United States Patent Office Patiented (Oct

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patiented (Oct 3,056,673 United States Patent Office Patiented (Oct. 2, 1962 1. 2 manipulation of incident light to enable one and the same 3,056,673 PRINT-OUT AND DEVELOPABLE-OUT System to be either negative working or positive working PHOTOGRAPHIC PROCESSES as desired. Eugene Wainer, Cleveland Heights, Ohio, assignor to AS has been explained in the aforesaid copending ap Horizons Incorporated, Cleveland, Ohio, a corporation 5 plications, certain organic halogen compounds appear of New Jersey to be effective sources of highly reactive free radicals No Drawing. Filed Apr. 18, 1960, Ser. No. 22,703 on exposure to light of suitable wavelengths. When 7 Claims. (CI. 96-48) these free radicals are formed in the presence of certain arylamines or N-vinylamines or combinations thereof, This invention relates to photography. More particu 0. highly useful color changes of permanent nature take larly it relates to compositions which are sensitive to place making such reactions of utility in the photographic light and which are suitable for photography and photo art. On a practical basis, the majority of photographic graphic reproduction purposes. The invention relates to exposures are limited by the specific nature of a light the production of stable, colored, print-out, and develop Source and, generally speaking, the light source utilized able out images produced by exposing to light and/or to 5 is not normally the ideal one for a specific combination light and heat, combinations of organic amines, specific of ingredients. organic halogen-containing compounds which produce I have found that by Suitable choice of the organic free radicals on exposure to light, and various Substrates halogen compound which represents the source of the for suitable disposition of the active agents with or with free radicals, the desired photochemical reaction can be out minor additions for specific and minor purposes and 20 made to take place within a relatively narrow spectral more specifically this invention relates to the control of range which, in many cases, can be matched with levels spectral sensitivity in the production of such images. As of high intensity from a specific light source to enable one the result of the ability to control these photochemical to make best use of the energy available from such light reactions as a function of the specific devices for imparting source. I have further found that such reactions will spectral sensitivity over relatively narrow ranges, a multi 25 not take place at wave lengths substantially longer than plicity of photochemical reactions of useful nature is avail in the region of peak sensitivity and, more important, able in one and the same composition as a function of nor in wave lengths very much shorter than the region the manipulation of the wave length of the incident light. of peak sensitivity. As a result, by utilizing free radical In various copending United States patent applications sources which have individually different peak sensitivities filed by me including Serial Nos. 787,112, filed January 30 (for decomposition to produce free radicals under the 16, 1959; 841,459, filed September 22, 1959; 841,460, influence of light), reaction control is available for a filed September 22, 1959; 842,569, filed September 28, number of useful end items by the use of such free 1959; 1,161 and 1,162, both filed January 8, 1960, I have radical sources in conjunction with light of widely dif described the utility of photochemical reactions between ferent spectral sensitivity ranges. certain organic amines and certain organic halogen com The nature of the organic halogenating compound de pounds which act as sources of halogen free radicals on termines, in the main, the area of peak sensitivity and the exposure to light. As described in the aforesaid applica spectral range of sensitivity. In general, it appears that tions, suitable organic halogen compounds are halogen the higher the bond dissociation energy for free radical ated hydrocarbons in which the active halogen atom is formation, the shorter the wave length at which the free attached to a carbon atom to which there is attached not 40 radical source exhibits peak sensitivity. more than a single hydrogen atom and as more specifi The organic halogen-containing compounds suitable cally described in my application Serial No. 787,112, filed for the purposes of my invention may be divided into January 16, 1959, the activation energy of the halogen three groups. The first group of free radical sources ex containing free radical is the most important factor in hibits peak sensitivity in the spectral range 5100 to 5500 determining the suitability of the halogenated hydro 45 A. and includes carbon tetraiodide, tribromoidomethane, carbon for the process. It appears that in order for the trichloroiodomethane, dichloroiodomethane, and