Implementation Guide for Responsible Care Security Code Of

Total Page:16

File Type:pdf, Size:1020Kb

Implementation Guide for Responsible Care Security Code Of Implementation Guide for Responsible Care® Security Code of Management Practices Site Security & Verification American Chemistry Council July 2002 This guide necessarily addresses problems of a general nature. Local, state, and federal laws and regulations should be reviewed with respect to particular circumstances. In publishing this work, the American Chemistry Council is not undertaking to meet the duties of employers, manufacturers, or suppliers to warn and properly train and equip their employees, and others exposed, concerning health and safety risks and precautions, in compliance with local, state, or federal laws. Information concerning security, safety, and health risks and proper precautions with respect to particular materials and conditions should be obtained from the employer, the manufacturer or supplier of that material, or the material safety data sheet. This Guide provides sample strategies and resources to assist companies in the implementation of the Responsible Care® Security Code of Management Practices. The sample strategies and implementation resources are intended solely to stimulate thinking and offer helpful ideas on code implementation. They are in no way intended to establish a standard, legal obligation, or preferred option for any practice. Other approaches not described here may be just as effective or even more effective for a particular company. If a company so chooses, it may adopt any of these sample strategies or may modify them to fit the company’s unique situation. Nothing contained in this publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by let- ters patent. Neither should anything contained in the publication be construed as insuring any- one against liability for infringement of letters patent. The American Chemistry Council and its employees, subcontractors, consultants, and other as- signs make no warranty or representation, either express or implied, with respect to the accuracy, completeness, or utility of the information contained herein, or assume any liability or responsi- bility for any use, or the results of such use, of any information or process disclosed in this publi- cation, or represent that its use would not infringe upon privately owned rights. Copyright © 2002 American Chemistry Council This guide was produced with the assistance of Ohlhausen Research, Inc. Peter E. Ohlhausen, President. (703) 978-7549. [email protected]. www.ohlhausen.com. Implementation Guide for Responsible Care® Security Code of Management Practices Contents I. Introduction ..................................................................... 1 II. ACC Security Code of Management Practices ............ 4 III. Implementing the Code in Your Company .................. 7 IV. Management Practices ............................................... 10 1. Leadership Commitment...........................................................11 2. Analysis of Threats, Vulnerabilities, and Consequences ....13 3. Implementation of Security Measures.....................................18 4. Information and Cyber Security ...............................................21 5. Documentation............................................................................23 6. Training, Drills, and Guidance ..................................................26 7. Communications, Dialogue, and Information Exchange ......29 8. Response to Security Threats ..................................................33 9. Response to Security Incidents ...............................................36 10. Audits .........................................................................................39 11. Third-Party Verification ...........................................................42 12. Management of Change ..........................................................46 13. Continuous Improvem ent........................................................50 V. References .................................................................. 52 VI. Implementation Resources ........................................ 54 1. Leadership Commitment...........................................................55 2. Analysis of Threats, Vulnerabilities, and Consequences ....59 3. Implementation of Security Measures...................................134 4. Information and Cyber Security .............................................172 5. Documentation..........................................................................177 6. Training, Drills, and Guidance ................................................191 Implementation Guide for Responsible Care® Security Code of Management Practices 7. Communications, Dialogue, and Information Exchange ....203 8. Response to Security Threats ................................................221 9. Response to Security Incidents .............................................242 10. Audits .......................................................................................256 11. Third-Party Verification .........................................................286 12. Management of Change ........................................................287 13. Continuous Improvement......................................................298 Implementation Guide for Responsible Care® Security Code of Management Practices I. Introduction The terrorist attacks of September 11, 2001, forever changed the way Americans live and work. The chemical industry—like every other American industry—is reassessing and enhancing its security measures in the wake of these attacks. We realize that these unprecedented circum- stances call for nothing