Standardized Analytical Methods for Use During Homeland Security Events

Total Page:16

File Type:pdf, Size:1020Kb

Standardized Analytical Methods for Use During Homeland Security Events Standardized Analytical Methods for Use During Homeland Security Events Revision 2.0 September 29, 2005 OUDATED OUDATED EPA/600/R-04/126B September 2005 Standardized Analytical Methods for Use During Homeland Security Events Revision 2.0 September 29, 2005 Prepared by Computer Sciences Corporation Alexandria, VA 22304-3540 Prepared under EPA Contract No. 68-W-01-034 Prepared for Oba Vincent W ork Assignment Manager OUDATEDNational Homeland Security Research Center United States Environmental Protection Agency Office of Research and Development Cincinnati, OH 45268 Disclaimer The U.S. Environmental Protection Agency through its Office of Research and Development funded and managed the research described here under Contract 68-W-01-034 to Computer Sciences Corporation (CSC). This document has been subjected to the Agency’s peer and administrative review and has been approved for publication as an EPA document. Mention of trade names or commercial products in this document or in the methods referenced in this document does not constitute endorsement or recommendation for use. Questions concerning this document or its application should be addressed to: Oba Vincent National Homeland Security Research Center Office of Research and Development (163) U.S. Environmental Protection Agency 26 West Martin Luther King Drive Cincinnati, OH 45268 (513) 569-7456 [email protected] OUDATED ii Use of This Document The information contained in this document represents the latest step in an ongoing National Homeland Security Research Center effort to provide standardized analytical methods for use by laboratories tasked with performing analyses in response to a homeland security event. Although at this time, many of the methods listed have not been tested for a particular analyte (e.g., analytes not explicitly identified in the method) or matrix, the methods are considered to contain the most appropriate currently available techniques. Unless a published method that is listed in this document states specific applicability to the analyte/matrix pair for which it has been selected, it should be assumed that method testing is needed. In these cases, adjustment may be required to accurately account for variations in environmental matrices, analyte characteristics, and target risk levels. Many of the target analytes listed in this document have only recently become an environmental concern, and EPA is actively pursuing development and validation of Standard Analytical Protocols (SAPs) based on the methods listed, including optimization of procedures for measuring target compounds. In those cases where method procedures are determined to be insufficient for a particular situation, EPA will provide guidance regarding appropriate actions. This will be an ongoing process as EPA will strive to establish a consistent level of validation for all listed analytes. OUDATED SAM Revision 2.0 iii September 29, 2005 Foreword The U.S. Environmental Protection Agency is charged by Congress with protecting the Nation’s land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA’s research program is providing data and technical support for solving environmental problems today and building a scientific base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future. The National Homeland Security Research Center (NHSRC) is the Agency’s center for conducting research to facilitate protection and decontamination of structures and water infrastructure subject to chemical, biological, or radiological (CBR) terror attacks. NHSRC’s research is designed to provide appropriate, effective, and validated technologies, methods, and guidance to understand the risk posed by CBR agents to enhance our ability to detect, contain, and clean up in the event of such attacks. NHSRC will also provide direct technical assistance to response personnel in the event of a CBR attack, as well as provide related interagency liaisons. This publication has been produced as part of the Center’s long-term research plan. It is published and made available by EPA’s Office of Research and Development to assist the user