University Miaorilms International 300 N

Total Page:16

File Type:pdf, Size:1020Kb

University Miaorilms International 300 N INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed. University Miaorilms International 300 N. Zeeb Road Ann Arbor, Ml 48106 8403589 Yu, Yuan-Fu STUDIES ON BINUCLEAR IRON CARBONYL AND NITROSYL COMPLEXES CONTAINING BRIDGING DIPHENYLPHOSPHIDE The Ohio State University Ph.D. 1983 University Microfilms International 300 N. Zeeb Road, Ann Arbor, Ml 48106 Copyright 1983 by Yu, Yuan-Fu All Rights Reserved PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V . 1. G lossy photographs or p a g e s_______ 2. Colored illustrations, paper or print ______ 3. Photographs with dark background______ 4. Illustrations are poor copy_______ 5. Pages with black marks, not original copy_____ 6. Print shows through as there is text on both sides of page______ 7. Indistinct, broken or small print on several pages \/ 8. Print exceeds margin requirements______ 9. Tightly bound copy with print lost in spine____ 10. Computer printout pages with indistinct print _______ 11. Page(s) _____________lacking when material received, and not available from school or author. 12. Page(s) _____________seem to be missing in numbering only as text follows. 13. Two pages numbered _____________. Text follows. 14. Curling and wrinkled pages______ 15. Other __________________________________________________________ University Microfilms Internationa! STUDIES ON BINUCLEAR IRON CARBONYL AND NITROSYL COMPLEXES CONTAINING BRIDGING DIPHENYLPHOSPHIDE DISSERTATION Presented in Partial fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yuan-Fu Yu, M.S * * * * * The Ohio State University 1983 Reading Committee: Approved By Dr. Andrew Wojcicki Dr. Sheldon G. shore Dr. Andrew Wojc Dr. Devon W. Meek Department of THE AUTHOR DEDICATES THIS DISSERTATION TO HIS MOTHER Mrs. Hseuh-Wen Lu Yu ii ACKNOWLEDGMENTS I wish to thank Professor Andrew Wojcicki for his guidance, support, and inspiration during the course of this investigation. I thank Drs. Robert Waid and John Letts for providing invaluable help with the Bruker HX-yO NMK Spectrometer. I also thank Mr. Carl Engelman for his help in obtaining many NMR spectra. I would like to express my gratitude to my parents, my sister, and my brother, whose patience and support are greatly appreciated. I would like to thank my wife, Lucy; without her support and help I would never have made it. VITA November 9, 1954......... Born in Taiwan, Republic of China 1976....................... B.S., Tamkang College of Arts and Science, Tamsui, Taiwan 1976-1978................. M.S., University of Missouri- Kansas City, Kansas City, Missouri 1978-1983................. Teaching and Research Assistant, The Ohio State University, Columbus, Ohio PUBLICATIONS Y.-F. Yu, J. Gallucci and A. Wojcicki, "Novel Mode of Reduction of Phosphido-Bridged, Metal-Metal-Bonded Binuclear Complexes. Synthesis and Reactivity of an Unsymmetrical Anion from Fe2 (C O )6 (p-PPh2 )2 ." J. Amer. Chem. Soc., 1983, 105, 4826. Y.-F. Yu and A. Wojcicki, "New Binuclear Iron Carbonyl and Nitrosyl Complexes." Paper presented to the 1983 National Meeting of the American Chemical Society, Washington, D.C., August, 1983. Y.-F. Yu and A. Wojcicki, "Reduction of [Fe(CO)3 (p-PPh2 ) ]2 and [Fe(NO)2 (p-PPh2)]2 and Reactions2of a New Dianion, [(C O )3F e (p-PPh2 )(p-Co)Fe(C O )2 (PPh2 )] Paper presented to the 1983 15th Central Regional Meeting of the American Chemical Society, Oxford, Ohio, May 23-25, 1983. Y.