less than the best from our industry—to increase our level of prepared- ness and solidify our partnerships with law enforcement and security agencies. In the wake of terrorist attacks against our way of life, chemistry has played an essential role in our nation’s first line of defense against terrorism. From the disinfectants and antibiotics used to protect against potential biological warfare agents, to the bulletproof and flame-resistant fibers used to make the helmets and flak jackets that protect our troops in the field and our firefighters at home, to the microprocessors that give the technological intelligence edge to our security forces here and abroad, chemistry is a vital part of our military and public safety operations. As a backbone industry, the business of chemistry has a rich history of providing products that are essential to America’s economy, our way of life, and our national security needs. In the wake of the new security challenges, the industry is committed to doing its part to help protect these values. Our objective is to help ensure the protection of chemical facilities so we can con- tinue—safely—to provide essential, life-saving products, to play a key role in revitalizing the nation’s economy, and to secure the protection of our employees and neighbors. Attention to security is a natural corollary to the chemical industry’s safety culture. By reducing the risk of a wide range of threats and mitigating the effects of such incidents as terrorism, van- dalism, sabotage, and workplace violence, security measures can serve the goals of process safety management, risk management, and Responsible Care®. Security efforts, like safety ef- forts, protect the community and company employees while keeping a chemical plant operational and profitable. The purpose of the Security Code of Management Practices is to help protect people, property, products, processes, information, and information systems by enhancing security throughout the chemical industry value chain. The Code is designed to help companies achieve continuous im- provement in security performance using a risk-based approach to identify, assess, and address vulnerabilities, prevent or mitigate incidents, enhance training and response capabilities, and maintain and improve relationships with key stakeholders. The Code must be implemented with the understanding that security is a shared responsibility requiring actions by others such as cus- tomers, suppliers, service providers, and government agencies. Everyone in the chemical indus- try value chain has security responsibilities and must act accordingly to protect the public inter- est. Implementation of the Security Code helps achieve several of the Responsible Care® Guiding Principles: · To seek and incorporate public input regarding our products and operations. · To make health, safety, the environment, and resource conservation critical considerations for all new and existing products and processes. Implementation Guide for Responsible Care® Security Code of Management Practices 1 · To work with customers, carriers, suppliers, distributors, and contractors to foster the safe use, transport, and disposal of chemicals. · To operate our facilities in a manner that protects the environment and the health and safety of our employees and the public. · To lead in the development of responsible laws, regulations, and standards that safeguard the community, workplace, and environment. · To practice Responsible Care® by encouraging and assisting others to adhere to these principles and practices. The Security Code complements, and should be implemented in conjunction with, other man- agement practices that demonstrate the industry’s commitment to protecting its employees and society. Existing management practices that enhance community awareness and emergency pre-
Recommended publications
  • "The Science for Diplomats" Annex on Chemicals
    ORGANISATION FOR THE PROHIBITION OF CHEMICAL WEAPONS "THE SCIENCE FOR DIPLOMATS" ANNEX ON CHEMICALS A user friendly and scientifically annotated version of the Chemical Weapons Convention Annex on Chemicals OPCW THE “SCIENCE FOR DIPLOMATS” ANNEX ON CHEMICALS A user friendly and scientifically annotated version of the Chemical Weapons Convention Annex on Chemicals1 CONTENTS A. GUIDELINES FOR SCHEDULES OF CHEMICALS B. VISUALISING AND READING MOLECULAR STRUCTURES C. SCHEDULES OF CHEMICALS D. RIOT CONTROL AGENTS 1 An official version of the Annex on Chemicals can be obtained from the OPCW public website, www.opcw.org/chemical-weapons-convention/annexes/annex-chemicals/annex-chemicals. Version 3.0 – 10 March 2019 A. GUIDELINES FOR SCHEDULES OF CHEMICALS Guidelines for Schedule 1 1. The following criteria shall be taken into account in considering whether a toxic chemical or precursor should be included in Schedule 1: (a) It has been developed, produced, stockpiled or used as a chemical weapon as defined in Article II; (b) It poses otherwise a high risk to the object and purpose of this Convention by virtue of its high potential for use in activities prohibited under this Convention because one or more of the following conditions are met: (i) It possesses a chemical structure closely related to that of other toxic chemicals listed in Schedule 1, and has, or can be expected to have, comparable properties; (ii) It possesses such lethal or incapacitating toxicity as well as other properties that would enable it to be used as a chemical weapon; (iii) It may be used as a precursor in the final single technological stage of production of a toxic chemical listed in Schedule 1, regardless of whether this stage takes place in facilities, in munitions or elsewhere; (c) It has little or no use for purposes not prohibited under this Convention.
