Formal Insertion Reactions of Stannylenes and Germylenes Into Phosphorus-Halogen Bonds: a Structural and Mechanistic Investigation Joseph Kent West

Total Page:16

File Type:pdf, Size:1020Kb

Formal Insertion Reactions of Stannylenes and Germylenes Into Phosphorus-Halogen Bonds: a Structural and Mechanistic Investigation Joseph Kent West University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2012 Formal Insertion Reactions Of Stannylenes And Germylenes Into Phosphorus-Halogen Bonds: A Structural And Mechanistic Investigation Joseph Kent West Follow this and additional works at: https://commons.und.edu/theses Recommended Citation West, Joseph Kent, "Formal Insertion Reactions Of Stannylenes And Germylenes Into Phosphorus-Halogen Bonds: A Structural And Mechanistic Investigation" (2012). Theses and Dissertations. 1327. https://commons.und.edu/theses/1327 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. FORMAL INSERTION REACTIONS OF STANNYLENES AND GERMYLENES INTO PHOSPHORUS–HALOGEN BONDS: A STRUCTURAL AND MECHANISTIC INVESTIGATION by Joseph Kent West Bachelor of Science, Southwestern Oklahoma State University, 2005 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota August 2012 PERMISSION Title Formal Insertion Reactions of Stannylenes and Germylenes into Phosphorus–Halogen Bonds: A Structural and Mechanistic Investigation Department Chemistry Degree Doctor of Philosophy In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work or, in his absence, by the chairperson of the department or dean of the Graduate School. It is understood that any copying or publication or other use of this dissertation or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my dissertation. ________Joseph West___________________ Signature _______August 3, 2012__________________ Date iii TABLE OF CONTENTS LIST OF FIGURES……………………………………………………………………....vi LIST OF TABLES……………………………………………………………………...viii LIST OF CHARTS…………………………………………………………………….....xi LIST OF SCHEMES…………………………………………………………………….xii LIST OF ABBREVIATIONS………………………………………………………….xvii ACKNOWLEDGEMENTS……………………………………………………………..xix ABSTRACT……………………………………………………………………………...xx CHAPTER I. INTRODUCTION………………………………………………………………1 I.1. Metal-based Reduction of P–Cl Bonds……………………………….2 I.2. Insertion of Group 14 Species into E–X Bonds (E = C, Si, and P; X = Cl, Br, and I)…………………………………………………………….15 Insertions into C–X Bonds……………………………………….15 Insertions into Si–X Bonds………………………………………23 Insertions into P–X Bonds……………………………………….25 I.3. Syntheses and Isolation of Stable Phosphenium Ions……………….31 II. RESULTS AND DISCUSSION……………………………………………...35 II.1. Reactions of Stannylenes and Germylenes with Alkyl- and Arylchlorophosphines……………………………………………………35 Insertion reactions of cyclic stannylenes and germylenes……….35 iv Insertion reactions of acyclic stannylenes and germylenes……...58 Reactions with bis(dichlorophosphino)methane………………....72 Reactions with phosphorus trichloride…………………………...79 II.2. Mechanistic Investigations………………………………………….83 Kinetic studies and comparisons of reactions rates……………...83 P-lone pair “occupation” studies…………………………………86 Reactions of amino(chloro)phosphines…………………………101 Steric effects of non-halide substituents on phosphorus………..116 II.3. Mechanistic Hypotheses…………………………………………...121 Proposed insertion mechanisms………………………………...121 Mechanistic hypotheses for the decomposition of insertion products…………………………………………………………132 II.4. Conclusions………………………………………………………..138 III. EXPERIMENTAL………………………………………………………….140 III.1. Starting Materials and General Procedures……………………….140 III.2. Syntheses………………………………………………………….141 III.3. X-ray Crystallography……………………………………………155 REFERENCES……..…………………………………………………………………..156 v LIST OF FIGURES Figure Page 1. Crystal structure of 186 showing the two independent molecules in the unit cell....27 2. Crystal structure of 4………………………………………………………………..36 3. 31P{1H} NMR spectrum of stannylene insertion product 5………………………...39 4. 31P{1H} NMR spectrum of cyclic oligophosphines 6–10 obtained from the breakdown of 5……………………………………………………………………..40 5. Crystal structure of 15……………………………………………………………...41 6. Crystal structure of 17……………………………………………………………...44 7. Crystal structure of 18……………………………………………………………...48 8. 