-F. Yu, A. Wojcicki, G. Nardin and M. Calligaris, "Crystal Structures of [Fe2 (NO)i* (p-PPh2 ) (p-CH2PPh2 ) ] and [ Fe2 (N O ) 1+( P-CH2 ) (p-P2Phif) ] . " Paper presented to the 11th International Conference on Organometallic Chemistry, Pine Mountain, Georgia, October, 1983. FIELDS OF STUDY Major Field: Inorganic Chemistry, Professor Andrew Wojcicki iv TABLE Of CONTENTS Page DEDICATION...................................................... ii ACKNOWLEDGMENTS ............................................. iii VITA............................................................. iv LIST Of TABLES............................................... viii LIST OF FIGURES................................................ xi LIST OF ABBREVIATIONS....................................... xvii I. INTRODUCTION A. General..................................................1 B. Synthesis of organometallic Compounds with Phosphido Bridged Ligands.......................'..... 2 C. The Phosphorus Nuclear Magnetic Resonance Spectroscopy...........................................11 D. Reactions of Metal-Metal Bonded Phosphido- Bridged Compounds..................................... lb E. Application of MBR^H Reagents to Organometallic Chemistry.............................................. 25 F. Research Objective.................................... 28 II. EXPERIMENTAL A. Reagents and Chemicals...............................2y B. Instrumentation and Physical Measurements......... 32 C. General Experimental Procedures.................... 34 D. Preparations of Known Compounds.................... 35 v E. Preparation and Characterization of Starting Materials...................................36 E. Reduction of [Ee ( CO) 3 ( y-PPh2 ) ] 2 an<3 [Ee (N O )2 (y-PPh2 ) ] 2 ...................................39 G. Reactions of the Diphenylphosphine-Substituted Monoanions, [(CO)^Ee(y-PPh2 )(y-Co)E e (C o )2 (PPh2H )]“ and [ (NO)2Ee(y-NO)(y-PPh2 )Ee(NO)(PPh2H)]~.........56 H. Reactions of the Unsymraetrical Dianions,......... 80 I. Reactions of Alkyldiphenylphosphine-Substituted Monoanions, [(CO)3Ee(y-PPh2 )(p-CO)Fe(CO)2 (PPh2R )]” ....................................................... 93 J. X-ray Crystal Structure Determinations.......... 1UU III. RESULTS AND DISCUSSION A. Preparation and Characterization of [Ee (C o )3 (y-PPh2 )]2 and [Fe(NO)2 (y-PPh2 )]2...... 108 B. Reduction of [Fe (CO) 3 (y-PPh2 ) ] 2.................. 114 C. Unsymmetrical Dianion, [ (CO)oEe(y-PPh9)(y - C O ) 2 _ Ee(CO)2PPh2 )] , and its Conversion to [Ee(CO)3 (y-PPh2 ) ] \ ~ ............................... 144 D. Reduction of [ Ee (No) 2 (y-PPh2 )) 2 .................. 155 E. Unsymmetrical Nitrosyl Dianion, [(no)2E e (y - N O ) (y-PPh2)E e (N O )(PPh2 )]2 _ , and its Conversion to [Ee(NO)2 (u-PPh2)]|"............................ 171 E. Reactions of [(CO)3E e (y-PPh2 )(y-CO)Ee(Co)2- (PPh2)]2” with Alkylating Agents and Protonating Agents...,............................ 176 vi G. Reactions of [ (CO)3Fe(p-PPh2)(p-CO)Fe(CO)2 (PPh2H)]~ with Alkylating Agents................238 H. Reactions of [ (CO)3Fe(p-PPh2)(p-CO)Fe(Co)2(PPh2))2~ and [(CO)3Fe(p-PPh2)(p-CO)Fe(CO)2(PPh2H)]- with Trifluoroacetic Acid............................. 245 I. Reactions of [(NO)2Fe(p-PPh2 )(P - N O )F e (N O )(PPh2H )]“ and [(N O )2Fe(p-NO)(p-PPh2 )F e (N o )(PPh2 )]2 " with Alkylating Agents............................ 248 J. Fluxional Behavior of Some Binuclear Iron Carbonyl Complexes.................................268 IV. CONCLUDING REMARKS...................................... 278 APPENDICES A. Selected Bond Angles and Bond Lengths of ((CO)3Fe(p-PPh2)2Fe(PPh2C3H5 )(CO)2]............. 280 B. Variable Temperature ^ P { H> NMR Spectra of [ (CO)3 Fe(p-PPh2 )(p-C(Et)O)Fe(CO)2(PPh2Et)]..... 284 C. Variable Temperature ^ P {^H} NMR Spectra and C NMR Spectra of CO Ligands of [(C O )3 Fe (p-PPh2 )2(p-CO)Fe(Co)2 (PPh2H)]"........ 28 7 D. Variable Temperature ^ C NMR Spectra of the CO Ligands of f(CO)3F e (p-PPh2 )2“ ( p-CO) Fe( CO) 2 ( PPh2Me ) ] ” .......................... 29U BIBLIOGRAPHY.................................................