    [Show full text]
  • Pacs by Chemical Name (Mg/M3) (Pdf)
    Table 4: Protective Action Criteria (PAC) Rev 25 based on applicable 60-minute AEGLs, ERPGs, or TEELs. Values are presented in mg/m3. August 2009 Table 4 is an alphabetical listing of the chemicals in the PAC data set. It provides Chemical Abstract Service Registry Numbers (CASRNs)1, PAC values, and technical information on the source of the PAC values. Table 4 presents all values for TEEL-0, PAC-1, PAC-2, and PAC-3 in mg/m3. The conversion of ppm to mg/m3 is calculated assuming 25 ºC and 760 mm Hg. The columns presented in Table 4 provide the following information: Heading Definition No. The ordered numbering of the chemicals as they appear in this alphabetical listing. Chemical Name The chemical name given to the PAC Development Team. CASRN The Chemical Abstract Service Registry Number for this chemical. TEEL-0 This is the threshold concentration below which most people will experience no adverse health effects. This PAC is always based on TEEL-0 because AEGL-0 or ERPG-0 values do not exist. PAC-1 Based on the applicable AEGL-1, ERPG-1, or TEEL-1 value. PAC-2 Based on the applicable AEGL-2, ERPG-2, or TEEL-2 value. PAC-3 Based on the applicable AEGL-3, ERPG-3, or TEEL-3 value. Source of PACs: Technical comments provided by the PAC development team that TEEL-0, PAC-1, indicate the source of the data used to derive PAC values. Future efforts PAC-2, PAC-3 are directed at reviewing, revising, and enhancing this information.
    [Show full text]
  • 459 Part 121—The United States Munitions List
    Department of State § 121.1 (h) Equipment is a combination of 121.1 The United States Munitions List. parts, components, accessories, attach- 121.2–121.15 [Reserved] ments, firmware, or software that oper- 121.16 Missile Technology Control Regime ate together to perform a function of, Annex. as, or for an end-item or system. AUTHORITY: Secs. 2, 38, and 71, Pub. L. 90– Equipment may be a subset of an end- 629, 90 Stat. 744 (22 U.S.C. 2752, 2778, 2797); 22 item based on the characteristics of U.S.C. 2651a; Pub. L. 105–261, 112 Stat. 1920; Section 1261, Pub. L. 112–239; E.O. 13637, 78 FR the equipment. Equipment that meets 16129. the definition of an end-item is an end- item. Equipment that does not meet SOURCE: 58 FR 39287, July 22, 1993, unless the definition of an end-item is a com- otherwise noted. ponent, accessory, attachment, ENUMERATION OF ARTICLES firmware, or software. [79 FR 61228, Oct. 10, 2014] § 121.1 The United States Munitions List. § 120.46 Classified. (a) U.S. Munitions List. In this part, Classified means classified pursuant articles, services, and related technical to Executive Order 13526, and a secu- data are designated as defense articles rity classification guide developed pur- or defense services pursuant to sections suant thereto or equivalent, or to the 38 and 47(7) of the Arms Export Control corresponding classification rules of Act and constitute the U.S. Munitions another government or international List (USML). Changes in designations organization. are published in the FEDERAL REG- ISTER.