31P{1H} NMR spectrum of 17 and its monoinsertion intermediate………………..51 9. Crystal structure of 20……………………………………………………………...52 10. Crystal structure of 21……………………………………………………………...54 11. Crystal structure of 26……………………………………………………………...60 12. Crystal structure of 27……………………………………………………………...64 13. Crystal structure of 29……………………………………………………………...69 14. 31P{1H} NMR spectrum of tri-tert-butylcyclotriphosphine 31…………………….71 15. 31P{1H} NMR spectrum for reaction mixture of stannylene 23 with chlorophosphine 19 displaying three separate, yet similar, products………………72 16. Crystal structure of 33………………………………………………………….......74 17. 31P{1H} NMR spectrum of reaction mixture from Scheme 51…………………….77 18. Crystal structure of 44……………………………………………………………...81 vi 19. Kinetics data for addition of carbenoids 2, 22, and 23 to tBu(Ph)PCl 45………….86 20. Crystal structure of 49……………………………………………………………...87 21. Crystal structure of 50……………………………………………………………...90 22. Crystal structure of 53……………………………………………………………...94 23. Crystal structure of 54……………………………………………………………...97 24. Crystal structure of 60…………………………………………………………….102 25. Crystal structure of 62…………………………………………………………….106 26. Crystal structure of 65…………………………………………………………….110 27. Crystal structure of 66…………………………………………………………….113 28. 31P{1H} NMR spectrum of the reaction mixture containing cyclic stannylene 2 and dichlorophenylphosphine 3 (see Scheme 43 for reaction)..………………………118 vii LIST OF TABLES Table Page 1. Isolated diphosphene-bridged compounds and yields from Scheme 6……………...7 2. Isolated phosphinidene-bridged compounds and yields from Scheme 6……………8 3. Yields of diphenylphosphine 47 obtained from the metal reduction of chlorodiphenylphosphine 46 with reaction conditions………………………………..10 4. Isolated phosphanediide salts from Scheme 12……………………………………13 5. Kinetic data for reaction of stannylene 79 with organic halides 74, and 80–93…...17 6. Crystal data for compound 4……………………………………………………….37 7. Selected bond lengths and angles for compound 4………………………………...38 8. Crystal data for compound 15……………………………………………………...42 9. Selected bond lengths and angles for compound 15……………………………….43 10. Crystal data for compound 17……………………………………………………...46 11. Selected bond lengths and angles for compound 17……………………………….47 12. Crystal data for compound 18……………………………………………………...49 13. Selected bond lengths and angles for one of two independent molecules in the unit cell of compound 18…………………………………………………………….50 14. Crystal data for compound 20……………………………………………………...53 15. Selected bond lengths and angles for compound 20……………………………….54 16. Crystal data for compound 21……………………………………………………...56 17. Selected bond lengths and angles for compound 21……………………………….57 18. Crystal data for compound 26……………………………………………………...62 viii 19. Selected bond lengths and angles for compound 26……………………………….63 20. Crystal data for compound 27……………………………………………………...66 21. Selected bond lengths and angles for compound 27……………………………….67 22. Crystal data for compound 29……………………………………………………...70 23. Selected bond lengths and angles for compound 29……………………………….71 24. Crystal data for compound 33……………………………………………………...75 25. Selected bond lengths and angles for compound 33……………………………….76 26. Crystal data for compound 44……………………………………………………...82 27. Selected bond lengths and angles for compound 44……………………………….83 28. Approximate completion times for insertion reactions…………………………….85 29. Crystal data for compound 49……………………………………………………...88 30. Selected bond lengths and angles for compound 49……………………………….89 31. Comparison of Pd–P and Pd–Cl bond lengths for various trans bis(phosphine)palladium dichloride complexes…………………………………89 32. Crystal data for compound 50……………………………………………………...91 33. Selected bond lengths and angles for compound 50……………………………….92 34. Crystal data for compound 53……………………………………………………...95 35. Selected bond lengths and angles for compound 53……………………………….96 36. Crystal data for compound 54……………………………………………………...98 37. Selected bond lengths and angles for compound 54……………………………….99 38. Crystal data