Recommended publications
  • United States Patent (19) (11) 4,161,571 Yasui Et Al
    United States Patent (19) (11) 4,161,571 Yasui et al. 45 Jul. 17, 1979 (54) PROCESS FOR PRODUCTION OF THE 4,080,493 3/1978 Yasui et al. .......................... 260/879 MALE CANHYDRDE ADDUCT OF A 4,082,817 4/1978 Imaizumi et al. ...................... 526/46 LIQUID POLYMER 4,091,198 5/1978 Smith ..................................... 526/56 75 Inventors: Seimei Yasui, Takarazuka; Takao FOREIGN PATENT DOCUMENTS Oshima, Sonehigashi, both of Japan 2262677 2/1975 France ....................................... 526/56 73) Assignee: Sumitomo Chemical Company, 44-1989 1/1969 Japan ......................................... 526/56 Limited, Osaka, Japan Primary Examiner-William F. Hamrock Attorney, Agent, or Firm-Birch, Stewart, Kolasch and 21 Appl. No.: 843,311 Birch 22 Filed: Oct. 18, 1977 57 ABSTRACT Related U.S. Application Data A process for production of the maleic anhydride ad duct of a liquid polymer having a maleic anhydride 62 Division of Ser. No. 733,914, Oct. 19, 1976, Pat, No. addition amount of 2 to 70% by weight, which com 4,080,493. prises reacting a liquid polymer having a molecular 51 Int. C.’................................................ CO8F 8/46 weight of 150 to 5,000 and a viscosity of 2 to 50,000 cp (52) U.S. C. ...................................... 526/90; 526/192; at 30 C. in the presence of at least one compound, as a 526/209; 526/213; 526/193; 526/195; 526/226; gelation inhibitor, selected from the group consisting of 526/233; 526/237; 526/238; 526/272; 525/285; imidazoles, thiazoles, metallic salts of mercapto 525/249; 525/251; 525/255; 525/245; 525/248 thiazoles, urea derivatives, naphthylamines, nitrosa (58) Field of Search ................
    [Show full text]
  • The Synthesis of 1,2-Azaphospholes, 1,2-Azaphosphorines and 1,2-Azaphosphepines
    The Free Internet Journal Review for Organic Chemistry Archive for Arkivoc 2020, i, 472-498 Organic Chemistry The synthesis of 1,2-azaphospholes, 1,2-azaphosphorines and 1,2-azaphosphepines Noha M. Hassanin,a Tarik E. Ali,b,a* Mohammed A. Assiri,b Hafez M. Elshaaer,a and Somaia M. Abdel-Kariema a Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt b Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia Email: [email protected], [email protected] Received 06-28-2020 Accepted 08-26-2020 Published online 10-22-2020 Abstract 1,2-Azaphospholes, 1,2-azaphosphorines and 1,2-azaphosphepines are prominent phosphorus heterocycles and are of interest due to their potent pharmacological activities. In this review, we provide the available literature data on the synthesis of 1,2-azaphospholes, 1,2-azaphosphorines and 1,2-azaphosphepines. Keywords: 1,2-azaphospholes, 1,2-azaphosphorines, 1,2-azaphosphepines, phosphorus heterocycles DOI: https://doi.org/10.24820/ark.5550190.p011.280 Page 472 ©AUTHOR(S) Arkivoc 2020, i, 472-498 Hassanin, N. M. et al. Table of Contents 1. Introduction 2. Synthetic Methods for Functionalized 1,2-Azaphosphole Derivatives 2.1 Cyclization of ethyl N-methyl-3-bromopropylphosphonamidate with NaH 2.2 Cyclization of -aminophosphorus compounds with bases 2.3 Reaction of methyleneaminophosphanes with activated alkenes and alkynes 2.4 Cyclization of 2-[2-(t-butylimino)cyclohexyl]acetonitrile with PCl3 2.5 Cyclization of 2-imino-2H-chromene-3-carboxamide
    [Show full text]
  • Gas Phase Chemistry and Removal of CH3I During a Severe Accident