    [Show full text]
  • ITAR Category
    Category XIV—Toxicological Agents, Including Chemical Agents, Biological Agents, and Associated Equipment *(a) Chemical agents, to include: (1) Nerve agents: (i) O-Alkyl (equal to or less than C10, including cycloalkyl) alkyl (Methyl, Ethyl, n-Propyl or Isopropyl)phosphonofluoridates, such as: Sarin (GB): O-Isopropyl methylphosphonofluoridate (CAS 107–44–8) (CWC Schedule 1A); and Soman (GD): O-Pinacolyl methylphosphonofluoridate (CAS 96–64–0) (CWC Schedule 1A); (ii) O-Alkyl (equal to or less than C10, including cycloalkyl) N,N-dialkyl (Methyl, Ethyl, n- Propyl or Isopropyl)phosphoramidocyanidates, such as: Tabun (GA): O-Ethyl N, N- dimethylphosphoramidocyanidate (CAS 77–81–6) (CWC Schedule 1A); (iii) O-Alkyl (H or equal to or less than C10, including cycloalkyl) S–2-dialkyl (Methyl, Ethyl, n- Propyl or Isopropyl)aminoethyl alkyl (Methyl, Ethyl, n-Propyl or Isopropyl)phosphonothiolates and corresponding alkylated and protonated salts, such as: VX: O-Ethyl S-2- diisopropylaminoethyl methyl phosphonothiolate (CAS 50782–69–9) (CWC Schedule 1A); (2) Amiton: O,O-Diethyl S-[2(diethylamino)ethyl] phosphorothiolate and corresponding alkylated or protonated salts (CAS 78–53–5) (CWC Schedule 2A); (3) Vesicant agents: (i) Sulfur mustards, such as: 2-Chloroethylchloromethylsulfide (CAS 2625–76–5) (CWC Schedule 1A); Bis(2-chloroethyl)sulfide (CAS 505–60–2) (CWC Schedule 1A); Bis(2- chloroethylthio)methane (CAS 63839–13–6) (CWC Schedule 1A); 1,2-bis (2- chloroethylthio)ethane (CAS 3563–36–8) (CWC Schedule 1A); 1,3-bis (2-chloroethylthio)-n- propane (CAS
    [Show full text]
  • Acetylcholinesterase: the “Hub” for Neurodegenerative Diseases And
    Review biomolecules Acetylcholinesterase: The “Hub” for NeurodegenerativeReview Diseases and Chemical Weapons Acetylcholinesterase: The “Hub” for Convention Neurodegenerative Diseases and Chemical WeaponsSamir F. de A. Cavalcante Convention 1,2,3,*, Alessandro B. C. Simas 2,*, Marcos C. Barcellos 1, Victor G. M. de Oliveira 1, Roberto B. Sousa 1, Paulo A. de M. Cabral 1 and Kamil Kuča 3,*and Tanos C. C. França 3,4,* Samir F. de A. Cavalcante 1,2,3,* , Alessandro B. C. Simas 2,*, Marcos C. Barcellos 1, Victor1 Institute G. M. ofde Chemical, Oliveira Biological,1, Roberto Radiological B. Sousa and1, Paulo Nuclear A. Defense de M. Cabral (IDQBRN),1, Kamil Brazilian Kuˇca Army3,* and TanosTechnological C. C. França Center3,4,* (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; [email protected] (M.C.B.); [email protected] (V.G.M.d.O.); [email protected] 1 Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army (R.B.S.); [email protected] (P.A.d.M.C.) Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; 2 [email protected] Mors Institute of Research (M.C.B.); on Natural [email protected] Products (IPPN), Federal (V.G.M.d.O.); University of Rio de Janeiro (UFRJ), CCS,[email protected] Bloco H, Rio de Janeiro (R.B.S.); 21941-902, [email protected] Brazil (P.A.d.M.C.) 32 DepartmentWalter Mors of Institute Chemistry, of Research Faculty of on Science, Natural Un Productsiversity (IPPN),
    [Show full text]
  • Chemical Weapons Convention Inventory Report - 2017