dibro halogenated hydrocarbon to be effective, it must have an moiodomethane. Each of these, it will be noted, is a energy of dissociation or in other words, an energy of halogenated methane in which at least one hydrogen has formation of the free halogen radical of not less than been replaced by iodine, and at least two of the remain about 40 kilogram calories per mol. 50 ing hydrogens have been replaced by a halogen selected I have now found that the spectral sensitivity of such from the group consisting of iodine, bromine and chlo photochemical reactions can be controlled by proper rine. Of this group, the compound carbon tetraiodide choice of organic halogen-containing compound which is preferred since it is a solid at room temperature and acts as a source of free radicals and that such control is readily prepared in pure state. The liquids are also ef provides an expanded facility for use of these reactions 55 fective materials but present difficulties in utilization at and a degree of flexibility not available through random room temperature because of their liquid state. This de use of such organic halogen compounds. fect can be eliminated through encapsulation techniques Principal objects of this invention are: to provide a by which means liquids may be incorporated in a solid chemical means of control of spectral response of a film and retained indefinitely therein without evaporation. photochemical reaction within the category described in 60 The second group of free radical sources exhibits peak my copending applications and hereinafter more fully sensitivity in the spectral range 3900 to 4000 A. and described; to utilize the means of control of Spectral re includes carbon tetrabromide, trichlorobromomethane, sponse to facilitate the preparation of the photosensitive and dichlorobromomethane. Each of these, it will be compositions with respect to the type of light that may noted, is a halogenated methane in which at least one be used during the preparation and prior to exposure; hydrogen has been replaced by a bromine atom and at as a result of the means of control of spectral sensitivity 65 least two of the remaining hydrogens have been replaced to increase the effectiveness of the photochemical reac by a halogen from the group consisting of Ci and Br. tion by making fuller use of all the energy available from Again, for reasons given in the previous paragraph, the a specific light source; to make possible the development compound carbon tetrabromide is preferred. and utilization of more than one photochemical reaction The third group of free radical sources useful for the in one and the same material through manipulation of 70 purposes of my invention exhibit peak sensitivity in the spectral ranges of incident light; as a result of such region of 3000 A. and includes carbon tetrachloride, 8,056,678 3. hexachloroethane, and tetrachlorotetrahydronaphthalene. SERIES III.-N-WINYLCARBAZOLE Each of these, it will be noted, is a chlorinated hydrocar bon in which any carbon atom to which a chlorine is at III(a) III(b) III.(c) tached, is attached to not more than one hydrogen. For practical purposes hexachloroethane and tetrachlorotetra 5 150 cc. benzene. 150 cc. benzene. 150 cc. benzene. hydronaphthalene are preferred since they are stable solids 15 g. eicosane (M.P.s 15 g. eicosane (M.P. 15 g. eicosane (M.P. 38° C). =38° C). =38° C). at room temperature. 5g. hexahexacontane 5 g. hexahexacontane 5 g. hexahexacontane Three main groups of organic amines useful for the 20g.(M.P. N-vinylcarbazole. = 103° C). 20 (M.P.g. N-vinylcarba- =103° C). 20g.(M.P. N-vinylcarba = 103° C). purposes of my invention have been described in my co zole. zole. pending applications. The first group consists of amines O 25 g. carbon tetra. 16 g. carbon tetra- 12 g. hexachloro wherein the amine nitrogen is attached to aryl or modi iodide. bromide. ethane. fied aryl substituents or, more specifically, carbocyclic, e.g. benzene or modified benzene ring substituents. Di SERIES W.-N-WINYLCARBAZOLE phenylamine is representative of this group. The second group comprises amines in which the amine nitrogen con 5 IV(a) IV (b) IV(c) stitutes a portion of a heterocyclic ring. Indoles, pyr 150 cc. benzene. 50 cc. benzene. 150 cc. benzene. roles and carbazoles are representative of the group. The 15 g. ecosane 15g. eicosane. 15 g. eicosane. 5 g. hexacontane. 5 g. hexacontane. 5 g. hexacontane. third group of compounds represents an especially pre 0.2g. azo-bis-isobutyr 0.2g. azo-bis-isobu 0.2g. azo-bis-isobu ferred species of the preceding groups and is comprised Onitrile. tyronitrile. tyronitrile. 20 20g. N-vinylcarbazole. 20 5. N-vinylcarba- 20 g. N-vinylcarba of N-vinylamines, and particularly amines in which the ZOle. zole. amine nitrogen is attached to a vinyl group and is also a 25 g. carbon tetra- 16 g. carbon tetra- 12g. hexachloro member of a six-membered ring or a member of other iodide.