community and to link researchers with their clients. Andrew P. Avel, Acting Director National Homeland Security Research Center OUDATED SAM Revision 2.0 iv September 29, 2005 Abbreviations and Acronyms AEM Applied and Environmental Microbiology AGI sampler All Glass Impinger Sampler AOAC AOAC International (formerly the Association of Official Analytical Chemists) ASTM ASTM International (formerly the American Society for Testing and Materials) BSL Biosafety Level °C Degrees Celsius Campy-BAC Campylobacter-Brucella agar base with sheep blood and antibiotics CDC Centers for Disease Control and Prevention CFR Code of Federal Regulations CLP Contract Laboratory Program CVAA Cold Vapor Atomic Absorption CVAFS Cold Vapor Atomic Fluorescence Spectrometry DAPI 4',6-diamidino-2-phenylindole DHS Department of Homeland Security DIC Differential Interference Contrast DNA Deoxyribonucleic Acid DNPH 2,4-dinitrophenylhydrazine DoD Department of Defense ED Electron Diffraction EDTA Ethylenediaminetetraacetic acid EDXA Energy Dispersive X-ray Analysis EEB EHEC Enrichment Broth EHEC Enterohemorrhagic Escherichia coli EIA Enzyme Immunoassay ELISA Enzyme-Linked Immunosorbent Assay EMMI Environmental Monitoring Methods Index EPA U.S. Environmental Protection Agency EQL Estimated Quantitation Limit FA Fluorescence Assay FBI Federal Bureau of Investigation FDA Food and Drug Administration FID Flame Ionization Detector FITC Fluorescein isothiocyanate FSIS Food Safety and Inspection Service GC Gas Chromatograph or Gas Chromatography GC/MS Gas Chromatograph/Mass Spectrometer or Gas Chromatography/Mass Spectrometry GFAA Graphite Furnace Atomic Absorption Spectrophotometer or Graphite Furnace Atomic OUDATEDAbsorption Spectrophotometry GITC Guanidinium isothiocyanate HAV Hepatitis A Virus HPLC High Performance Liquid Chromatograph or High Performance Liquid Chromatography HPLC-FL High Performance Liquid Chromatograph - Fluorescence HPLC-MS High Performance Liquid Chromatograph - Mass Spectrometer IC Ion Chromatograph or Ion Chromatography ICC Integrated cell culture ICP Inductively Coupled Plasma ICP-AES Inductively Coupled Plasma - Atomic Emission Spectrometry SA M R evision 2.0 v September 29, 2005 ICR Information Collection Rule IMS Immunomagnetic Separation INCHEM INCHEM is a means of rapid access to internationally peer reviewed information on chemicals commonly used throughout the world, which may also occur as contaminants in the environment and food. It consolidates information from a number of intergovernmental organizations whose goal it is to assist in the sound management of chemicals. http://www.inchem.org/ IO Inorganic ISO International Organization for Standardization ISE Ion Specific Electrode K-D Kuderna-Danish LIA Lysine Iron Agar LRN Laboratory Response Network LSE Liquid/Solid Extraction MS Mass Spectrometer or Mass Spectrometry or Matrix Spike MSD Matrix Spike Duplicate MW Molecular Weight NA Not Applicable NEMI National Environmental Methods Index NERL-CI National Exposure Risk Laboratory-Cincinnati NHSRC National Homeland Security Research Center NIOSH National Institute for Occupational Safety and Health NOS Not Otherwise Specified NTIS National Technical Information Service ONPG Ortho-nitrophenyl-$-D-galactopyranoside OSHA Occupational Safety and Health Administration OW Office of Water PAHs Polycyclic Aromatic Hydrocarbons PCBs Polychlorinated biphenyls PCDDs Polychlorinated dibenzo-p-dioxins PCDFs Polychlorinated dibenzofurans PCR Polymerase Chain Reaction PFE Pressurized Fluid Extraction QC Quality Control RNA Ribonucleic Acid RP/HPLC Reversed-Phase High Performance Liquid Chromatography RT-PCR Reverse Transcription-Polymerase Chain Reaction SAED Selected Area Electron Diffraction SM Standard Methods for the Examination of Water and Wastewater SPE Solid-Phase Extraction OUDATEDSW Solid Waste TBD To Be Determined TCBS Thiosulfate Citrate Bile Salts Sucrose TC SMAC Tellurite Cefixime Sorbitol MaConkey agar TCLP Toxicity Characteristic Leaching Procedure TEM Transmission Electron Microscope or Microscopy TOXNET National Library of Medicine, Toxicological Database TRF Time resolved fluorescence TRU Trans Uranic TS Thermospray TSI Triple Sugar Iron SA M R evision 2.0 vi September 29, 2005 USDA U.S. Department of Agriculture USGS