    University of British Columbia Risk Management Services CHEMICAL WEAPONS CONVENTION INVENTORY REPORT - 2017 Department: Name of Building: Room No. Principal Investigator: SCHEDULE 1 CHEMICALS Location Quantity Obtained /Stored / Used A.Toxic Chemicals 1 O-Alkyl (<=C10, incl. cycloalkyl) alkyl (Me, Et, n-Pr or i-Pr) – phosphonofluoridates, Sarin: O-Isopropyl methylphosphonofluoridate (CAS 107-44-8) Soman: O-Pinacolyl methylphosphonofluoridate (CAS 96-64-0) 2 O-Alkyl (H or <=C10, incl. cycloalkyl) S-2-dialkyl (Me, Et, n- Pr or i-Pr) -aminoethyl alkyl (Me, Et, n-Pr or i-Pr) phosphonothiolates, and corresponding alkylated or protonated salts VX: O-Ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate (CAS 50782-69-9) 3 O-Alkyl (H or <=C10, incl. cycloalkyl) S-2-dialkyl (Me, Et, n- Pr or i-Pr) -aminoethyl alkyl (Me, Et, n-Pr or i-Pr) phosphonothiolates, and corresponding alkylated or protonated salts VX: O-Ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate (CAS 50782-69-9) 4 Sulphur Mustards: 2-Chloroethylchloromethylsulfide (CAS 2625-76-5) Mustard gas: Bis (2-chloroethyl) sulfide (CAS 505-60-2) Bis (2-chloroethylthio)methane (CAS 63869-13-6) Sesquimustard: 1, 2-Bis (2-chloroethylthio) ethane (CAS 3563-36-8) 1, 3-Bis (2-chloroethylthio) -n-propane (CAS 63905-10-2) 1, 4-Bis (2-chloroethylthio) -n-butane (CAS 142868-93-7) 1, 5-Bis (2-chloroethylthio) -n-pentane (CAS 142868-94-8) Bis (2-chloroethylthiomethyl) ether (CAS 63918-90-1) O-Mustard: Bis (2-chloroethylthioethyl) ether (CAS 63918-89-8) 5 Lewisites: Lewisite 1: 2-Chlorovinyldichloroarsine (CAS 541-25-3) Lewisite 2: Bis (2-chlorovinyl) chloroarsine (CAS 40334-69-8) Lewisite 3: Tris (2-chlorovinyl) arsine (CAS 40334-70-1) 6 Nitrogen Mustards: HN1: Bis (2-chloroethyl) ethylamine (CAS 538-07-08) HN2: Bis (2-chloroethyl) methylamine (CAS 51-75-2) HN3: Tris (2-chloroethyl) amine (CAS 555-77-1) University of British Columbia Risk Management Services CHEMICAL WEAPONS CONVENTION INVENTORY REPORT - 2017 Department: Name of Building: Room No.
    [Show full text]
  • CSAT Top-Screen Questions OMB PRA # 1670-0007 Expires: 5/31/2011
    CSAT Top-Screen Questions January 2009 Version 2.8 CSAT Top-Screen Questions OMB PRA # 1670-0007 Expires: 5/31/2011 Change Log .........................................................................................................3 CVI Authorizing Statements...............................................................................4 General ................................................................................................................6 Facility Description.................................................................................................................... 7 Facility Regulatory Mandates ................................................................................................... 7 EPA RMP Facility Identifier....................................................................................................... 9 Refinery Capacity....................................................................................................................... 9 Refinery Market Share ............................................................................................................. 10 Airport Fuels Supplier ............................................................................................................. 11 Military Installation Supplier................................................................................................... 11 Liquefied Natural Gas (LNG) Capacity................................................................................... 12 Liquefied Natural Gas Exclusion
    [Show full text]
  • Chemical Weapons Technology Section 4—Chemical Weapons Technology