for compound 60…………………………………………………….103 39. Selected bond lengths and angles for compound 60……………………………...104 40. Crystal data for compound 62…………………………………………………….107 41. Selected bond lengths and angles for compound 62……………………………...108 ix 42. Crystal data for compound 65…………………………………………………….111 43. Selected bond lengths and angles for compound 65……………………………...112 44. Crystal data for compound 66…………………………………………………….114 45. Selected bond lengths and angles for compound 65……………………………...115 46. Summary of relative completion times of stannylene 2 with monochlorophosphines…………………………………………………………...123 x LIST OF CHARTS Chart Page 1. Proposed
Recommended publications
  • The Synthesis of 1,2-Azaphospholes, 1,2-Azaphosphorines and 1,2-Azaphosphepines
    The Free Internet Journal Review for Organic Chemistry Archive for Arkivoc 2020, i, 472-498 Organic Chemistry The synthesis of 1,2-azaphospholes, 1,2-azaphosphorines and 1,2-azaphosphepines Noha M. Hassanin,a Tarik E. Ali,b,a* Mohammed A. Assiri,b Hafez M. Elshaaer,a and Somaia M. Abdel-Kariema a Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt b Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia Email: [email protected], [email protected] Received 06-28-2020 Accepted 08-26-2020 Published online 10-22-2020 Abstract 1,2-Azaphospholes, 1,2-azaphosphorines and 1,2-azaphosphepines are prominent phosphorus heterocycles and are of interest due to their potent pharmacological activities. In this review, we provide the available literature data on the synthesis of 1,2-azaphospholes, 1,2-azaphosphorines and 1,2-azaphosphepines. Keywords: 1,2-azaphospholes, 1,2-azaphosphorines, 1,2-azaphosphepines, phosphorus heterocycles DOI: https://doi.org/10.24820/ark.5550190.p011.280 Page 472 ©AUTHOR(S) Arkivoc 2020, i, 472-498 Hassanin, N. M. et al. Table of Contents 1. Introduction 2. Synthetic Methods for Functionalized 1,2-Azaphosphole Derivatives 2.1 Cyclization of ethyl N-methyl-3-bromopropylphosphonamidate with NaH 2.2 Cyclization of -aminophosphorus compounds with bases 2.3 Reaction of methyleneaminophosphanes with activated alkenes and alkynes 2.4 Cyclization of 2-[2-(t-butylimino)cyclohexyl]acetonitrile with PCl3 2.5 Cyclization of 2-imino-2H-chromene-3-carboxamide
    [Show full text]
  • Synthesis of C2-Symmetric P-Chiral Bis(Phosphine Borane)
    Synthesis of C2-symmetric P-chiral bis(phosphine borane)s and their application in rhodium(I) catalyzed asymmetric transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University © Copyright by Holly Ann Heath (2001) Abstract: A new development for the synthesis C2-Synnnetric P-Chiral Bis(phosphine borane) ligands is reported, These ligands are based on the asymmetric induction of prochiral phosphine ligands with organolithium/chiral diamine complexes. These ligands have been evaluated in asymmetric rhodium(I) catalyzed hydrogenation and [4 + 2] cycloisomerization reactions. Enantiomeric excesses as high as 99% were obtained for ene-diene cycloadditions. Synthesis of C2-Symmetric P-Chiral Bis(phosphine borane)s and Their Application in Rhodium(I) Catalyzed Asymmetric Transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University Bozeman, Montana March 2001 ii APPROVAL of a dissertation submitted by Holly Ann Heath This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. Dr. Thomas Livinghouse < Chairperson, Graduate Committee Date Approved for the Department of Chemistry Dr. Paul A. Grieco Department Head Approved for the College of Graduate Studies Dr. Bruce R. McLeod Graduate Dean Date iii STATEMENT OF PERMISSION TO USE In presenting this dissertation .in partial fulfillment of the requirements for a doctoral degree at Montana State University-Bozeman, I agree that the Library shall make it available to borrowers under rules of the Library.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec
    United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec. 26, 1989 (54) PROCESS FOR THE PREPARATION OF Kosolapoff, G. M. et al. Organic Phosphorus Compounds AROMATIC PHOSPHORUS-CHLORNE (1973) vol. 4 at p. 95. Wiley-Interscience, Publ. COMPOUNDS Kosolapoff, Gennady M. Organophosphorus Com 75 Inventor: Hans-Jerg Kleiner, pounds (1958), John Wiley & Sons, Publ. pp. 59-60. Kronberg/Taunus, Fed. Rep. of Primary Examiner-Paul J. Killos Germany Attorney, Agent, or Firm-Curtis, Morris & Safford 73) Assignee: Hoechst Aktiengesellschaft, 57 ABSTRACT Frankfurt am Main, Fed. Rep. of Aromatic phosphorus-chlorine compounds, especially Germany diphenylphosphinyl chloride (C6H5)2P(O)Cl, phenyl phosphonyl dichloride C6HsP(O)Cl2, dichlorophenyl 21 Appl. No.: 554,591 phosphine C6HsPCl2 and chlorodiphenylphosphine (C6H5)2PCl, and the corresponding sulfur analogs, are 22 Filed: Nov. 23, 1983 obtained by reaction of aromatic phosphorus com 30 Foreign Application Priority Data pounds, which contain oxygen or sulfur, of the formula I Nov. 27, 1982 DE Fed. Rep. of Germany ....... 324.4031 511 Int, C.'................................................ CO7C 5/02 52 U.S. C. .................................... 562/815; 562/818; 562/819 58) Field of Search ..................................... 260/543 P in which X=O or S, and m= 1, 2 or 3, with phosphorus 56) References Cited chlorine compounds of the formula II U.S. PATENT DOCUMENTS (C6H5)3P Cln (II) 3,244,745 4/1966 Toy et al. ........................ 260/543 P FOREIGN PATENT DOCUMENTS in which n=1, 2 or 3, at temperatures between about 0093420 4/1983 European Pat. Off. 330 and 700° C. Preferred starting materials are tri phenylphosphine oxide (C6H5)3PO and phosphorus OTHER PUBLICATIONS trichloride PCl3.
    [Show full text]
  • Standard Thermodynamic Properties of Chemical
    STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES ∆ ° –1 ∆ ° –1 ° –1 –1 –1 –1 Molecular fH /kJ mol fG /kJ mol S /J mol K Cp/J mol K formula Name Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Ac Actinium 0.0 406.0 366.0 56.5 188.1 27.2 20.8 Ag Silver 0.0 284.9 246.0 42.6 173.0 25.4 20.8 AgBr Silver(I) bromide -100.4 -96.9 107.1 52.4 AgBrO3 Silver(I) bromate -10.5 71.3 151.9 AgCl Silver(I) chloride -127.0 -109.8 96.3 50.8 AgClO3 Silver(I) chlorate -30.3 64.5 142.0 AgClO4 Silver(I) perchlorate -31.1 AgF Silver(I) fluoride -204.6 AgF2 Silver(II) fluoride -360.0 AgI Silver(I) iodide -61.8 -66.2 115.5 56.8 AgIO3 Silver(I) iodate -171.1 -93.7 149.4 102.9 AgNO3 Silver(I) nitrate -124.4 -33.4 140.9 93.1 Ag2 Disilver 410.0 358.8 257.1 37.0 Ag2CrO4 Silver(I) chromate -731.7 -641.8 217.6 142.3 Ag2O Silver(I) oxide -31.1 -11.2 121.3 65.9 Ag2O2 Silver(II) oxide -24.3 27.6 117.0 88.0 Ag2O3 Silver(III) oxide 33.9 121.4 100.0 Ag2O4S Silver(I) sulfate -715.9 -618.4 200.4 131.4 Ag2S Silver(I) sulfide (argentite) -32.6 -40.7 144.0 76.5 Al Aluminum 0.0 330.0 289.4 28.3 164.6 24.4 21.4 AlB3H12 Aluminum borohydride -16.3 13.0 145.0 147.0 289.1 379.2 194.6 AlBr Aluminum monobromide -4.0 -42.0 239.5 35.6 AlBr3 Aluminum tribromide -527.2 -425.1 180.2 100.6 AlCl Aluminum monochloride -47.7 -74.1 228.1 35.0 AlCl2 Aluminum dichloride -331.0 AlCl3 Aluminum trichloride -704.2 -583.2 -628.8 109.3 91.1 AlF Aluminum monofluoride -258.2 -283.7 215.0 31.9 AlF3 Aluminum trifluoride -1510.4 -1204.6 -1431.1 -1188.2 66.5 277.1 75.1 62.6 AlF4Na Sodium tetrafluoroaluminate
    [Show full text]
  • University of California Riverside
    UNIVERSITY OF CALIFORNIA RIVERSIDE Thermal Decomposition of Molecules Relevant to Combustion and Chemical Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass Spectrometry A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry by Jessy Mario Lemieux December 2013 Dissertation Committee: Dr. Jingsong Zhang, Chairperson Dr. Christopher Bardeen Dr. David Bocian Copyright by Jessy Mario Lemieux 2013 The Dissertation of Jessy Mario Lemieux is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGMENTS Professor Jingsong Zhang Dr. Steven Chambreau Dr. Kevin Weber Paul Jones Jeff Lefler Mike Fournier Stan Sheldon Professor Christopher Bardeen Professor David Bocian iv DEDICATION This work is dedicated to my parents who taught me the value of curiosity and learning and have always been there for me. v ABSTRACT OF THE DISSERTATION Thermal Decomposition of Molecules Relevant to Combustion and Chemical Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass Spectrometry by Jessy