U.S. Geological Survey UV Ultraviolet VEE Venezeulan Equine Encephalitis VOCs Volatile Organic Compounds VOA Volatile Organic Analysis XLD Xylose lysine desoxycholate OUDATED SAM Revision 2.0 vii September 29, 2005 Acknowledgments The contributions of the following persons and organizations to the development of this document are gratefully acknowledged: EPA Homeland Security Laboratory Capability Workgroup Analytical Methods Subteam Steve Allgeier, Office of Water David Friedman, Office of Research and Development Ben Hull, Office of Radiation and Indoor Air Michael S. Johnson, Office of Solid Waste and Emergency Response Alan Lindquist, Office of Research and Development Rob Rothman, Office of Research and Development Oba Vincent, Office of Research and Development United States Environmental Protection Agency C Office of Research and Development
Recommended publications
  • "The Science for Diplomats" Annex on Chemicals
    ORGANISATION FOR THE PROHIBITION OF CHEMICAL WEAPONS "THE SCIENCE FOR DIPLOMATS" ANNEX ON CHEMICALS A user friendly and scientifically annotated version of the Chemical Weapons Convention Annex on Chemicals OPCW THE “SCIENCE FOR DIPLOMATS” ANNEX ON CHEMICALS A user friendly and scientifically annotated version of the Chemical Weapons Convention Annex on Chemicals1 CONTENTS A. GUIDELINES FOR SCHEDULES OF CHEMICALS B. VISUALISING AND READING MOLECULAR STRUCTURES C. SCHEDULES OF CHEMICALS D. RIOT CONTROL AGENTS 1 An official version of the Annex on Chemicals can be obtained from the OPCW public website, www.opcw.org/chemical-weapons-convention/annexes/annex-chemicals/annex-chemicals. Version 3.0 – 10 March 2019 A. GUIDELINES FOR SCHEDULES OF CHEMICALS Guidelines for Schedule 1 1. The following criteria shall be taken into account in considering whether a toxic chemical or precursor should be included in Schedule 1: (a) It has been developed, produced, stockpiled or used as a chemical weapon as defined in Article II; (b) It poses otherwise a high risk to the object and purpose of this Convention by virtue of its high potential for use in activities prohibited under this Convention because one or more of the following conditions are met: (i) It possesses a chemical structure closely related to that of other toxic chemicals listed in Schedule 1, and has, or can be expected to have, comparable properties; (ii) It possesses such lethal or incapacitating toxicity as well as other properties that would enable it to be used as a chemical weapon; (iii) It may be used as a precursor in the final single technological stage of production of a toxic chemical listed in Schedule 1, regardless of whether this stage takes place in facilities, in munitions or elsewhere; (c) It has little or no use for purposes not prohibited under this Convention.
    [Show full text]
  • Pacs by Chemical Name (Mg/M3) (Pdf)
    Table 4: Protective Action Criteria (PAC) Rev 25 based on applicable 60-minute AEGLs, ERPGs, or TEELs. Values are presented in mg/m3. August 2009 Table 4 is an alphabetical listing of the chemicals in the PAC data set. It provides Chemical Abstract Service Registry Numbers (CASRNs)1, PAC values, and technical information on the source of the PAC values. Table 4 presents all values for TEEL-0, PAC-1, PAC-2, and PAC-3 in mg/m3. The conversion of ppm to mg/m3 is calculated assuming 25 ºC and 760 mm Hg. The columns presented in Table 4 provide the following information: Heading Definition No. The ordered numbering of the chemicals as they appear in this alphabetical listing. Chemical Name The chemical name given to the PAC Development Team. CASRN The Chemical Abstract Service Registry Number for this chemical. TEEL-0 This is the threshold concentration below which most people will experience no adverse health effects. This PAC is always based on TEEL-0 because AEGL-0 or ERPG-0 values do not exist. PAC-1 Based on the applicable AEGL-1, ERPG-1, or TEEL-1 value. PAC-2 Based on the applicable AEGL-2, ERPG-2, or TEEL-2 value. PAC-3 Based on the applicable AEGL-3, ERPG-3, or TEEL-3 value. Source of PACs: Technical comments provided by the PAC development team that TEEL-0, PAC-1, indicate the source of the data used to derive PAC values. Future efforts PAC-2, PAC-3 are directed at reviewing, revising, and enhancing this information.