    SECTION IV CHEMICAL WEAPONS TECHNOLOGY SECTION 4—CHEMICAL WEAPONS TECHNOLOGY Scope Highlights 4.1 Chemical Material Production ........................................................II-4-8 4.2 Dissemination, Dispersion, and Weapons Testing ..........................II-4-22 • Chemical weapons (CW) are relatively inexpensive to produce. 4.3 Detection, Warning, and Identification...........................................II-4-27 • CW can affect opposing forces without damaging infrastructure. 4.4 Chemical Defense Systems ............................................................II-4-34 • CW can be psychologically devastating. • Blister agents create casualties requiring attention and inhibiting BACKGROUND force efficiency. • Defensive measures can be taken to negate the effect of CW. Chemical weapons are defined as weapons using the toxic properties of chemi- • Donning of protective gear reduces combat efficiency of troops. cal substances rather than their explosive properties to produce physical or physiologi- • Key to employment is dissemination and dispersion of agents. cal effects on an enemy. Although instances of what might be styled as chemical weapons date to antiquity, much of the lore of chemical weapons as viewed today has • CW are highly susceptible to environmental effects (temperature, its origins in World War I. During that conflict “gas” (actually an aerosol or vapor) winds). was used effectively on numerous occasions by both sides to alter the outcome of • Offensive use of CW complicates command and control and battles. A significant number of battlefield casualties were sustained. The Geneva logistics problems. Protocol, prohibiting use of chemical weapons in warfare, was signed in 1925. Sev- eral nations, the United States included, signed with a reservation forswearing only the first use of the weapons and reserved the right to retaliate in kind if chemical weapons were used against them.
    [Show full text]
  • Synthesis of Nerve Agent- and Pesticide-Protein Bioadducts As Reference Materials for Retrospective Verification of Exposure
    University of Fribourg / Faculty of Science and Medicine / Department of Chemistry Synthesis of Nerve Agent- and Pesticide-Protein Bioadducts as Reference Materials for Retrospective Verification of Exposure Andreas Bielmann Cholinesterase inhibiting organophosphorus compounds are highly toxic and are used as pesticides or nerve agents. As most chemical warfare agents, nerve agents are prohibited by the Chemical Weapons Convention. To enforce the Convention, the Organisation for the Prohibition of Chemical Weapons maintains a network of laboratories, which are designated to analyse samples after alleged incidents involving chemical warfare agents. The gold standard for the retrospective verification of exposure to nerve agents in biomedical samples is the LC-MS analysis of a specific nonapeptide with the sequence FGES*AGAAS obtained after pepsin digestion of butyrylcholinesterase. Organophosphorus inhibitors will leave a specific marker on the serine indicated by *. Reference materials for this analysis are often produced by spiking of blood with agents. However, this method only gives reference peptides of inadequate purity. For the development of analytical methods and for quantitative analysis highly pure synthetic peptides are required. In this work, the synthesis of phosphylated peptides via a building block approach was investigated. Synthesis protocols were established and the limitations of the method were investigated. Phosphylated amino acid precursors and the resulting peptides have some intrinsic labilities, therefore an optimized SPPS protocol was developed to overcome them. Using this protocol, two pathways to synthesize the aged-nonapeptide adduct were investigated and compared. Further, the bioadducts of the nerve agents sarin, cyclosarin, VX, CVX and RVX, as well as the methyl methylphosphono- and isopropyl isopropylphosphono nonapeptides were synthesized to determine the scope of the method.
