United States Patent Office Patented Dec

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Dec 2,964,508 United States Patent Office Patented Dec. 13, 1960 2 diiodomethane, iodotribromomethane, chlorotriiodometh 2,964,508 ane, dichlorodiiodomethane, iodotrichloromethane, fluo rotriiodomethane, difluorodiiodomethane, and iodotri PROCESS FOR CONTROLLING THE MOLECU. fluoromethane. LAR WEIGHT OF VENYLDENE CHLORIDE 5 The amount of the perhalomethane that may be em POLYMERS ployed in the process of this invention may be varied Marion R. Rector and William E. Cohrs, Midland, Mich., from 0.05 to 5.0 percent by weight based on the weight assignors to The Dow Chemical Company, Midland, of the monomer. The preferred concentration is from Mich., a corporation of Delaware 1 to 3 percent by weight based on the weight of the No Drawing. 0 monomer. When less than 0.05 percent is used the Filed June 23, 1955, Ser. No. 517,663 amount of molecular weight lowering is not usually great 6 Claims. (C. 260-87.7) enough for practical purposes. When more than 5.0 percent is used no additional benefits are realized. When the compounds are used in these concentrations a sub This invention relates to a process for controlling the 5 stantial lowering of molecular weight of the polymers molecular weight of polymers. More particularly, it re occurs without the necessity of altering polymerization lates to a process for preparing vinylidene chloride poly conditions, and without significant decrease in polymeri mers and copolymers having lower molecular weights zation rate. than similar polymers prepared at the same tempera Any of the known methods of polymerization may be tures but using prior known processes. 20 employed in this process (mass, aqueous emulsion, aque Vinylidene chloride polymers and copolymers of viny ous suspension, or solution), although especially ad lidene chloride with another copolymerizable monomer vantageous results are obtained when the common non such as vinyl chloride have been fabricated into a wide emulsified aqueous suspension method is used. In such variety of useful articles. One of the most common method a water-dispersible granulating agent is usually methods of fabricating such articles is to melt the poly 25 employed and the effectiveness of that agent varies with mer and express it through a suitably shaped die orifice. the temperature. In addition, such methods employ oil The ease with which the molten polymer may be forced soluble catalysts having a relatively narrow temperature through the die orifice is dependent upon the flow vis range of catalytic effectiveness. Thus, the temperature cosity of the molten polymer. In general, the lower the at which a suspension polymerization may be conducted flow viscosity for a given polymer the easier it will be 30 is within a relatively narrow range. Those requirements to force it through the die orifice. For linear polymers are not nearly so rigid when emulsion polymerization the flow viscosity is directly related to molecular weight. techniques are employed, although the process of this in It is likewise true that for linear polymers the physical vention may likewise be used. properties of articles produced from the polymer are The perhalomethane may be added to the polymeriza related to and dependent upon the molecular weight 35 tion charge in any manner, although to secure the most of the polymer. For example, the tensile strength of a uniform results when polymerizing in an aqueous film or filament prepared from a linear polymer will medium it is preferred to add it to the monomer before usually be greater with high molecular weight polymers dispersing the monomer in the aqueous phase. In that than with low molecular weight polymers. Consequently, way the perhalomethane will be evenly distributed a compromise must be found as to the optimum molec 40 throughout monomer droplets. ular weight desired. As a further complication the The perhalomethanes as defined above are effective in molecular weight of a linear polymer is dependent upon producing lower molecular weight vinylidene chloride the particular polymerization conditions under which it polymers and are particularly effective with polymers is made. Thus, the polymerization conditions which are comprising at least 70 percent vinylidene chloride and the most economically favorable will not always pro 45 the remainder as vinyl chloride, and do not appreciably vide a polymer with the optimum molecular weight for alter the rate of polymerization. With polymers con fabrication. In prior methods of controlling the molec taining more than 30 percent vinyl chloride, the rate of ular weight of polymers various compounds having polymerization is retarded. This was most surprising chain transfer activity have been added to the polymeriza in view of the results obtained with perhalomethanes tion charge. Without exception, however, those com 50 containing no bromine or iodine and with compounds pounds having such activity have retarded the rate of such as chloroform or bromoform which contain a hydro polymerization to the extent that they were not practi gen atom. In compounds of the latter