Recommended publications
  • Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely Through a Common Mechanism S
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2017/03/21/mol.117.108290.DC1 1521-0111/91/6/620–629$25.00 https://doi.org/10.1124/mol.117.108290 MOLECULAR PHARMACOLOGY Mol Pharmacol 91:620–629, June 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely through a Common Mechanism s Anita Luethy, James D. Boghosian, Rithu Srikantha, and Joseph F. Cotten Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (A.L., J.D.B., and J.F.C.); Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.); Carver College of Medicine, University of Iowa, Iowa City, Iowa (R.S.) Received January 7, 2017; accepted March 20, 2017 Downloaded from ABSTRACT The TWIK-related acid-sensitive potassium channel 3 (TASK-3; hydrate (165% [161–176]) . 2,2-dichloro- . 2-chloro 2,2,2- KCNK9) tandem pore potassium channel function is activated by trifluoroethanol . ethanol. Similarly, carbon tetrabromide (296% halogenated anesthetics through binding at a putative anesthetic- [245–346]), carbon tetrachloride (180% [163–196]), and 1,1,1,3,3,3- binding cavity. To understand the pharmacologic requirements for hexafluoropropanol (200% [194–206]) activate TASK-3, whereas molpharm.aspetjournals.org TASK-3 activation, we studied the concentration–response of the larger carbon tetraiodide and a-chloralose inhibit. Clinical TASK-3 to several anesthetics (isoflurane, desflurane, sevoflurane, agents activate TASK-3 with the following rank order efficacy: halothane, a-chloralose, 2,2,2-trichloroethanol [TCE], and chloral halothane (207% [202–212]) .
    [Show full text]
  • Chemical Chemical Hazard and Compatibility Information
    Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine
    [Show full text]
  • Used at Rocky Flats
    . TASK 1 REPORT (Rl) IDENTIFICATION OF CHEMICALS AND RADIONUCLIDES USED AT ROCKY FLATS I PROJECT BACKGROUND ChemRisk is conducting a Rocky Flats Toxicologic Review and Dose Reconstruction study for The Colorado Department of Health. The two year study will be completed by the fall of 1992. The ChemRisk study is composed of twelve tasks that represent the first phase of an independent investigation of off-site health risks associated with the operation of the Rocky Flats nuclear weapons plant northwest of Denver. The first eight tasks address the collection of historic information on operations and releases and a detailed dose reconstruction analysis. Tasks 9 through 12 address the compilation of information and communication of the results of the study. Task 1 will involve the creation of an inventory of chemicals and radionuclides that have been present at Rocky Flats. Using this inventory, chemicals and radionuclides of concern will be selected under Task 2, based on such factors as the relative toxicity of the materials, quantities used, how the materials might have been released into the environment, and the likelihood for transport of the materials off-site. An historical activities profile of the plant will be constructed under Task 3. Tasks 4, 5, and 6 will address the identification of where in the facility activities took place, how much of the materials of concern were released to the environment, and where these materials went after the releases. Task 7 addresses historic land-use in the vicinity of the plant and the location of off-site populations potentially affected by releases from Rocky Flats.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • The Preparation of Certain Inorganic and Organic Compounds Which May Be of Use in Mineralogical Separations