    DK0100070 Nordisk kernesikkerhedsforskning Norraenar kjarnoryggisrannsoknir Pohjoismainenydinturvallisuustutkimus Nordiskkjernesikkerhetsforskning Nordisk karnsakerhetsforskning Nordic nuclear safety research NKS-25 ISBN 87-7893-076-6 Gas Phase Chemistry and Removal of CH I during a Severe Accident Anna Karhu VTT Energy, Finland 2/42 January 2001 Abstract The purpose of this literature review was to gather valuable information on the behavior of methyl iodide on the gas phase during a severe accident. The po- tential of transition metals, especially silver and copper, to remove organic io- dides from the gas streams was also studied. Transition metals are one of the most interesting groups in the contex of iodine mitigation. For example silver is known to react intensively with iodine compounds. Silver is also relatively inert material and it is thermally stable. Copper is known to react with some radioio- dine species. However, it is not reactive toward methyl iodide. In addition, it is oxidized to copper oxide under atmospheric conditions. This may limit the in- dustrial use of copper. Key words Methyl iodide, gas phase, severe accident mitigation NKS-25 ISBN 87-7893-076-6 Danka Services International, DSI, 2001 The report can be obtained from NKS Secretariat P.O. Box 30 DK-4000RoskiIde Denmark Phone +45 4677 4045 Fax +45 4677 4046 http://www.nks.org e-mail: [email protected] Gas Phase Chemistry and Removal of CH3I during a Severe Accident VTT Energy, Finland Anna Karhu Abstract The purpose of this literature review was to gather valuable information on the behavior of methyl iodide on the gas phase during a severe accident.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec
    United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec. 26, 1989 (54) PROCESS FOR THE PREPARATION OF Kosolapoff, G. M. et al. Organic Phosphorus Compounds AROMATIC PHOSPHORUS-CHLORNE (1973) vol. 4 at p. 95. Wiley-Interscience, Publ. COMPOUNDS Kosolapoff, Gennady M. Organophosphorus Com 75 Inventor: Hans-Jerg Kleiner, pounds (1958), John Wiley & Sons, Publ. pp. 59-60. Kronberg/Taunus, Fed. Rep. of Primary Examiner-Paul J. Killos Germany Attorney, Agent, or Firm-Curtis, Morris & Safford 73) Assignee: Hoechst Aktiengesellschaft, 57 ABSTRACT Frankfurt am Main, Fed. Rep. of Aromatic phosphorus-chlorine compounds, especially Germany diphenylphosphinyl chloride (C6H5)2P(O)Cl, phenyl phosphonyl dichloride C6HsP(O)Cl2, dichlorophenyl 21 Appl. No.: 554,591 phosphine C6HsPCl2 and chlorodiphenylphosphine (C6H5)2PCl, and the corresponding sulfur analogs, are 22 Filed: Nov. 23, 1983 obtained by reaction of aromatic phosphorus com 30 Foreign Application Priority Data pounds, which contain oxygen or sulfur, of the formula I Nov. 27, 1982 DE Fed. Rep. of Germany ....... 324.4031 511 Int, C.'................................................ CO7C 5/02 52 U.S. C. .................................... 562/815; 562/818; 562/819 58) Field of Search ..................................... 260/543 P in which X=O or S, and m= 1, 2 or 3, with phosphorus 56) References Cited chlorine compounds of the formula II U.S. PATENT DOCUMENTS (C6H5)3P Cln (II) 3,244,745 4/1966 Toy et al. ........................ 260/543 P FOREIGN PATENT DOCUMENTS in which n=1, 2 or 3, at temperatures between about 0093420 4/1983 European Pat. Off. 330 and 700° C. Preferred starting materials are tri phenylphosphine oxide (C6H5)3PO and phosphorus OTHER PUBLICATIONS trichloride PCl3.