two classes there cal for commercial production or had a deleterious ef is either no molecular weight lowering or there is a seri fect on the resulting polymer. ous retardation of the rate of polymerization. The provision of a process for controlling the molec 55 The molecular weight of the vinylidene chloride co ular weight of linear vinylidene chloride polymers is polymers, such as are prepared by the process of this in the principal object of this invention. vention, is indicated by a measurement of the solution It is a further object to provide such a process which viscosity of a 2 percent solution of copolymer in orthodi will not appreciably affect the rate of polymerization. chlorobenzene at 120° C. That method has been em The above and related objects are accomplished by 60 ployed for a long time in the vinylidene chloride copoly means of a process wherein a monomeric ingredient mer art and has been especially valuable in screening comprising at least 70 percent vinylidene chloride is poly large numbers of copolymers to check their relative merized in the presence of a perhalomethane compound molecular weight. The determination of the absolute having the general formula Y-C-X3 wherein Y is a molecular weight of any given copolymer is a difficult halogen atom selected from the group consisting of 65 task and subject to considerable error and such an ab bromine and iodine and each X may be any halogen. As solute molecular weight is important only insofar as it typical examples of useful perhalomethane compounds affects the flow viscosity of the molten polymer. The may be mentioned carbon tetrabromide, bromotrichloro molten flow viscosity or the resistance to flow of a given methane, dibromodichloromethane, chlorotribromo copolymer is the property which determines the ease or methane, bromotrifluoromethane, dibromodifluorometh 70 difficulty of extruding or molding that copolymer. In ane, fluorotribromomethane, bromochlorodifluorometh evaluating results of solution viscosity determinations ane, carbon tetraiodide, bromotriiodomethane, dibromo a minor change in value may indicate a substantial 2,964,508 3 4. change in molecular weight and consequently in flow maintaining them at that temperature until they had viscosity. reached about 80 percent conversion. The polymer was The process of the invention will be more apparent dried and solution viscosities determined with the results from the following illustrative examples in which all parts listed in Table II. - - - are by weight. Table II EXAMPLE 1. Solution Several polymerization charges were prepared by add Agent Percent Wiscosity ing to 160 parts of an aqueous phase containing 0.24 part Agent (cps.) of methyl cellulose (400 cps. grade) an oil phase consist O None---------------------------------------------------- 0.95 ing of 68 parts of vinylidene chloride, 12 parts vinyl chlo Carbon tetrabromide---------------------- 0.05 0.9 ride, 0.3 part lauroyl peroxide and varying amounts of the D0------ 0.0 0.89 Do- 0.20 0.87 perhalomethane compounds of this invention, or of pre Do- 0.50 0.8 viously known chain transfer agents. Polymerization was Do- 1.0 0.72 initiated by warming the charges to 65° C. and maintain D0------ 1.4 0.65 ing them at that temperature for 47 hours, with continu I5 ous agitation to maintain dispersion. The polymer was We claim: isolated by filtration and air dried. The molecular weight 1. A process for controlling the molecular weight of of the polymers was compared by measuring the solution vinylidene chloride polymers comprising the steps of first viscosity of a 2 percent solution of each polymer in o 20 preparing a polymerizable ingredient comprising from 95 dichlorobenzene at 120° C. in an Ostwald viscosimeter. to 99.95 percent by weight of a monomer containing at The results are tabulated in Table I. least 70 percent by weight of vinylidene chloride with the balance vinyl chloride and correspondingly from 5.0 to Table I 0.05 percent by weight of perhalomethane having the Percent Solution 25 general formula Agent Parts Con- Viscosity Agent Wesol (cps.) wherein Y is a halogen atom selected from the group None--------------------------------------------- 87.7 0.92 consisting of bromine and iodine and each X may be any Lauryl mercaptain (for comparison).----- 0.5 79.0 0.8 Carbon tetrachloride (for comparison).--- 1.5 88.0 0.9 30 halogen atom and thereafter dispersing said polymerizable Chlorodibromomethane (for compari ingredient in an aqueous phase containing a water-soluble Son).---------------------------------- 0.5 92.3 0.91 cellulose ether as granulating agent, subjecting the so Bromochloromethane (for comparison)-- 0.5 90.0 0.94 Bromoform (for comparison).----- - - 0.5 90.5 0.92 formed dispersion to thermal and catalytic conditions Carbon tetrabromide...-- 0.4 87.2 0.84 Bromotrichloronethane- 0.4 87.5 0.87 known to induce polymerization. Dibromodichloromethane- 0.4 85.6 0.87 2. The process as claimed in claim 1 wherein the per Fluorotrilbronomethane- 0.5 85.3 0.80 35 halomitehane is carbon tetrabromide, Iodotrichloromethane------------ - - - - 0.5 79.6 0.80 Dibromodifiuoromethane--------------- 5 94.2 0.87 3.
