information Structure I Team Decision Problems I Witsenhausen Counterexample I Sub-optimality of Affine Laws I Quantized Control I Learning Approach Linear Systems Discrete Time Representation In a classical multistage stochastic control problem, the dynamics are x(t + 1) = Fx(t) + Gu(t) + w(t) y(t) = Hx(t) + v(t); where v(t) and y(t) are independent sequences of random variables and u(t) = γ(y(t)) is the control law (or decision rule). A cost function J(γ; x(0)) is to be minimized. Linear Systems Discrete Time Representation In a classical multistage stochastic control problem, the dynamics are x(t + 1) = Fx(t) + Gu(t) + w(t) y(t) = Hx(t) + v(t); where v(t) and y(t) are independent sequences of random variables and u(t) = γ(y(t)) is the control law (or decision rule). A cost function J(γ; x(0)) is to be minimized. Success Stories with Affine Laws LQR Consider a linear dynamical system n m x(t + 1) = Fx(t) + Gu(t); x(t) 2 R ; u(t) 2 R with complete information and the task of finding a pair (x(t); u(t)) that minimizes the functional T X 0 0 J(u(t)) = [x(t) Qx(t) + u(t) Ru(t)]; t=0 subject to the described dynamical constraints and for Q > 0; R > 0. This is a convex optimization problem with an affine solution: 0 u∗(t) = −R−1B P(t)x(t); where P(t) is to be found by solving algebraic Riccati equations.
    [Show full text]
  • Symbolic Analysis of Linear Electric Circuits with Maxima
    Dejan V. Tošić, Milka M. Potrebić, Symbolic analysis of linear electric circuits with Maxima CAS, Application of Free Software and Open Hardware, PSSOH 2019, International Conference, University of Belgrade – School of Electrical Engineering, Belgrade, Serbia, Oct. 26, 2019. http://pssoh.etf.bg.ac.rs/ Symbolic analysis of linear electric circuits with Maxima CAS Dejan V. Tošić, Milka M. Potrebić University of Belgrade – School of Electrical Engineering, Belgrade, Serbia [email protected], [email protected] Application of Free Software and Open Hardware, PSSOH 2019, International Conference, University of Belgrade – School of Electrical Engineering, Belgrade, Serbia, Oct. 26, 2019. http://pssoh.etf.bg.ac.rs/ Dejan V. Tošić, Milka M. Potrebić, Symbolic analysis of linear electric circuits with Maxima CAS, Application of Free Software and Open Hardware, PSSOH 2019, International Conference, University of Belgrade – School of Electrical Engineering, Belgrade, Serbia, Oct. 26, 2019. http://pssoh.etf.bg.ac.rs/ What is symbolic simulation ● Symbolic simulation or analysis is a formal technique to calculate the behavior or a characteristic of a system (e.g. digital system, electronic circuit, or continuous-time system) with an independent variable (sample index, time, or frequency), the dependent variables (sample values, signals, voltages, and currents), and (some or all) the element values represented by symbols. ● A symbolic simulator is a computer program that receives the system description as input and can automatically carry out the symbolic analysis and thus generate the symbolic expression for the desired system characteristic. ● P. Lin, Symbolic Network Analysis. Amsterdam, The Netherlands: Elsevier, 1991. ● G. Gielen and W. Sansen, Symbolic Analysis for Automated Design of Analog Integrated Circuits.
    [Show full text]
  • Mirostat:Aneural Text Decoding Algorithm That Directly Controls Perplexity
    Published as a conference paper at ICLR 2021 MIROSTAT:ANEURAL TEXT DECODING ALGORITHM THAT DIRECTLY CONTROLS PERPLEXITY Sourya Basu∗ Govardana Sachitanandam Ramachandrany Nitish Shirish Keskary Lav R. Varshney∗;y ∗Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign ySalesforce Research ABSTRACT Neural text decoding algorithms strongly influence the quality of texts generated using language models, but popular algorithms like top-k, top-p (nucleus), and temperature-based sampling may yield texts that have objectionable repetition or incoherence. Although these methods generate high-quality text after ad hoc pa- rameter tuning that depends on the language model and the length of generated text, not much is known about the control they provide over the statistics of the output. This is important, however, since recent reports show that humans pre- fer when perplexity is neither too much nor too little and since we experimen- tally show that cross-entropy (log of perplexity) has a near-linear relation with repetition. First we provide a theoretical analysis of perplexity in top-k, top-p, and temperature sampling, under Zipfian statistics. Then, we use this analysis to design a feedback-based adaptive top-k text decoding algorithm called mirostat that generates text (of any length) with a predetermined target value of perplexity without any tuning. Experiments show that for low values of k and p, perplexity drops significantly with generated text length and leads to excessive repetitions (the boredom trap). Contrarily, for large values of k and p, perplexity increases with generated text length and leads to incoherence (confusion trap). Mirostat avoids both traps.