    [Show full text]
  • 459 Part 121—The United States Munitions List
    Department of State § 121.1 (h) Equipment is a combination of 121.1 The United States Munitions List. parts, components, accessories, attach- 121.2–121.15 [Reserved] ments, firmware, or software that oper- 121.16 Missile Technology Control Regime ate together to perform a function of, Annex. as, or for an end-item or system. AUTHORITY: Secs. 2, 38, and 71, Pub. L. 90– Equipment may be a subset of an end- 629, 90 Stat. 744 (22 U.S.C. 2752, 2778, 2797); 22 item based on the characteristics of U.S.C. 2651a; Pub. L. 105–261, 112 Stat. 1920; Section 1261, Pub. L. 112–239; E.O. 13637, 78 FR the equipment. Equipment that meets 16129. the definition of an end-item is an end- item. Equipment that does not meet SOURCE: 58 FR 39287, July 22, 1993, unless the definition of an end-item is a com- otherwise noted. ponent, accessory, attachment, ENUMERATION OF ARTICLES firmware, or software. [79 FR 61228, Oct. 10, 2014] § 121.1 The United States Munitions List. § 120.46 Classified. (a) U.S. Munitions List. In this part, Classified means classified pursuant articles, services, and related technical to Executive Order 13526, and a secu- data are designated as defense articles rity classification guide developed pur- or defense services pursuant to sections suant thereto or equivalent, or to the 38 and 47(7) of the Arms Export Control corresponding classification rules of Act and constitute the U.S. Munitions another government or international List (USML). Changes in designations organization. are published in the FEDERAL REG- ISTER.
    [Show full text]
  • ITAR Category
    Category XIV—Toxicological Agents, Including Chemical Agents, Biological Agents, and Associated Equipment *(a) Chemical agents, to include: (1) Nerve agents: (i) O-Alkyl (equal to or less than C10, including cycloalkyl) alkyl (Methyl, Ethyl, n-Propyl or Isopropyl)phosphonofluoridates, such as: Sarin (GB): O-Isopropyl methylphosphonofluoridate (CAS 107–44–8) (CWC Schedule 1A); and Soman (GD): O-Pinacolyl methylphosphonofluoridate (CAS 96–64–0) (CWC Schedule 1A); (ii) O-Alkyl (equal to or less than C10, including cycloalkyl) N,N-dialkyl (Methyl, Ethyl, n- Propyl or Isopropyl)phosphoramidocyanidates, such as: Tabun (GA): O-Ethyl N, N- dimethylphosphoramidocyanidate (CAS 77–81–6) (CWC Schedule 1A); (iii) O-Alkyl (H or equal to or less than C10, including cycloalkyl) S–2-dialkyl (Methyl, Ethyl, n- Propyl or Isopropyl)aminoethyl alkyl (Methyl, Ethyl, n-Propyl or Isopropyl)phosphonothiolates and corresponding alkylated and protonated salts, such as: VX: O-Ethyl S-2- diisopropylaminoethyl methyl phosphonothiolate (CAS 50782–69–9) (CWC Schedule 1A); (2) Amiton: O,O-Diethyl S-[2(diethylamino)ethyl] phosphorothiolate and corresponding alkylated or protonated salts (CAS 78–53–5) (CWC Schedule 2A); (3) Vesicant agents: (i) Sulfur mustards, such as: 2-Chloroethylchloromethylsulfide (CAS 2625–76–5) (CWC Schedule 1A); Bis(2-chloroethyl)sulfide (CAS 505–60–2) (CWC Schedule 1A); Bis(2- chloroethylthio)methane (CAS 63839–13–6) (CWC Schedule 1A); 1,2-bis (2- chloroethylthio)ethane (CAS 3563–36–8) (CWC Schedule 1A); 1,3-bis (2-chloroethylthio)-n- propane (CAS
    [Show full text]
  • Acetylcholinesterase: the “Hub” for Neurodegenerative Diseases And
