OFFICE William B

Total Page:16

File Type:pdf, Size:1020Kb

OFFICE William B Patented Mar. 2, 1954 2,671,079 UNITED STATES PATENT 2,671,079 PHosPHoRUS-conTAINING PolyMERs OFFICE William B. McCormack, Wilmington, Del, as signor to E. I. du Pont de Nemours and Com pany, Wilmington, Del, a corporation of Dela Wate No Drawing. Application August 7, 1951, Serial No. 240,813 1. 14 Claims. (CI260-92.3) This invention relates to new phosphorus-con taining interpolymers and to a process for obtain The dihalophosphine to be used in this process ing them. has the formula RPX2, in which R, represents a In my copending application Serial No. 240,814, member of the group consisting of alkyl, aryland there are described stable, heat-resistant poly aralkyl radicals and X represents a member of mers containing phosphorus in the form of phoS the group consisting of chlorine and bromine, phine oxide groups. These polymers are prepared The preferred phosphines are dichlorophenyl by the reaction of a hydroxyl-containing com phosphine and dichloroethylphosphine. A wide pound, such as Water or an alcohol, With a phoS variety of phosphine derivatives having the gene phorus-containing interpolymer in which the eral formula, shown may be employed. Represen phosphorus is present as dihalotertiaryphosphine O tative compounds include those in which R, rep groups. The latter interpolymers are the sub resents an alkyl group such as methyl, ethyl, ject of the present application. - propyl, butyl or octyl; an aryl group Such as It is an object of this invention to provide phenyl or alpha- or beta-naphthyl, or an aral polymeric products containing phosphorus, which kyl group such as benzyl or phenylethyl. In gen polymers may readily be converted to useful 5 eral, the lower members of these classes of radi polymers containing phosphorus in the form of cals are most useful. These compounds are read the stable phosphine oxide grouping. A further ily available from several well known procedures, object is to provide a process for the prepara Such as by the action of a phosphorus trihalide tion of these intermediate phosphorus-contain on a hydrocarbon in the presence of aluminum ing polymers. 20 chloride, or by the action of a phosphorus trihal According to the present invention, Such inter ide on dialkyl or diaryl mercury. Kharasch in J. polymers are prepared by contacting a polymer Org. Chem. 14, 429 (1949) describes a process for izable organic compound containing conjugated making dichloroethylphosphine from phosphorus olefinic double bonds with a mono-substituted trichloride and lead tetraethyl. The various pro dihalophosphine, in the presence of a free radi 25 cedures for making these compounds are Sum cal polymerization catalyst. marized in Kosolapoff, Organophosphorus Com The polymerizable compounds containing Con pounds, Wiley, N. Y. (1950), chapter 3. jugated olefinic double bonds which are useful The polymerization reaction is carried out with in the practice of this invention include hydro the aid of a free radical polymerization catalyst, carbons, such as butadiene, isoprene, 2,3-dimeth 30 such as an azonitrile, or a dialkyl or diacyl per yl-1,3-butadiene, 1,3-pentadiene, 2,4-hexadiene, oxide. The term “free radical polymerization 2,4-heptadiene, 2,5-dimethyl-2,4-hexadiene, myr catalyst” is also meant to include actinic radia cene, allo-ocimene, 2,6-dimethyl-1,3-heptadiene, tion, and particularly ultraviolet light. The 1,3-decadiene, 2-phenyl-1,3-butadiene, 2,3-di azonitrile catalysts which may be employed in phenyl-1,3-butadiene, 2-benzyl-1,3-butadiene, 35 this reaction are those set forth in detail in 1,1'-biscyclohexenyl, 2-tolyl - 1,3-butadiene, 1 United States Patent No. 2,471,959, to Madison vinyl - 1-cyclohexene, 1,2-dimethylenecyclohex Hunt and include alpha, alpha-azodiisobutyroni ane, 1,3,5-hexatriene, 1,3-cyclopentadiene and trile; alpha, alpha-azobis- (alpha-methylbutyl 1,3-cyclohexadiene; carboxylic acids, such as 2,4- ronitrile) ; alpha, alpha-azobis-(alpha-methyl pentadienoic acid (beta-vinylacrylic acid), sorbic 40 isocapronitrile) and the like. Suitable peroxide acid, muconic acid and eleostearic acid, and the catalysts include the dialkyl peroxides such as esters of such acids; halogenated hydrocarbons di(tert-butyl) peroxides, and the diacyl per such as 2-chloro-1,3-butadiene, 2-bromo-1,3-bu oxides such as butyryl, lauroyl and benzoyl per tadiene, 1-chloro-1,3-butadiene and the like; and oxides. The amount of catalyst which may be nitriles, such as 1-cyano-1,3-butadiene (beta 45 used may vary over a wide range from 0.1% by vinyl-acrylonitrile) and 2-cyano-1,3-butadiene. weight upwards. From 1 to 5% by weight of The term “olefinic double bond' is meant to in catalyst, based on the total weight of the mono clude any non-aromatic carbon-to-carbon dou meric reactants, is ordinarily desirable. The ble bond, whether occurring in an acycylic or in azonitriles represent the preferred class of cat a cycloaliphatic system. Preferred compounds 50 alysts. of this class are butadlene, isoprene, 2-chloro-1,3- Although the interpolymers of this invention butadiene, 2-bromo-1,3-butadiene and myrcene. are most efficiently prepared by the use of poly Mixtures of two or more of these compounds may merization catalysts of the type described, they be employed. - . may also be prepared without the use of cat 55 alysts. Under such conditions, lower yields and 2,671,079 4. 3 the converted adduct of butadiene and dichloro lower degrees of polymerization are obtained. In methylphosphine), but is ordinarily between my copending application Serial No. 240,807, a about 10 and 20%. Actually the interpolymer process is described in which conjugated dienes usually contains somewhat less phosphorus than are reacted with substituted dihalophosphines the theoretical. The heat resistance and hydro under conditions calculated to give monomeric philic character of the polymers containing phOS addition products. As there set forth, the reac phine oxide groups increase in proportion to the tions almost always yield some polymeric prod amount phosphorus present. As little as 0.1% ucts in addition to the monomers. phosphorus confers these properties on the poly The two reactants may be used in equimolecul ner to a determinable extent, while at 2% phos lar amounts or an excess of one reactant or the it) phorus the effect is pronounced. Interpolymers other may be used to serve as a reaction medium. containing from about 2 to 15% phosphine (be The amount of each reactant present is prefer fore conversion to the phosphine oxide) repre ably between 5 and 95% by weight of the total sent the preferred class of products made ac amount of reactants. If the diene is present in 5 cording to this invention, excess, the composition of the interpolymer will The invention is illustrated by the following ordinarily be affected to some extent, since the examples: excess material can take part in the polymeriza Eacample 1 tion. This is not true when the dihalophosphine is present in excess. Use of an excess of diene A mixture of 50.0 g (0.28 m.) of redistilled results in increased yields of polymer and in the dichlorophenylphosphine, 19.1 g. (0.28 m.) of formation of polymers of increased viscosity. The redistilled isoprene containing no inhibitor and reaction may be conducted in the presence of a 700 mg. of alpha, alpha'-azobis-(alpha-methyl non-reactive medium such as petroleum ether, isocapronitrile) is warmed at about 40 C. for cyclohexane, benzene, carbon tetrachloride, chlo twenty-four hours. During this time a cream roform and the like. The mixture should be colored solid gradually forms. A small amount free of substances capable of converting the di of residual liquid is decanted, and the solid is haio compounds to the corresponding oxides, such washed with petroleum ether, then hydrolyized as water, alcohols and carboxylic acids, with water to give a yellow-orange oil and the When chloroform is used as the reaction me mixture is neutralized with sodium hydroxide. dium, the polymerization proceeds with unusual 30 