    Scholars' Mine Masters Theses Student Theses and Dissertations 1928 The preparation of certain inorganic and organic compounds which may be of use in mineralogical separations Clarence Jay Black Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Chemistry Commons Department: Recommended Citation Black, Clarence Jay, "The preparation of certain inorganic and organic compounds which may be of use in mineralogical separations" (1928). Masters Theses. 4697. https://scholarsmine.mst.edu/masters_theses/4697 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. THF PREPAHATION OF CEHTAIli INORGANIC AND ORGANIC CO;~POUNDS VIHICH MAYm~ OF USE IN UI:N~ 'RALOGICAL, SJ~PARATIONS by Clarence J. Black A Thesis Submitted to the Faculty of the School of Bines and Metallurgy or the University Of X1a sour 1 in partial fulflbletlt ,tor the Degree of lalster of Science Rolla, Uis oouri 1928 Approved by kV·) :Scrkg<Ytiad, Associate Professor of Chemistry 34481. COIXPOUlIDf:; WHICH :~AY BJ~ OF USE In !~~IJT,~'RltT.lOGICAL S:,"?ARATIONS. ____TABlJt: OJ?......._- ",..,r"."_"_'C~nlTENTS.•_ Page Introriuction------------------------------------ 2 Resurn! of the Use of Heavy Liquids For :Mineralo~ical Separations------------- 3 Some Propertiee Of' Hea,vyLiquids That Affect Them 'For l!ineralor;ical Separat ions---- 5 Specific Gravlt 1eB Of Some Comr:lon Uinera.l~:;- ----- 5 Experimental Data.-------- ..,---------------------- 7 Preparation Of" Compounda-------------- ...
    [Show full text]
  • Preparation and 13C NMR Investigation of 1,1-Dilithioalkenes
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1990 Preparation and 13C NMR investigation of 1,1-dilithioalkenes, 1,2-dilithioalkenes, 1-lithiocyclopropenes and 1,2-dilithiocyclopropenes Hon-Wah Man Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Man, Hon-Wah, "Preparation and 13C NMR investigation of 1,1-dilithioalkenes, 1,2-dilithioalkenes, 1-lithiocyclopropenes and 1,2-dilithiocyclopropenes " (1990). Retrospective Theses and Dissertations. 9860. https://lib.dr.iastate.edu/rtd/9860 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. MICROFILMED 1991 INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • THE MONATOMIC IONS! 1. What Is the Formula for Silver? Ag 2. What Is
    Name: ______________________________ THE MONATOMIC IONS! 1. What is the formula for silver? Ag+ 22. What is the formula for cobalt (II)? Co2+ 2. What is the formula for cadmium? Cd2+ 23. What is the formula for chromium (II)? Cr2+ 3. What is the formula for manganese (II)? Mn2+ 24. What is the formula for copper (II)? Cu2+ 4. What is the formula for nickel (II)? Ni2+ 25. What is the formula for tin (IV)? Sn4+ 5. What is the formula for chromous? Cr2+ 26. What is the formula for lead (IV)? Pb4+ 6. What is the formula for zinc? Zn2+ 27. What is the formula for iron (III)? Fe3+ 2+ 2+ 7. What is the formula for cobaltous? Co 28. What is the formula for mercury (I)? Hg2 8. What is the formula for cuprous? Cu+ 29. What is the formula for lead (II)? Pb2+ 9. What is the formula for ferrous? Fe2+ 30. What is the formula for mercury (II)? Hg2+ 2+ 2+ 10. What is the formula for mercurous? Hg2 31. What is the formula for iron (II)? Fe 11. What is the formula for stannous? Sn2+ 32. What is the formula for copper (I)? Cu+ 12. What is the formula for plumbous? Pb2+ 33. What is the formula for tin (II)? Sn2+ 13. What is the formula for chromic? Cr3+ 34. What is the formula for fluoride? F- 14. What is the formula for cobaltic? Co3+ 35. What is the formula for chloride? Cl- 15. What is the formula for cupric? Cu2+ 36. What is the formula for hydride? H- 16.