    [Show full text]
  • Synthesis of Trialkyl 2-Halogeno-1,1,1-Ethanetricarboxylates
    General Papers ARKIVOC 2016 (iv) 352-362 Synthesis of trialkyl 2-halogeno-1,1,1-ethanetricarboxylates Juan Zinczuk* and Gustavo A. Carnavale Instituto de Química Rosario (CONICET-UNR . Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario. Suipacha 531- 2000 Rosario - Argentina E-mail: [email protected] DOI: http://dx.doi.org/10.3998/ark.5550190.p009.567 Abstract A series of trialkyl 2-halogeno-1,1,1-ethanetricarboxylates (Hal = Cl, Br, I) was obtained in high yields by halomethylenation of trialkyl methanetricarboxylates that in turn were derived from dialkyl malonates. The variables that control the reaction (solvent, temperature, time of reaction, base, and alkylating agent) were adjusted to optimize the yield. This new family of compounds may be considered as synthetic equivalents of the unstable dialkyl (halomethyl)malonates. Keywords: Halomethylenation, dialkyl (halomethyl)malonates, trialkyl 2-halogeno-1,1,1- ethanetricarboxylates, optimized synthesis. Introduction We are interested in the reactivity of metallic homoenolates, formally derived from dialky methylmalonates, and proposed the metallation of the appropriate dialkyl (halomethyl)malonates as a method of preparation. Dialkyl (halomethyl)malonates are scarcely referenced in the literature. The only reported example corresponds to diethyl (bromomethyl)malonate, obtained in impure form by Simonsen by reaction of diethyl (2-methoxymethyl)malonate and hydrobromic acid.1 More recently Dowd and Shapiro improved the compound purity but recognized the sensible nature of the bromo compound.2 The study of the halomethylenation of dialkylmalonates began more than a century. The reaction of diethyl malonate (1) and diiodomethane in the presence of sodium ethoxide was first reported by Guthzeit and Dressel in 1888.3,4 They used a half equivalent of diiodomethane and obtained 84% of tetraethyl 1,1,3,3-propanetetracarboxylate (2).
    [Show full text]
  • Hazardous Substances (Chemicals) Transfer Notice 2006
    16551655 OF THURSDAY, 22 JUNE 2006 WELLINGTON: WEDNESDAY, 28 JUNE 2006 — ISSUE NO. 72 ENVIRONMENTAL RISK MANAGEMENT AUTHORITY HAZARDOUS SUBSTANCES (CHEMICALS) TRANSFER NOTICE 2006 PURSUANT TO THE HAZARDOUS SUBSTANCES AND NEW ORGANISMS ACT 1996 1656 NEW ZEALAND GAZETTE, No. 72 28 JUNE 2006 Hazardous Substances and New Organisms Act 1996 Hazardous Substances (Chemicals) Transfer Notice 2006 Pursuant to section 160A of the Hazardous Substances and New Organisms Act 1996 (in this notice referred to as the Act), the Environmental Risk Management Authority gives the following notice. Contents 1 Title 2 Commencement 3 Interpretation 4 Deemed assessment and approval 5 Deemed hazard classification 6 Application of controls and changes to controls 7 Other obligations and restrictions 8 Exposure limits Schedule 1 List of substances to be transferred Schedule 2 Changes to controls Schedule 3 New controls Schedule 4 Transitional controls ______________________________ 1 Title This notice is the Hazardous Substances (Chemicals) Transfer Notice 2006. 2 Commencement This notice comes into force on 1 July 2006. 3 Interpretation In this notice, unless the context otherwise requires,— (a) words and phrases have the meanings given to them in the Act and in regulations made under the Act; and (b) the following words and phrases have the following meanings: 28 JUNE 2006 NEW ZEALAND GAZETTE, No. 72 1657 manufacture has the meaning given to it in the Act, and for the avoidance of doubt includes formulation of other hazardous substances pesticide includes but
    [Show full text]
  • MI-GEE Brand Methylene Iodide
    CHEMICAL BASED LIQUIDS BULLETIN NO.32 Chemical Based Products GEOLIQUIDS MI-GEE Brand Methylene Iodide MI-GEE is a pure form of Methylene Iodide and is widely moisture. Use in or exposure to strong sunlight or strong used for testing and separating minerals and for testing mercury vapor lights should be avoided. Any darkening is high index glasses, minerals and gems. It is also used in a due to liberation of a small amount of free iodine. This is variety of organic chemical syntheses. One of these is the easily removed by shaking with a cool 5 - 10% solution of Simmons & Smith Synthesis (JACS 80, 5323, 1958) for Sodium Hydroxide or Sodium Carbonate, washing twice with putting a methylene group into an organic molecule. plain water, separating and filtering. Due to the highly labile nature of Methylene Iodide, Gas Chromatography can not be Properties: used to analyze it, as heat decomposes the material to give low results. MI-GEE is shipped with Copper wire screen pre- MI-GEE Assays 99.9% Minimum CH2I2 servative added. Copper wire sinks to the bottom, causes Formula Weight: 267:87 no difficulty in use, does not contaminate MI-GEE, and will keep it light in color for several years. MI-GEE should always Synonym: Diiodomethane be stored in total darkness and in closed containers when Iodine Content, Theory: 94.76% not in use. Mercury should never be used to lighten the color or preserve Methylene Iodide as it produces toxic Density: d2 0= 3.325 (Very close to Specific Gravity) 4 compounds. 15 Refractive Index: n D = 1.74 Melting Point: 5-6°C (4l - 42.8°F) MI-GEE Is miscible with acetone, methanol, ethanol, methy- lene chloride, ether, chloroform, dimethyl sulfoxide and Boiling Point: 181°C (358ºF) other solvents.