    Review biomolecules Acetylcholinesterase: The “Hub” for NeurodegenerativeReview Diseases and Chemical Weapons Acetylcholinesterase: The “Hub” for Convention Neurodegenerative Diseases and Chemical WeaponsSamir F. de A. Cavalcante Convention 1,2,3,*, Alessandro B. C. Simas 2,*, Marcos C. Barcellos 1, Victor G. M. de Oliveira 1, Roberto B. Sousa 1, Paulo A. de M. Cabral 1 and Kamil Kuča 3,*and Tanos C. C. França 3,4,* Samir F. de A. Cavalcante 1,2,3,* , Alessandro B. C. Simas 2,*, Marcos C. Barcellos 1, Victor1 Institute G. M. ofde Chemical, Oliveira Biological,1, Roberto Radiological B. Sousa and1, Paulo Nuclear A. Defense de M. Cabral (IDQBRN),1, Kamil Brazilian Kuˇca Army3,* and TanosTechnological C. C. França Center3,4,* (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; [email protected] (M.C.B.); [email protected] (V.G.M.d.O.); [email protected] 1 Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army (R.B.S.); [email protected] (P.A.d.M.C.) Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; 2 [email protected] Mors Institute of Research (M.C.B.); on Natural [email protected] Products (IPPN), Federal (V.G.M.d.O.); University of Rio de Janeiro (UFRJ), CCS,[email protected] Bloco H, Rio de Janeiro (R.B.S.); 21941-902, [email protected] Brazil (P.A.d.M.C.) 32 DepartmentWalter Mors of Institute Chemistry, of Research Faculty of on Science, Natural Un Productsiversity (IPPN),
    [Show full text]
  • Chemical Weapons Convention Inventory Report - 2017
    University of British Columbia Risk Management Services CHEMICAL WEAPONS CONVENTION INVENTORY REPORT - 2017 Department: Name of Building: Room No. Principal Investigator: SCHEDULE 1 CHEMICALS Location Quantity Obtained /Stored / Used A.Toxic Chemicals 1 O-Alkyl (<=C10, incl. cycloalkyl) alkyl (Me, Et, n-Pr or i-Pr) – phosphonofluoridates, Sarin: O-Isopropyl methylphosphonofluoridate (CAS 107-44-8) Soman: O-Pinacolyl methylphosphonofluoridate (CAS 96-64-0) 2 O-Alkyl (H or <=C10, incl. cycloalkyl) S-2-dialkyl (Me, Et, n- Pr or i-Pr) -aminoethyl alkyl (Me, Et, n-Pr or i-Pr) phosphonothiolates, and corresponding alkylated or protonated salts VX: O-Ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate (CAS 50782-69-9) 3 O-Alkyl (H or <=C10, incl. cycloalkyl) S-2-dialkyl (Me, Et, n- Pr or i-Pr) -aminoethyl alkyl (Me, Et, n-Pr or i-Pr) phosphonothiolates, and corresponding alkylated or protonated salts VX: O-Ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate (CAS 50782-69-9) 4 Sulphur Mustards: 2-Chloroethylchloromethylsulfide (CAS 2625-76-5) Mustard gas: Bis (2-chloroethyl) sulfide (CAS 505-60-2) Bis (2-chloroethylthio)methane (CAS 63869-13-6) Sesquimustard: 1, 2-Bis (2-chloroethylthio) ethane (CAS 3563-36-8) 1, 3-Bis (2-chloroethylthio) -n-propane (CAS 63905-10-2) 1, 4-Bis (2-chloroethylthio) -n-butane (CAS 142868-93-7) 1, 5-Bis (2-chloroethylthio) -n-pentane (CAS 142868-94-8) Bis (2-chloroethylthiomethyl) ether (CAS 63918-90-1) O-Mustard: Bis (2-chloroethylthioethyl) ether (CAS 63918-89-8) 5 Lewisites: Lewisite 1: 2-Chlorovinyldichloroarsine (CAS 541-25-3) Lewisite 2: Bis (2-chlorovinyl) chloroarsine (CAS 40334-69-8) Lewisite 3: Tris (2-chlorovinyl) arsine (CAS 40334-70-1) 6 Nitrogen Mustards: HN1: Bis (2-chloroethyl) ethylamine (CAS 538-07-08) HN2: Bis (2-chloroethyl) methylamine (CAS 51-75-2) HN3: Tris (2-chloroethyl) amine (CAS 555-77-1) University of British Columbia Risk Management Services CHEMICAL WEAPONS CONVENTION INVENTORY REPORT - 2017 Department: Name of Building: Room No.