    [Show full text]
  • United States Patent Office Patented Dec
    2,964,508 United States Patent Office Patented Dec. 13, 1960 2 diiodomethane, iodotribromomethane, chlorotriiodometh 2,964,508 ane, dichlorodiiodomethane, iodotrichloromethane, fluo rotriiodomethane, difluorodiiodomethane, and iodotri PROCESS FOR CONTROLLING THE MOLECU. fluoromethane. LAR WEIGHT OF VENYLDENE CHLORIDE 5 The amount of the perhalomethane that may be em POLYMERS ployed in the process of this invention may be varied Marion R. Rector and William E. Cohrs, Midland, Mich., from 0.05 to 5.0 percent by weight based on the weight assignors to The Dow Chemical Company, Midland, of the monomer. The preferred concentration is from Mich., a corporation of Delaware 1 to 3 percent by weight based on the weight of the No Drawing. 0 monomer. When less than 0.05 percent is used the Filed June 23, 1955, Ser. No. 517,663 amount of molecular weight lowering is not usually great 6 Claims. (C. 260-87.7) enough for practical purposes. When more than 5.0 percent is used no additional benefits are realized. When the compounds are used in these concentrations a sub This invention relates to a process for controlling the 5 stantial lowering of molecular weight of the polymers molecular weight of polymers. More particularly, it re occurs without the necessity of altering polymerization lates to a process for preparing vinylidene chloride poly conditions, and without significant decrease in polymeri mers and copolymers having lower molecular weights zation rate. than similar polymers prepared at the same tempera Any of the known methods of polymerization may be tures but using prior known processes. 20 employed in this process (mass, aqueous emulsion, aque Vinylidene chloride polymers and copolymers of viny ous suspension, or solution), although especially ad lidene chloride with another copolymerizable monomer vantageous results are obtained when the common non such as vinyl chloride have been fabricated into a wide emulsified aqueous suspension method is used.
    [Show full text]
  • Molecular Crystal Global Phase Diagrams. III. Sufficient Parameter
    research papers Acta Crystallographica Section A Foundations of Molecular crystal global phase diagrams. III. Crystallography Sufficient parameter space determination ISSN 0108-7673 J. Brandon Keitha,b,c* and Richard B. McClurga,d Received 16 April 2009 Accepted 10 November 2009 aDepartment of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA, bDepartment of Physics and Astronomy, Brigham Young University, Provo, UT 84606, USA, cCalifornia Institute of Technology, Division of Engineering and Applied Science, Mail Code 138-78, Pasadena, CA 91125, USA, and dSSCI, A Division of Aptuit, West Lafayette, IN 47906, USA. Correspondence e-mail: [email protected] In previous parts of this series [Mettes et al. (2004). Acta Cryst. A60, 621–636; McClurg & Keith (2010). Acta Cryst. A66, 38–49] a method for constructing global phase diagrams (GPDs) for molecular crystals was developed and the method was applied to single-component ordered crystal structures of tetrahedral molecules. GPDs are useful for visualizing what types of crystal structures a given molecule may assume depending on molecular form/ interaction. Their construction uses group-theoretical methods which enumerate all possible symmetry breakings during a statistical mechanical high-to-low temperature search. In this work these results are expanded upon by outlining a method to determine a sufficiently rich parameter space to represent the experimentally observed crystal structures in a data set derived from the Cambridge Structural Database. This is significant because previous work (Mettes et al., 2004) did not specify the number of parameters needed for GPDs. Although there are suggestions in the literature that thousands of parameters are required to adequately describe tetrahedral molecule intermolecular potentials, it is found that 15 parameters are sufficient to represent the structures of the test data.
    [Show full text]
  • Diamond Growth by Chemical Vapour Deposition J J Gracio, Q H Fan, J C Madaleno
    Diamond growth by chemical vapour deposition J J Gracio, Q H Fan, J C Madaleno To cite this version: J J Gracio, Q H Fan, J C Madaleno. Diamond growth by chemical vapour deposition. Jour- nal of Physics D: Applied Physics, IOP Publishing, 2010, 43 (37), pp.374017. 10.1088/0022- 3727/43/37/374017. hal-00597830 HAL Id: hal-00597830 https://hal.archives-ouvertes.fr/hal-00597830 Submitted on 2 Jun 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Table of Contents 1 Properties and applications of Diamond................................................................................. 3 1.1 CVD diamond applications............................................................................................. 4 2 Growth of Diamond by Chemical Vapour Deposition ........................................................... 6 2.1 Development in Diamond Synthesis by CVD ................................................................ 6 2.2 CVD systems .................................................................................................................