Recommended publications
  • United States Patent (19) (11) 4,161,571 Yasui Et Al
    United States Patent (19) (11) 4,161,571 Yasui et al. 45 Jul. 17, 1979 (54) PROCESS FOR PRODUCTION OF THE 4,080,493 3/1978 Yasui et al. .......................... 260/879 MALE CANHYDRDE ADDUCT OF A 4,082,817 4/1978 Imaizumi et al. ...................... 526/46 LIQUID POLYMER 4,091,198 5/1978 Smith ..................................... 526/56 75 Inventors: Seimei Yasui, Takarazuka; Takao FOREIGN PATENT DOCUMENTS Oshima, Sonehigashi, both of Japan 2262677 2/1975 France ....................................... 526/56 73) Assignee: Sumitomo Chemical Company, 44-1989 1/1969 Japan ......................................... 526/56 Limited, Osaka, Japan Primary Examiner-William F. Hamrock Attorney, Agent, or Firm-Birch, Stewart, Kolasch and 21 Appl. No.: 843,311 Birch 22 Filed: Oct. 18, 1977 57 ABSTRACT Related U.S. Application Data A process for production of the maleic anhydride ad duct of a liquid polymer having a maleic anhydride 62 Division of Ser. No. 733,914, Oct. 19, 1976, Pat, No. addition amount of 2 to 70% by weight, which com 4,080,493. prises reacting a liquid polymer having a molecular 51 Int. C.’................................................ CO8F 8/46 weight of 150 to 5,000 and a viscosity of 2 to 50,000 cp (52) U.S. C. ...................................... 526/90; 526/192; at 30 C. in the presence of at least one compound, as a 526/209; 526/213; 526/193; 526/195; 526/226; gelation inhibitor, selected from the group consisting of 526/233; 526/237; 526/238; 526/272; 525/285; imidazoles, thiazoles, metallic salts of mercapto 525/249; 525/251; 525/255; 525/245; 525/248 thiazoles, urea derivatives, naphthylamines, nitrosa (58) Field of Search ................
    [Show full text]
  • Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely Through a Common Mechanism S
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2017/03/21/mol.117.108290.DC1 1521-0111/91/6/620–629$25.00 https://doi.org/10.1124/mol.117.108290 MOLECULAR PHARMACOLOGY Mol Pharmacol 91:620–629, June 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely through a Common Mechanism s Anita Luethy, James D. Boghosian, Rithu Srikantha, and Joseph F. Cotten Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (A.L., J.D.B., and J.F.C.); Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.); Carver College of Medicine, University of Iowa, Iowa City, Iowa (R.S.) Received January 7, 2017; accepted March 20, 2017 Downloaded from ABSTRACT The TWIK-related acid-sensitive potassium channel 3 (TASK-3; hydrate (165% [161–176]) . 2,2-dichloro- . 2-chloro 2,2,2- KCNK9) tandem pore potassium channel function is activated by trifluoroethanol . ethanol. Similarly, carbon tetrabromide (296% halogenated anesthetics through binding at a putative anesthetic- [245–346]), carbon tetrachloride (180% [163–196]), and 1,1,1,3,3,3- binding cavity. To understand the pharmacologic requirements for hexafluoropropanol (200% [194–206]) activate TASK-3, whereas molpharm.aspetjournals.org TASK-3 activation, we studied the concentration–response of the larger carbon tetraiodide and a-chloralose inhibit. Clinical TASK-3 to several anesthetics (isoflurane, desflurane, sevoflurane, agents activate TASK-3 with the following rank order efficacy: halothane, a-chloralose, 2,2,2-trichloroethanol [TCE], and chloral halothane (207% [202–212]) .