    [Show full text]
  • EST1. Telescopic Sights for Goods Specified in ML1 and EST2, Other Than Those Specified in Entries ML5
    List of Military Goods Entered into force 1 May 2004 ML1 Smooth-bore weapons with a calibre of less than 20 mm, other arms and automatic weapons with a calibre of 12,7 mm (calibre 0,50 inches) or less and accessories, as follows, and specially designed components therefor: a. Rifles, carbines, revolvers, pistols, machine pistols and machine guns: Note ML1.a. does not control the following: 1. Muskets, rifles and carbines manufactured earlier than 1938; 2. Reproductions of muskets, rifles and carbines the originals of which were manufactured earlier than 1890; 3. Revolvers, pistols and machine guns manufactured earlier than 1890, and their reproductions; b. Smooth-bore weapons, as follows: 1. Smooth-bore weapons specially designed for military use; 2. Other smooth-bore weapons, as follows: a. Of the fully automatic type; b. Of the semi-automatic or pump-action type; c. Weapons using caseless ammunition; d. Silencers, special gun-mountings, clips, weapons sights and flash suppressers for arms controlled by sub-items ML1.a., ML1.b. or ML1.c.. Note 1 ML1 does not control smooth-bore weapons used for hunting or sporting purposes. These weapons must not be specially designed for military use or of the fully automatic firing type. Note 2 ML1 does not control firearms specially designed for dummy ammunition and which are incapable of firing any controlled ammunition. Note 3 ML1 does not control weapons using non-centre fire cased ammunition and which are not of the fully automatic firing type. EST1. Telescopic sights for goods specified in ML1 and EST2, other than those specified in entries ML5.
    [Show full text]
  • Adsorption of Sarin and Chlorosarin Onto the Al12n12 and Al12p12 Nanoclusters: DFT and TDDFT Calculations
    Received: 26 March 2020 Revised: 29 May 2020 Accepted: 24 June 2020 DOI: 10.1002/sia.6861 RESEARCH ARTICLE Adsorption of sarin and chlorosarin onto the Al12N12 and Al12P12 nanoclusters: DFT and TDDFT calculations Sima Sedighi1 | Mohammad T. Baei2 | Masoud Javan3 | Joshua Charles Ince4 | Alireza Soltani1 | Mohammad Hassan Jokar1 | Samaneh Tavassoli1 1Golestan Rheumatology Research Center, Golestan University of Medical Science, This study provides details of the electronic and optical structures and binding ener- Gorgan, Iran gies of sarin (SF) and chlorosarin (SC) with Al–N and Al–P surfaces of Al12N12 and 2Department of Chemistry, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran Al12P12 nanoclusters in the gas phase. The adsorption mechanism of SF and SC on 3+ 3Department of Physics, Faculty of Sciences, these nanoclusters containing the Al central cation was studied. Optimized geome- Golestan University, Gorgan, Iran tries and thermodynamic parameters of SF and SC adsorption complexes were calcu- 4Department of Chemistry and Biotechnology, lated. SF and SC are chemisorbed on these nanoclusters because of the formation of Swinburne University of Technology, Hawthorn, VIC, Australia P OÁÁÁAl bonds. The chemical bond is formed between an oxygen atom of SF and SC and an aluminum atom of fullerene-likes (chemisorption). However, the binding ener- Correspondence Alireza Soltani and Mohammad Hassan Jokar, gies of the complexes with the Al12N12 nanocluster are larger than these values for Golestan Rheumatology Research Center, the Al P nanocluster. The interaction enthalpy and Gibbs free energy of all studied Golestan University of Medical Science, 12 12 Gorgan, Iran. systems were found to be negative. We can conclude that SF and SC will be Email: [email protected]; adsorbed preferably on Al N nanocluster.
    [Show full text]
  • UAH Chemical Hygiene Plan
    UAH CHEMICAL HYGIENE Effective Date: Feb. 2014 PLAN The Campus Chemical Hygiene Plan (Campus CHP) was developed to ensure the safety of laboratory employees and maintain compliance with the OSHA Laboratory Standard. In addition to OSHA regulations, this document also presents key information on the practices and procedures that must be implemented to maintain compliance with other state, federal, and local regulations required for the use and storage of hazardous chemicals. Prepared by: The Office of Environmental Health & Safety Contents 1. Introduction .............................................................................................................................. 1 1.1 Purpose .................................................................................................................................................. 1 1.2 Background on Regulatory Compliance .................................................................................... 1 1.3 Chemical Hygiene Plan Overview ................................................................................................. 2 1.4 Scope and Applicability .................................................................................................................... 3 1.5 Implementation of the Plan ............................................................................................................ 4 1.6 Availability of the Plan ..................................................................................................................... 4 1.7 Annual
    [Show full text]