    [Show full text]
  • CSAT Top-Screen Questions OMB PRA # 1670-0007 Expires: 5/31/2011
    CSAT Top-Screen Questions January 2009 Version 2.8 CSAT Top-Screen Questions OMB PRA # 1670-0007 Expires: 5/31/2011 Change Log .........................................................................................................3 CVI Authorizing Statements...............................................................................4 General ................................................................................................................6 Facility Description.................................................................................................................... 7 Facility Regulatory Mandates ................................................................................................... 7 EPA RMP Facility Identifier....................................................................................................... 9 Refinery Capacity....................................................................................................................... 9 Refinery Market Share ............................................................................................................. 10 Airport Fuels Supplier ............................................................................................................. 11 Military Installation Supplier................................................................................................... 11 Liquefied Natural Gas (LNG) Capacity................................................................................... 12 Liquefied Natural Gas Exclusion
    [Show full text]
  • Chemical Weapons Technology Section 4—Chemical Weapons Technology
    SECTION IV CHEMICAL WEAPONS TECHNOLOGY SECTION 4—CHEMICAL WEAPONS TECHNOLOGY Scope Highlights 4.1 Chemical Material Production ........................................................II-4-8 4.2 Dissemination, Dispersion, and Weapons Testing ..........................II-4-22 • Chemical weapons (CW) are relatively inexpensive to produce. 4.3 Detection, Warning, and Identification...........................................II-4-27 • CW can affect opposing forces without damaging infrastructure. 4.4 Chemical Defense Systems ............................................................II-4-34 • CW can be psychologically devastating. • Blister agents create casualties requiring attention and inhibiting BACKGROUND force efficiency. • Defensive measures can be taken to negate the effect of CW. Chemical weapons are defined as weapons using the toxic properties of chemi- • Donning of protective gear reduces combat efficiency of troops. cal substances rather than their explosive properties to produce physical or physiologi- • Key to employment is dissemination and dispersion of agents. cal effects on an enemy. Although instances of what might be styled as chemical weapons date to antiquity, much of the lore of chemical weapons as viewed today has • CW are highly susceptible to environmental effects (temperature, its origins in World War I. During that conflict “gas” (actually an aerosol or vapor) winds). was used effectively on numerous occasions by both sides to alter the outcome of • Offensive use of CW complicates command and control and battles. A significant number of battlefield casualties were sustained. The Geneva logistics problems. Protocol, prohibiting use of chemical weapons in warfare, was signed in 1925. Sev- eral nations, the United States included, signed with a reservation forswearing only the first use of the weapons and reserved the right to retaliate in kind if chemical weapons were used against them.
    [Show full text]
  • Synthesis of Nerve Agent- and Pesticide-Protein Bioadducts As Reference Materials for Retrospective Verification of Exposure
    University of Fribourg / Faculty of Science and Medicine / Department of Chemistry Synthesis of Nerve Agent- and Pesticide-Protein Bioadducts as Reference Materials for Retrospective Verification of Exposure Andreas Bielmann Cholinesterase inhibiting organophosphorus compounds are highly toxic and are used as pesticides or nerve agents. As most chemical warfare agents, nerve agents are prohibited by the Chemical Weapons Convention. To enforce the Convention, the Organisation for the Prohibition of Chemical Weapons maintains a network of laboratories, which are designated to analyse samples after alleged incidents involving chemical warfare agents. The gold standard for the retrospective verification of exposure to nerve agents in biomedical samples is the LC-MS analysis of a specific nonapeptide with the sequence FGES*AGAAS obtained after pepsin digestion of butyrylcholinesterase. Organophosphorus inhibitors will leave a specific marker on the serine indicated by *. Reference materials for this analysis are often produced by spiking of blood with agents. However, this method only gives reference peptides of inadequate purity. For the development of analytical methods and for quantitative analysis highly pure synthetic peptides are required. In this work, the synthesis of phosphylated peptides via a building block approach was investigated. Synthesis protocols were established and the limitations of the method were investigated. Phosphylated amino acid precursors and the resulting peptides have some intrinsic labilities, therefore an optimized SPPS protocol was developed to overcome them. Using this protocol, two pathways to synthesize the aged-nonapeptide adduct were investigated and compared. Further, the bioadducts of the nerve agents sarin, cyclosarin, VX, CVX and RVX, as well as the methyl methylphosphono- and isopropyl isopropylphosphono nonapeptides were synthesized to determine the scope of the method.