Mario Lemieux Doctor of Philosophy, Graduate Program in Chemistry University of California, Riverside, December 2013 Dr. Jingsong Zhang, Chairperson Flash pyrolysis coupled with vacuum-ultraviolet photoionization time-of-flight mass spectrometry was used to study the thermal decomposition mechanisms of molecules relevant to fuel combustion and the chemical vapor deposition (CVD) of SiGe, SiC, and GeC. For combustion research, the thermal decomposition of benzyl radical, n- alkanes CnH2n+2 (n = 5-8 and 10), 1-butyl radical, and 1-pentyl radical was performed. Benzyl was confirmed to decompose primarily by ejection of H atom after significant isomerization with loss of methyl observed as a minor decomposition pathway.
    [Show full text]
  • University Miaorilms International 300 N
    INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
    [Show full text]
  • Hazardous Substances (Chemicals) Transfer Notice 2006
    16551655 OF THURSDAY, 22 JUNE 2006 WELLINGTON: WEDNESDAY, 28 JUNE 2006 — ISSUE NO. 72 ENVIRONMENTAL RISK MANAGEMENT AUTHORITY HAZARDOUS SUBSTANCES (CHEMICALS) TRANSFER NOTICE 2006 PURSUANT TO THE HAZARDOUS SUBSTANCES AND NEW ORGANISMS ACT 1996 1656 NEW ZEALAND GAZETTE, No. 72 28 JUNE 2006 Hazardous Substances and New Organisms Act 1996 Hazardous Substances (Chemicals) Transfer Notice 2006 Pursuant to section 160A of the Hazardous Substances and New Organisms Act 1996 (in this notice referred to as the Act), the Environmental Risk Management Authority gives the following notice. Contents 1 Title 2 Commencement 3 Interpretation 4 Deemed assessment and approval 5 Deemed hazard classification 6 Application of controls and changes to controls 7 Other obligations and restrictions 8 Exposure limits Schedule 1 List of substances to be transferred Schedule 2 Changes to controls Schedule 3 New controls Schedule 4 Transitional controls ______________________________ 1 Title This notice is the Hazardous Substances (Chemicals) Transfer Notice 2006. 2 Commencement This notice comes into force on 1 July 2006. 3 Interpretation In this notice, unless the context otherwise requires,— (a) words and phrases have the meanings given to them in the Act and in regulations made under the Act; and (b) the following words and phrases have the following meanings: 28 JUNE 2006 NEW ZEALAND GAZETTE, No. 72 1657 manufacture has the meaning given to it in the Act, and for the avoidance of doubt includes formulation of other hazardous substances pesticide includes but
    [Show full text]
  • Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications
    materials Review Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications Sophie Wendels †, Thiebault Chavez †, Martin Bonnet, Khalifah A. Salmeia * and Sabyasachi Gaan * Additives and Chemistry Group, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; [email protected] (S.W.); [email protected] (T.C.); [email protected] (M.B.) * Correspondence: [email protected] (K.A.S.); [email protected] (S.G.); Tel.: +41-587-657-038 (K.A.S.); +41-587-657-611 (S.G.) † These two authors contributed equally to this work. Received: 13 May 2017; Accepted: 4 July 2017; Published: 11 July 2017 Abstract: Organophosphorus compounds containing P-C bonds are increasingly developed as flame retardant additives due to their excellent thermal and hydrolytic stability and ease of synthesis. The latest development (since 2010) in organophosphorus flame retardants containing P-C bonds summarized in this review. In this review, we have broadly classified such phosphorus compounds based on the carbon unit linked to the phosphorus atom i.e., could be a part of either an aliphatic or an aromatic unit. We have only considered those published literature where a P-C bond was created as a part of synthetic strategy to make either an intermediate or a final organophosphorus compound with an aim to use it as a flame retardant. General synthetic strategies to create P-C bonds are briefly discussed. Most popular synthetic strategies used for developing P-C containing phosphorus based flame retardants include Michael addition, Michaelis–Arbuzov, Friedels–Crafts and Grignard reactions.