    [Show full text]
  • Tables of Molecular Vibrational Frequencies, Consolidated Volume I
    NAT L INST. OF STAND & TECH R.I.C. NBS PUBLICATIONS DATE DUE f i tZ x tx AMP \ Q 1998 Demco, Inc. 38-293 OF STANDARDS LIBRARY UNITED STATES DEPARTMENT OF COMMERCE JUL 2 7 1976 762636 Peter G. Peterson, Secretary C, NATIONAL BUREAU OF STANDARDS • Lawrence M. Kushner, Acting Director ( ; :* no ‘ 3 / 9 7^ Tables of Molecular Vibrational Frequencies Consolidated Volume I Takehiko Shimanouchi Department of Chemistry Faculty of Science University of Tokyo Tokyo, Japan NSRDS-NBS 39 Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 39, 164 pages (June 1972) L NSRDAP © 1972 by the Secretary of Commerce on Behalf of the United States Government Supersedes and extends the data contained in Tables of Molecular Vibrational Frequencies, NSRDS-NBS-6, Part 1; NSRDS-NBS-11, Part 2; and NSRDS-NBS-17, Part 3. Issued June 1972 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 (Order by SD Catalog No. C13. 48:39). Price S3 Stock Number 0303—0845 Library of Congress Catalog Card Number: 66-60085 II Foreword The National Standard Reference Data System provides effective access to the quantitative data of physical science, critically evaluated and compiled for convenience, and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President’s Office of Science and Technology and the Federal Council for Science and Technology, with responsibility to administer it assigned to the National Bureau of Standards. The System now comprises a complex of data centers and other activities, carried on in academic institutions and other laboratories both in and out of government.
    [Show full text]
  • C1-C4 Halogenated HC Info 16FEB2018.Xlsx
    C1-C4 Halogenated Hydrocarbons/Halocarbons Not Otherwise Listed (C1-C4 NOL) Feb 28, 2018 Administrative Council Mtg - Printed 2/16/20184:11 PM Reported Uses (SOURCES:HAZMAP, NJDHSS, Wikipedia, TSCA CDR, mfr literature) TURA TSCA CDR Chemical CAS/Chemica chemical name chemical fire 2015 Chemical Name Pesti- blowing feedstock / supressant / propell- Inventory? TRI? List l Number (synonyms) formula Solvent refriger-ant etchant Other Tier II cide agent intermed-iate flame ant status* retardant insulation for refrigerators, freezers, commercial refrigeration equipment, refrigerated containers and LNG ships; spray foam insulation; insulated metal panels; slabstock and molded flexible foam; refrigerant for chillers; and solvents for metal cleaning and electronics, and circuit flush. https://www.honeywell-blowingagents.com/?document=solstice-lba-technical- HFO-1233zd (E) brochure&download=1 Hydro-fluoro-olefin C H ClF YYY yhttps://www.honeywell-refrigerants.com/americas/product/solstice-zd/ (HFO) 3 2 3 CDR 2016 Honeywell: 100% as propellants and blowing agents for plastics product mfg; R-1233zd CDR Honeywell Solstice® ZD refrigerant, Solstice® 1233zdE, Solstice Blowing Agent; Arkema (current Forane® 1233zd blowing agent for spray PU foam, appliance insulation, etc. and solvent (may Honeywell not be available in US) product) C1-C4 Cat 102687-65-0 1-Chloro-3,3,3-trifluoropropene Y 106‐95‐6 Allyl bromide 2-Propenyl bromide C3H5Br Y y Manufacture of synthetic perfumes, other allyl compounds; Insecticidal fumigant; 1-Propene, 3-bromo- Chemical intermediate in organic synthesis, for resins (copolymer with sulfur dioxide) and fragrances; As a fumigant (if quite volatile) or as a contact poison; C1-C4 Cat Used in the manufacture of plastics and dyestuff.
    [Show full text]