    [Show full text]
  • EST1. Telescopic Sights for Goods Specified in ML1 and EST2, Other Than Those Specified in Entries ML5
    List of Military Goods Entered into force 1 May 2004 ML1 Smooth-bore weapons with a calibre of less than 20 mm, other arms and automatic weapons with a calibre of 12,7 mm (calibre 0,50 inches) or less and accessories, as follows, and specially designed components therefor: a. Rifles, carbines, revolvers, pistols, machine pistols and machine guns: Note ML1.a. does not control the following: 1. Muskets, rifles and carbines manufactured earlier than 1938; 2. Reproductions of muskets, rifles and carbines the originals of which were manufactured earlier than 1890; 3. Revolvers, pistols and machine guns manufactured earlier than 1890, and their reproductions; b. Smooth-bore weapons, as follows: 1. Smooth-bore weapons specially designed for military use; 2. Other smooth-bore weapons, as follows: a. Of the fully automatic type; b. Of the semi-automatic or pump-action type; c. Weapons using caseless ammunition; d. Silencers, special gun-mountings, clips, weapons sights and flash suppressers for arms controlled by sub-items ML1.a., ML1.b. or ML1.c.. Note 1 ML1 does not control smooth-bore weapons used for hunting or sporting purposes. These weapons must not be specially designed for military use or of the fully automatic firing type. Note 2 ML1 does not control firearms specially designed for dummy ammunition and which are incapable of firing any controlled ammunition. Note 3 ML1 does not control weapons using non-centre fire cased ammunition and which are not of the fully automatic firing type. EST1. Telescopic sights for goods specified in ML1 and EST2, other than those specified in entries ML5.
    [Show full text]
  • Adsorption of Sarin and Chlorosarin Onto the Al12n12 and Al12p12 Nanoclusters: DFT and TDDFT Calculations
    Received: 26 March 2020 Revised: 29 May 2020 Accepted: 24 June 2020 DOI: 10.1002/sia.6861 RESEARCH ARTICLE Adsorption of sarin and chlorosarin onto the Al12N12 and Al12P12 nanoclusters: DFT and TDDFT calculations Sima Sedighi1 | Mohammad T. Baei2 | Masoud Javan3 | Joshua Charles Ince4 | Alireza Soltani1 | Mohammad Hassan Jokar1 | Samaneh Tavassoli1 1Golestan Rheumatology Research Center, Golestan University of Medical Science, This study provides details of the electronic and optical structures and binding ener- Gorgan, Iran gies of sarin (SF) and chlorosarin (SC) with Al–N and Al–P surfaces of Al12N12 and 2Department of Chemistry, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran Al12P12 nanoclusters in the gas phase. The adsorption mechanism of SF and SC on 3+ 3Department of Physics, Faculty of Sciences, these nanoclusters containing the Al central cation was studied. Optimized geome- Golestan University, Gorgan, Iran tries and thermodynamic parameters of SF and SC adsorption complexes were calcu- 4Department of Chemistry and Biotechnology, lated. SF and SC are chemisorbed on these nanoclusters because of the formation of Swinburne University of Technology, Hawthorn, VIC, Australia P OÁÁÁAl bonds. The chemical bond is formed between an oxygen atom of SF and SC and an aluminum atom of fullerene-likes (chemisorption). However, the binding ener- Correspondence Alireza Soltani and Mohammad Hassan Jokar, gies of the complexes with the Al12N12 nanocluster are larger than these values for Golestan Rheumatology Research Center, the Al P nanocluster. The interaction enthalpy and Gibbs free energy of all studied Golestan University of Medical Science, 12 12 Gorgan, Iran. systems were found to be negative. We can conclude that SF and SC will be Email: [email protected]; adsorbed preferably on Al N nanocluster.
    [Show full text]
  • UAH Chemical Hygiene Plan
    UAH CHEMICAL HYGIENE Effective Date: Feb. 2014 PLAN The Campus Chemical Hygiene Plan (Campus CHP) was developed to ensure the safety of laboratory employees and maintain compliance with the OSHA Laboratory Standard. In addition to OSHA regulations, this document also presents key information on the practices and procedures that must be implemented to maintain compliance with other state, federal, and local regulations required for the use and storage of hazardous chemicals. Prepared by: The Office of Environmental Health & Safety Contents 1. Introduction .............................................................................................................................. 1 1.1 Purpose .................................................................................................................................................. 1 1.2 Background on Regulatory Compliance .................................................................................... 1 1.3 Chemical Hygiene Plan Overview ................................................................................................. 2 1.4 Scope and Applicability .................................................................................................................... 3 1.5 Implementation of the Plan ............................................................................................................ 4 1.6 Availability of the Plan ..................................................................................................................... 4 1.7 Annual
    [Show full text]