    [Show full text]
  • Reactions of Tertiary Phosphites with Alkyl Iodides in Acetonitrile
    AN ABSTRACT OF THE THESIS OF LANE JOSEPH GOODELL for the MASTER OF SCIENCE (Name) (Degree) in CHEMISTRY presented on Mcy Q\-\ `j CIL4 (Major) (Dates Title: REACTIONS OF TERTIARY PHOSPHITES WITH ALKYL IODIDES IN ACETONITRILE Abstract approved: Redacted for Privacy Dr. John Thdma Yoke III The Arbuzov reaction is an important method of synthesis of compounds containing a carbon -phosphorus bond. (RO)3P + R'X 1 [(RO)3PR')X],-- (RO)2P(0)R' + RX The intermediate might have a salt -like or a penta- coordinate type of structure, or both in equilibrium. In many systems, the rate determining step of the reaction is not known. A polar solvent might have a significant influence on these points. Although the reaction is normally carried out without a solvent, two groups of workers have studied the kinetics of the reaction in acetonitrile. These two groups published conflicting reports, speci- fically related to the system of tri -n -butyl phosphite with ethyl iodide in acetonitrile at 310 . The possibilities for the reaction to be considered in the present work were (1) olefin elimination from the tertiary phosphite to give a dialkyl hydrogen phosphonate, (2) inadvertent hydrolysis to give a dialkyl hydrogen phosphonate and an alcohol, (3) the Arbuzov reaction to give a dialkyl alkylphosphonate, and (4) no reaction. Assuming that it is the Arbuzov reaction which actually occurs for such reactants in acetonitrile, the previous reports were also in conflict as to the rate determining step. In the present work, it was found by qualitative and quantitative analysis of this system that the Arbuzov reaction occurs, but very slowly, contrary to one of the previous reports.
    [Show full text]
  • Syntheses and Study of a Pyrroline Nitroxide Condensed Phospholene Oxide and a Pyrroline Nitroxide Attached Diphenylphosphine
    molecules Article Syntheses and Study of a Pyrroline Nitroxide Condensed Phospholene Oxide and a Pyrroline Nitroxide Attached Diphenylphosphine Mostafa Isbera 1, Balázs Bognár 1 , Ferenc Gallyas 2,3,4, Attila Bényei 5 ,József Jek˝o 6 and Tamás Kálai 1,4,* 1 Faculty of Pharmacy, Institute of Organic and Medicinal Chemistry, University of Pécs, Szigeti st. 12, H-7624 Pécs, Hungary; [email protected] (M.I.); [email protected] (B.B.) 2 Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, H-7624 Pécs, Hungary; [email protected] 3 HAS-UP Nuclear-Mitochondrial Interactions Research Group, H-1245 Budapest, Hungary 4 János Szentágothai Research Center, University of Pécs, Ifjúság 20, H-7624 Pécs, Hungary 5 Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; [email protected] 6 Department of Chemistry, University of Nyíregyháza, Sóstói st. 31/B, H-4440 Nyíregyháza, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-72-536-221 Abstract: The reaction of a diene nitroxide precursor with dichlorophenylphosphine in a McCor- mac procedure afforded 1,1,3,3-tetramethyl-5-phenyl-1,2,3,4,5,6-hexahydrophospholo[3,4-c]pyrrole- 5-oxide-2-oxyl. Lithiation of the protected 3-iodo-pyrroline nitroxide followed by treatment with Citation: Isbera, M.; Bognár, B.; chlorodiphenylphosphine after deprotection afforded (1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H- Gallyas, F.; Bényei, A.; Jek˝o,J.; Kálai, pyrrol-3-yl)diphenylphosphine oxide, and after reduction, (1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro- T.