    [Show full text]
  • Rhodium Complex Catalyzed Alcohol Carbonylation Reactions
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1979 Rhodium Complex Catalyzed Alcohol Carbonylation Reactions Joseph Leo Nothnagel Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Nothnagel, Joseph Leo, "Rhodium Complex Catalyzed Alcohol Carbonylation Reactions" (1979). Electronic Theses and Dissertations. 5041. https://openprairie.sdstate.edu/etd/5041 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. RHODIUM COMPLEX CATALY ZED ALCOHOL CARBONYLATION REACTIONS BY JOSEPH LEO NOTHNAGEL A thesis submitted in partical ful fillment of the requir ements for the degree Ma ster of Science , Major in Chemistry , South Dakota State Univers ity "SOUTH DAKOTA STATE UNIVERSITY LIBRARY RHODIUM COMPLEX CATALYZED ALCOHOL CARBONYLATION REACTIONS This dissertation is approved as a creditable and indep endent investigation by a.candidate for the degree , Master of Science, and is acceptable as meeting the dis­ sertation requirements for the degree, but without imply­ ing that the conclusions reached by the candidate are necessarily the conclusions of the major department . Thesis adpiser Date Head , Chemistry Department Date ACKNOWLEDGEMENTS To Dr . Ols·on who, like all great teachers, gave far more than he received; To my wi fe who , as a loving wife, put up with one too many accidents; To my parents , who have always been with me, TABLE OF CONTENTS page .
    [Show full text]
  • Jacqueline Garland Phd Thesis
    STUDIES IN PHOSPHORUS-SELENIUM CHEMISTRY Jacqueline Garland A Thesis Submitted for the Degree of PhD at the University of St Andrews 2013 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/3688 This item is protected by original copyright Studies in Phosphorus-Selenium Chemistry Jacqueline Garland This thesis is submitted in partial fulfilment for the degree of Doctor of Philosophy (PhD.) at the University of St Andrews and Doctor rerum naturalium (Dr. rer. nat.) at the Universität Leipzig 21st February 2013 Supervisors: Prof. J. D. Woollins Prof. E Hey-Hawkins Declarations I, Jacqueline Garland, hereby certify that this thesis, which is approximately 53000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September, 2008 and as a candidate for the degree of July 2009; in the higher study for which this is a record was carried out in the University of St Andrews and the Universität Leipzig between 2008 and 2013. Date: 21st February 2013 Signature of candidate: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD. in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date: 21st February 2013 Signature of supervisor: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Dr.