    [Show full text]
  • Chemical Chemical Hazard and Compatibility Information
    Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine
    [Show full text]
  • Used at Rocky Flats
    . TASK 1 REPORT (Rl) IDENTIFICATION OF CHEMICALS AND RADIONUCLIDES USED AT ROCKY FLATS I PROJECT BACKGROUND ChemRisk is conducting a Rocky Flats Toxicologic Review and Dose Reconstruction study for The Colorado Department of Health. The two year study will be completed by the fall of 1992. The ChemRisk study is composed of twelve tasks that represent the first phase of an independent investigation of off-site health risks associated with the operation of the Rocky Flats nuclear weapons plant northwest of Denver. The first eight tasks address the collection of historic information on operations and releases and a detailed dose reconstruction analysis. Tasks 9 through 12 address the compilation of information and communication of the results of the study. Task 1 will involve the creation of an inventory of chemicals and radionuclides that have been present at Rocky Flats. Using this inventory, chemicals and radionuclides of concern will be selected under Task 2, based on such factors as the relative toxicity of the materials, quantities used, how the materials might have been released into the environment, and the likelihood for transport of the materials off-site. An historical activities profile of the plant will be constructed under Task 3. Tasks 4, 5, and 6 will address the identification of where in the facility activities took place, how much of the materials of concern were released to the environment, and where these materials went after the releases. Task 7 addresses historic land-use in the vicinity of the plant and the location of off-site populations potentially affected by releases from Rocky Flats.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • Synthesis of Trialkyl 2-Halogeno-1,1,1-Ethanetricarboxylates
    General Papers ARKIVOC 2016 (iv) 352-362 Synthesis of trialkyl 2-halogeno-1,1,1-ethanetricarboxylates Juan Zinczuk* and Gustavo A. Carnavale Instituto de Química Rosario (CONICET-UNR . Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario. Suipacha 531- 2000 Rosario - Argentina E-mail: [email protected] DOI: http://dx.doi.org/10.3998/ark.5550190.p009.567 Abstract A series of trialkyl 2-halogeno-1,1,1-ethanetricarboxylates (Hal = Cl, Br, I) was obtained in high yields by halomethylenation of trialkyl methanetricarboxylates that in turn were derived from dialkyl malonates. The variables that control the reaction (solvent, temperature, time of reaction, base, and alkylating agent) were adjusted to optimize the yield. This new family of compounds may be considered as synthetic equivalents of the unstable dialkyl (halomethyl)malonates. Keywords: Halomethylenation, dialkyl (halomethyl)malonates, trialkyl 2-halogeno-1,1,1- ethanetricarboxylates, optimized synthesis. Introduction We are interested in the reactivity of metallic homoenolates, formally derived from dialky methylmalonates, and proposed the metallation of the appropriate dialkyl (halomethyl)malonates as a method of preparation. Dialkyl (halomethyl)malonates are scarcely referenced in the literature. The only reported example corresponds to diethyl (bromomethyl)malonate, obtained in impure form by Simonsen by reaction of diethyl (2-methoxymethyl)malonate and hydrobromic acid.1 More recently Dowd and Shapiro improved the compound purity but recognized the sensible nature of the bromo compound.2 The study of the halomethylenation of dialkylmalonates began more than a century. The reaction of diethyl malonate (1) and diiodomethane in the presence of sodium ethoxide was first reported by Guthzeit and Dressel in 1888.3,4 They used a half equivalent of diiodomethane and obtained 84% of tetraethyl 1,1,3,3-propanetetracarboxylate (2).