    [Show full text]
  • Preparation and 13C NMR Investigation of 1,1-Dilithioalkenes
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1990 Preparation and 13C NMR investigation of 1,1-dilithioalkenes, 1,2-dilithioalkenes, 1-lithiocyclopropenes and 1,2-dilithiocyclopropenes Hon-Wah Man Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Man, Hon-Wah, "Preparation and 13C NMR investigation of 1,1-dilithioalkenes, 1,2-dilithioalkenes, 1-lithiocyclopropenes and 1,2-dilithiocyclopropenes " (1990). Retrospective Theses and Dissertations. 9860. https://lib.dr.iastate.edu/rtd/9860 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. MICROFILMED 1991 INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • 193773 193773.Pdf
    NOTICE: this is the author’s version of a work that was accepted for publication in Science of the Total Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Science of the Total Environment, Vol. 463-464 (2013). DOI: 10.1016/j.scitotenv.2013.05.079 1 Abiotic formation of methyl iodide on synthetic birnessite: A 2 mechanistic study 3 4 5 Sébastien Allarda,b,*, Hervé Gallarda 6 7 a Ecole Nationale Supérieure d'Ingénieurs de Poitiers - Université de Poitiers 8 Institut de Chimie des Milieux et des Matériaux UMR 7285 9 1, rue Marcel Doré 86 022 POITIERS Cedex 10 b ‘Present address’ Curtin Water Quality Research Center, Curtin University, GPO Box 11 U1987, Perth, WA 6845, Australia 12 13 *Corresponding author phone: +61 8 9266 7949, email: [email protected] 14 15 1 1 Abstract 2 Methyl iodide is a well-known volatile halogenated organic compound that contributes to the 3 iodine content in the troposphere, potentially resulting in damage to the ozone layer. Most 4 methyl iodide sources derive from biological activity in oceans and soils with very few abiotic 5 mechanisms proposed in the literature. In this study we report that synthetic manganese oxide 6 (birnessite MnO2) can catalyze the formation of methyl iodide in the presence of natural 7 organic matter (NOM) and iodide.
    [Show full text]
  • Intermolecular Interaction in Methylene Halide (CH2F2, Ch2cl2, Ch2br2 and CH2I2) Dimers
    molecules Article Intermolecular Interaction in Methylene Halide (CH2F2, CH2Cl2, CH2Br2 and CH2I2) Dimers László Almásy 1,2,* ID and Attila Bende 3,* ID 1 State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China 2 Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly Thege út 29-33, 1121 Budapest, Hungary 3 Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania * Correspondence: [email protected] (L.A.); [email protected] (A.B.) Academic Editors: Igor Reva and Xuefeng Wang Received: 27 April 2019; Accepted: 1 May 2019; Published: 10 May 2019 Abstract: The intermolecular interaction in difluoromethane, dichloromethane, dibromomethane, and diiodomethane dimers has been investigated using high level quantum chemical methods. The potential energy curve of intermolecular interaction along the C··· C bond distance obtained using the coupled-cluster theory with singles, doubles, and perturbative triples excitations CCSD(T) were compared with values given by the same method, but applying the local (LCCSD(T)) and the explicitly correlated (CCSD(T)-F12) approximations. The accuracy of other theoretical methods—Hartree–Fock (HF), second order Møller–Plesset perturbation (MP2), and dispersion corrected DFT theory—were also presented. In the case of MP2 level, the canonical and the local-correlation cases combined with the density-fitting technique (DF-LMP2)theories were considered, while for the dispersion-corrected DFT, the empirically-corrected BLYP-D and the M06-2Xexchange-correlation functionals were applied. In all cases, the aug-cc-pVTZ basis set was used, and the results were corrected for the basis set superposition error (BSSE) using the counterpoise method.
    [Show full text]