    [Show full text]
  • CRC Handbook
    $0%"5",&:7"-6&4'035)&3.0%:/".*$4 5IF$PNNJUUFFPO%BUBGPS4DJFODFBOE5FDIOPMPHZ $0%"5" 1B CBS 4FFUIFSFGFSFODFGPSJOGPSNBUJPOPOUIFEFQFOEFODFPG IBTDPOEVDUFEBQSPKFDUUPFTUBCMJTIJOUFSOBUJPOBMMZBHSFFEWBMVFT HBTQIBTFFOUSPQZPOUIFDIPJDFPGTUBOEBSETUBUFQSFTTVSF GPS UIF UIFSNPEZOBNJD QSPQFSUJFT PG LFZ DIFNJDBM TVCTUBODFT 4VCTUBODFTBSFMJTUFEJOBMQIBCFUJDBMPSEFSPGUIFJSDIFNJDBMGPS 5IJT UBCMF QSFTFOUT UIF GJOBM SFTVMUT PG UIF QSPKFDU 6TF PG UIFTF NVMBTXIFOXSJUUFOJOUIFNPTUDPNNPOGPSN SFDPNNFOEFE JOUFSOBMMZ DPOTJTUFOU WBMVFT JT FODPVSBHFE JO UIF 5IFUBCMFJTSFQSJOUFEXJUIQFSNJTTJPOPG$0%"5" BOBMZTJT PG UIFSNPEZOBNJD NFBTVSFNFOUT EBUB SFEVDUJPO BOE QSFQBSBUJPOPGPUIFSUIFSNPEZOBNJDUBCMFT 5IFUBCMFJODMVEFTUIFTUBOEBSEFOUIBMQZPGGPSNBUJPOBU 3FGFSFODF , UIFFOUSPQZBU, BOEUIFRVBOUJUZ )¡ , o )¡ $PY +% 8BHNBO %% BOE.FEWFEFW 7" $0%"5",FZ7BMVFTGPS "WBMVFPGJOUIFȂ G)¡DPMVNOGPSBOFMFNFOUJOEJDBUFTUIFSFGFS 5IFSNPEZOBNJDT )FNJTQIFSF1VCMJTIJOH$PSQ /FX:PSL FODFTUBUFGPSUIBUFMFNFOU5IFTUBOEBSETUBUFQSFTTVSFJT ȂG ) ¡ , 4¡ , ))¡ , ¡ o o o o 4VCTUBODF 4UBUF L+ NPM + , NPM L+ NPM "H DS "H H "H BR "H$M DS o "M DS "M H "M BR o o "M' DS o "M 0 DS DPSVOEVN o "S H # DS SIPNCJD # H #' H o #0 DS o #F DS #F H #F0 DS o #S H #S o BR o #S M #S H $ DS HSBQIJUF $ H $0 H o $0 H o $0 BR VOEJTTPD o o $0 BR o o $B DS $B H $B BR o o $B0 DS o $E DS $E H $E BR o o $E0 DS o $E40 r) 0 DS o $M H $M o BR o o $M0 BR o $M H $T DS $T H $T BR o $V DS $0%"5",FZ7BMVFTGPS5IFSNPEZOBNJDT ȂG ) ¡ , 4¡
    [Show full text]
  • OFFICE William B
    Patented Mar. 2, 1954 2,671,079 UNITED STATES PATENT 2,671,079 PHosPHoRUS-conTAINING PolyMERs OFFICE William B. McCormack, Wilmington, Del, as signor to E. I. du Pont de Nemours and Com pany, Wilmington, Del, a corporation of Dela Wate No Drawing. Application August 7, 1951, Serial No. 240,813 1. 14 Claims. (CI260-92.3) This invention relates to new phosphorus-con taining interpolymers and to a process for obtain The dihalophosphine to be used in this process ing them. has the formula RPX2, in which R, represents a In my copending application Serial No. 240,814, member of the group consisting of alkyl, aryland there are described stable, heat-resistant poly aralkyl radicals and X represents a member of mers containing phosphorus in the form of phoS the group consisting of chlorine and bromine, phine oxide groups. These polymers are prepared The preferred phosphines are dichlorophenyl by the reaction of a hydroxyl-containing com phosphine and dichloroethylphosphine. A wide pound, such as Water or an alcohol, With a phoS variety of phosphine derivatives having the gene phorus-containing interpolymer in which the eral formula, shown may be employed. Represen phosphorus is present as dihalotertiaryphosphine O tative compounds include those in which R, rep groups. The latter interpolymers are the sub resents an alkyl group such as methyl, ethyl, ject of the present application. - propyl, butyl or octyl; an aryl group Such as It is an object of this invention to provide phenyl or alpha- or beta-naphthyl, or an aral polymeric products containing phosphorus, which kyl group such as benzyl or phenylethyl.
    [Show full text]