    [Show full text]
  • University Miaorilms International 300 N
    INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
    [Show full text]
  • The Preparation of Certain Inorganic and Organic Compounds Which May Be of Use in Mineralogical Separations
    Scholars' Mine Masters Theses Student Theses and Dissertations 1928 The preparation of certain inorganic and organic compounds which may be of use in mineralogical separations Clarence Jay Black Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Chemistry Commons Department: Recommended Citation Black, Clarence Jay, "The preparation of certain inorganic and organic compounds which may be of use in mineralogical separations" (1928). Masters Theses. 4697. https://scholarsmine.mst.edu/masters_theses/4697 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. THF PREPAHATION OF CEHTAIli INORGANIC AND ORGANIC CO;~POUNDS VIHICH MAYm~ OF USE IN UI:N~ 'RALOGICAL, SJ~PARATIONS by Clarence J. Black A Thesis Submitted to the Faculty of the School of Bines and Metallurgy or the University Of X1a sour 1 in partial fulflbletlt ,tor the Degree of lalster of Science Rolla, Uis oouri 1928 Approved by kV·) :Scrkg<Ytiad, Associate Professor of Chemistry 34481. COIXPOUlIDf:; WHICH :~AY BJ~ OF USE In !~~IJT,~'RltT.lOGICAL S:,"?ARATIONS. ____TABlJt: OJ?......._- ",..,r"."_"_'C~nlTENTS.•_ Page Introriuction------------------------------------ 2 Resurn! of the Use of Heavy Liquids For :Mineralo~ical Separations------------- 3 Some Propertiee Of' Hea,vyLiquids That Affect Them 'For l!ineralor;ical Separat ions---- 5 Specific Gravlt 1eB Of Some Comr:lon Uinera.l~:;- ----- 5 Experimental Data.-------- ..,---------------------- 7 Preparation Of" Compounda-------------- ...
    [Show full text]
  • MI-GEE Brand Methylene Iodide
    CHEMICAL BASED LIQUIDS BULLETIN NO.32 Chemical Based Products GEOLIQUIDS MI-GEE Brand Methylene Iodide MI-GEE is a pure form of Methylene Iodide and is widely moisture. Use in or exposure to strong sunlight or strong used for testing and separating minerals and for testing mercury vapor lights should be avoided. Any darkening is high index glasses, minerals and gems. It is also used in a due to liberation of a small amount of free iodine. This is variety of organic chemical syntheses. One of these is the easily removed by shaking with a cool 5 - 10% solution of Simmons & Smith Synthesis (JACS 80, 5323, 1958) for Sodium Hydroxide or Sodium Carbonate, washing twice with putting a methylene group into an organic molecule. plain water, separating and filtering. Due to the highly labile nature of Methylene Iodide, Gas Chromatography can not be Properties: used to analyze it, as heat decomposes the material to give low results. MI-GEE is shipped with Copper wire screen pre- MI-GEE Assays 99.9% Minimum CH2I2 servative added. Copper wire sinks to the bottom, causes Formula Weight: 267:87 no difficulty in use, does not contaminate MI-GEE, and will keep it light in color for several years. MI-GEE should always Synonym: Diiodomethane be stored in total darkness and in closed containers when Iodine Content, Theory: 94.76% not in use. Mercury should never be used to lighten the color or preserve Methylene Iodide as it produces toxic Density: d2 0= 3.325 (Very close to Specific Gravity) 4 compounds. 15 Refractive Index: n D = 1.74 Melting Point: 5-6°C (4l - 42.8°F) MI-GEE Is miscible with acetone, methanol, ethanol, methy- lene chloride, ether, chloroform, dimethyl sulfoxide and Boiling Point: 181°C (358ºF) other solvents.