    [Show full text]
  • Università Degli Studi Di Padova Padua
    Università degli Studi di Padova Padua Research Archive - Institutional Repository Negative Feedback, Amplifiers, Governors, and More Original Citation: Availability: This version is available at: 11577/3257394 since: 2018-02-15T15:55:12Z Publisher: Institute of Electrical and Electronics Engineers Inc. Published version: DOI: 10.1109/MIE.2017.2726244 Terms of use: Open Access This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only) (Article begins on next page) Historical by Massimo Guarnieri Negative Feedback, Amplifiers, Governors, and More Massimo Guarnieri he invention of the negative feed- Henry (1797–1878) and Samuel Morse (1873–1961), the holder of a similar back amplifier by Harold S. Black (1791–1872) and was very successful patent of 1916. In the final courtroom T (1898–1983) in 1928 is consid- against the attenuation of telegraph digi- battle in 1934, the Supreme Court ruled ered one of the great achievements in tal signals. in favor of De Forest. Meanwhile, in electronics. In fact, it is listed among Telephone lines, which started to 1922, Armstrong introduced the su- the IEEE Milestones, where it is cred- be laid in the 1880s, were also prone perregenerative receiver, which used ited to Bell Labs. Black was hired by to attenuation. However, their signals a larger part of the signal to obtain Western Electric in 1921 and as- were analog, so regeneration based on an even higher amplification (gain signed to work on the Type C system, a just an electrochemical battery and around 1 million).
    [Show full text]
  • Eric Serge Sanches
    PROGRAMA FRANCISCO EDUARDO MOURÃO SABOYA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA ESCOLA DE ENGENHARIA UNIVERSIDADE FEDERAL FLUMINENSE Tese de Doutorado UMA CONTRIBUIÇÃO AO ESTUDO E CONTROLE DE UM MOTOR DE RELUTÂNCIA CHAVEADO DE FLUXO AXIAL COM UM SÓ ESTATOR ERIC SERGE SANCHES DEZEMBRO DE 2015 ERIC SERGE SANCHES UMA CONTRIBUIÇÃO AO ESTUDO E CONTROLE DE UM MOTOR DE RELUTÂNCIA CHAVEADO DE FLUXO AXIAL COM UM SÓ ESTATOR Tese de Doutorado apresentada ao Programa Francisco Eduardo Mourão Saboya de Pós - Graduação em Engenharia Mecânica da UFF como parte dos requisitos para a obtenção do título de Doutor em Ciências em Engenharia Mecânica Orientador: Prof. Dr. José Andrés Santisteban Larrea (PGMEC/UFF ) UNIVERSIDADE FEDERAL FLUMINENSE NITERÓI, 16 DE DEZEMBRO DE 2015 À minha família e aos amigos que direta ou indiretamente contribuíram para a concretização deste sonho. AGRADECIMENTOS Ao Professor José Andrés Santisteban Larrea um agradecimento do fundo do meu coração pelo auxílio inestimável na realização deste sonho, pois quando perdia o rumo ele me indicava o norte. À Professora Stella Maris pelo apoio prestado nos primeiros passos desta empreitada. Aos Professores do Programa de Pós-Graduação em Engenharia Mecânica (PGMEC) da Universidade Federal Fluminense pelos ensinamentos ministrados. Ao Professores do Departamento de Engenharia Elétrica da Universidade Federal Fluminense, em especial Márcio Sens, Guilherme Sotelo e Vitor Hugo, pelo apoio e incentivo prestados durante a realização desta pesquisa. Aos amigos engenheiros e técnicos Itamar e equipe (AMRJ), Almir, Fabrício, Silvio, Amaro, Branquinho, Pedro, Medeiros, Christopher Grey, Roberto Brandão, Gustavo e José Carlos, pela ajuda na parte experimental desta pesquisa e constante incentivo.