    [Show full text]
  • Preparation and 13C NMR Investigation of 1,1-Dilithioalkenes
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1990 Preparation and 13C NMR investigation of 1,1-dilithioalkenes, 1,2-dilithioalkenes, 1-lithiocyclopropenes and 1,2-dilithiocyclopropenes Hon-Wah Man Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Man, Hon-Wah, "Preparation and 13C NMR investigation of 1,1-dilithioalkenes, 1,2-dilithioalkenes, 1-lithiocyclopropenes and 1,2-dilithiocyclopropenes " (1990). Retrospective Theses and Dissertations. 9860. https://lib.dr.iastate.edu/rtd/9860 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. MICROFILMED 1991 INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • THE MONATOMIC IONS! 1. What Is the Formula for Silver? Ag 2. What Is
    Name: ______________________________ THE MONATOMIC IONS! 1. What is the formula for silver? Ag+ 22. What is the formula for cobalt (II)? Co2+ 2. What is the formula for cadmium? Cd2+ 23. What is the formula for chromium (II)? Cr2+ 3. What is the formula for manganese (II)? Mn2+ 24. What is the formula for copper (II)? Cu2+ 4. What is the formula for nickel (II)? Ni2+ 25. What is the formula for tin (IV)? Sn4+ 5. What is the formula for chromous? Cr2+ 26. What is the formula for lead (IV)? Pb4+ 6. What is the formula for zinc? Zn2+ 27. What is the formula for iron (III)? Fe3+ 2+ 2+ 7. What is the formula for cobaltous? Co 28. What is the formula for mercury (I)? Hg2 8. What is the formula for cuprous? Cu+ 29. What is the formula for lead (II)? Pb2+ 9. What is the formula for ferrous? Fe2+ 30. What is the formula for mercury (II)? Hg2+ 2+ 2+ 10. What is the formula for mercurous? Hg2 31. What is the formula for iron (II)? Fe 11. What is the formula for stannous? Sn2+ 32. What is the formula for copper (I)? Cu+ 12. What is the formula for plumbous? Pb2+ 33. What is the formula for tin (II)? Sn2+ 13. What is the formula for chromic? Cr3+ 34. What is the formula for fluoride? F- 14. What is the formula for cobaltic? Co3+ 35. What is the formula for chloride? Cl- 15. What is the formula for cupric? Cu2+ 36. What is the formula for hydride? H- 16.
    [Show full text]
  • Intermolecular Interaction in Methylene Halide (CH2F2, Ch2cl2, Ch2br2 and CH2I2) Dimers
    molecules Article Intermolecular Interaction in Methylene Halide (CH2F2, CH2Cl2, CH2Br2 and CH2I2) Dimers László Almásy 1,2,* ID and Attila Bende 3,* ID 1 State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China 2 Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly Thege út 29-33, 1121 Budapest, Hungary 3 Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania * Correspondence: [email protected] (L.A.); [email protected] (A.B.) Academic Editors: Igor Reva and Xuefeng Wang Received: 27 April 2019; Accepted: 1 May 2019; Published: 10 May 2019 Abstract: The intermolecular interaction in difluoromethane, dichloromethane, dibromomethane, and diiodomethane dimers has been investigated using high level quantum chemical methods. The potential energy curve of intermolecular interaction along the C··· C bond distance obtained using the coupled-cluster theory with singles, doubles, and perturbative triples excitations CCSD(T) were compared with values given by the same method, but applying the local (LCCSD(T)) and the explicitly correlated (CCSD(T)-F12) approximations. The accuracy of other theoretical methods—Hartree–Fock (HF), second order Møller–Plesset perturbation (MP2), and dispersion corrected DFT theory—were also presented. In the case of MP2 level, the canonical and the local-correlation cases combined with the density-fitting technique (DF-LMP2)theories were considered, while for the dispersion-corrected DFT, the empirically-corrected BLYP-D and the M06-2Xexchange-correlation functionals were applied. In all cases, the aug-cc-pVTZ basis set was used, and the results were corrected for the basis set superposition error (BSSE) using the counterpoise method.
    [Show full text]