    [Show full text]
  • Bode Plot Performance Specifications
    © Copyright F.L. Lewis 2007 All rights reserved EE 4314 - Control Systems Updated: Monday, November 12, 2007 Bode Plot Performance Specifications The Bode Plot was developed by Hendrik Wade Bode in 1938 while he worked at Bell Labs. Here we shall show how performance specifications in terms of Bode plots in the frequency domain are related to time domain performance. Bandwidth and Rise Time The Bode plot of the transfer function α 10 Hs()== ss++α 10 is shown. The break frequency occurs at 10 rad/sec, the magnitude of the pole. Bode Diagram 0 -3db -5 System: sys Frequency (rad/sec): 9.98 Magnitude (dB): -3 -10 -15 -20 Magnitude (dB)Magnitude -25 -30 -35 -40 0 ωB -30 Phase (deg) -60 -90 -1 0 1 2 3 10 10 10 10 10 Frequency (rad/sec) The 3dB cutoff frequency, or bandwidth, ωB is the frequency at which the frequency magnitude response has decreased by 3dB from its low frequency value. In this example ωB ==α 10rad / s . The impulse response of this system is ht()== e−−αtt e /τ , where the time constant is τ ==1/αω 1/ B . 1 The step response rise time is given by tr = 2.2τ . The settling time is ts = 5τ . The time constant is inversely related to the bandwidth. Therefore, as bandwidth increases, the system response becomes faster. COMPLEX POLE PAIR A transfer function with a complex pair of poles and no finite zeros can be written as ω 2 ω 2 ω 2 H (s) = n = n ≡ n . 2 2 2 2 s + 2αs + ω n s + 2ζω n s + ω n Δ(s) The numerator is chosen to scale the transfer function so that the DC gain (e.g.
    [Show full text]
  • Control Systems
    Control Systems en.wikibooks.org December 26, 2019 On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. A URI to this license is given in the list of figures on page 345. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license. The list of contributors is included in chapter Contributors on page 337. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page 355, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page 345. This PDF was generated by the LATEX typesetting software. The LATEX source code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from the PDF file, you can use the pdfdetach tool including in the poppler suite, or the http://www. pdflabs.com/tools/pdftk-the-pdf-toolkit/ utility. Some PDF viewers may also let you save the attachment to a file. After extracting it from the PDF file you have to rename it to source.7z.
    [Show full text]
  • Arxiv:1809.08747V1 [Quant-Ph] 24 Sep 2018 Adit N Wsaepwrhnln.Wt Respect with Power-Handling
    Design of an on-chip superconducting microwave circulator with octave bandwidth Benjamin J. Chapman,1,2, ∗ Eric I. Rosenthal,1, 2 and K. W. Lehnert1, 2 1JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado 80309, USA 2 Department of Physics, University of Colorado, Boulder, Colorado 80309, USA (Dated: September 25, 2018) We present a design for a superconducting, on-chip circulator composed of dynamically modulated transfer switches and delays. Design goals are set for the multiplexed readout of superconducting qubits. Simulations of the device show that it allows for low-loss circulation (insertion loss < 0.35 dB and isolation > 20 dB) over an instantaneous bandwidth of 2.3 GHz. As the device is estimated to be linear for input powers up to −65 dBm, this design improves on the bandwidth and power- handling of previous superconducting circulators [1–3] by over a factor of 50, making it ideal for integration with broadband quantum limited amplifiers [4–6]. I. INTRODUCTION to bandwidth and linearity, this represents a 50-fold im- provement over other near-lossless superconducting cir- Sophisticated signal-processing often requires that culators [1–3], well-suited for integration with broadband Lorentz reciprocity—the scattering symmetry of an quantum-limited amplifiers [4–6]. electromagnetic system under exchange of source and detector—be broken. In particular, directionally-routing propagating electromagnetic modes without adding noise II. THEORY OF OPERATION or incurring loss is vital for quantum information process- ing with superconducting circuits. The proposed circulator is composed of two transfer Although Maxwell’s equations place no restrictions on switches connected by a pair of delay lines (Fig.
    [Show full text]