This oil is separated from the aqueous layer, rapidity and results in increased yields of poly washed with water and taken up in chloroform. ners having higher viscosities than polymers ob Evaporation of the chloroform and drying of the tained with the other common solvents. These residue at 90° C. (10 nm.) gives 19.6 g. of a clear polymers are also found to contain some chlorine, yellow-red vitreous resin. even after conversion of the dichlorotertiary Aralysis. - Calcd. for C11H13OP:P-16.1%. phosphine groups to phosphine oxide groups. Found: P=15.5%. Although the nature of this effect is not entirely The product is therefore substantially the 1:1 understood, it appears that the chloroform in heteropolymer, obtained in 37% conversion. By some way takes part in the polymerization re extraction of the aqueous hydrolysate layer with action, possibly by forming or aiding in the 40 chloroform, followed by distillation, there is ob formation of cross-linkages and in chain trans tained an 18% yield of liquid monomeric adduct fer, boiling at 160-165° C. (2 mm.). The polymers produced according to the pres Eacample 2 ent invention are white to light brown in color and vary in form from tacky to granular solids. The procedure described in Example is re By treatment with water, alcohol or a carboxylic peated to the point where the reaction mixture acid, they are readily converted to polymers in is hydrolyzed with water. The mixture is then which the phosphorus is present as phosphine salted and extracted with chloroform. The ex oxide groups, as described in copending applica tract, which contains both monomeric and poly tion Serial No. 240,814.
Recommended publications
  • Synthesis of C2-Symmetric P-Chiral Bis(Phosphine Borane)
    Synthesis of C2-symmetric P-chiral bis(phosphine borane)s and their application in rhodium(I) catalyzed asymmetric transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University © Copyright by Holly Ann Heath (2001) Abstract: A new development for the synthesis C2-Synnnetric P-Chiral Bis(phosphine borane) ligands is reported, These ligands are based on the asymmetric induction of prochiral phosphine ligands with organolithium/chiral diamine complexes. These ligands have been evaluated in asymmetric rhodium(I) catalyzed hydrogenation and [4 + 2] cycloisomerization reactions. Enantiomeric excesses as high as 99% were obtained for ene-diene cycloadditions. Synthesis of C2-Symmetric P-Chiral Bis(phosphine borane)s and Their Application in Rhodium(I) Catalyzed Asymmetric Transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University Bozeman, Montana March 2001 ii APPROVAL of a dissertation submitted by Holly Ann Heath This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. Dr. Thomas Livinghouse < Chairperson, Graduate Committee Date Approved for the Department of Chemistry Dr. Paul A. Grieco Department Head Approved for the College of Graduate Studies Dr. Bruce R. McLeod Graduate Dean Date iii STATEMENT OF PERMISSION TO USE In presenting this dissertation .in partial fulfillment of the requirements for a doctoral degree at Montana State University-Bozeman, I agree that the Library shall make it available to borrowers under rules of the Library.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec
    United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec. 26, 1989 (54) PROCESS FOR THE PREPARATION OF Kosolapoff, G. M. et al. Organic Phosphorus Compounds AROMATIC PHOSPHORUS-CHLORNE (1973) vol. 4 at p. 95. Wiley-Interscience, Publ. COMPOUNDS Kosolapoff, Gennady M. Organophosphorus Com 75 Inventor: Hans-Jerg Kleiner, pounds (1958), John Wiley & Sons, Publ. pp. 59-60. Kronberg/Taunus, Fed. Rep. of Primary Examiner-Paul J. Killos Germany Attorney, Agent, or Firm-Curtis, Morris & Safford 73) Assignee: Hoechst Aktiengesellschaft, 57 ABSTRACT Frankfurt am Main, Fed. Rep. of Aromatic phosphorus-chlorine compounds, especially Germany diphenylphosphinyl chloride (C6H5)2P(O)Cl, phenyl phosphonyl dichloride C6HsP(O)Cl2, dichlorophenyl 21 Appl. No.: 554,591 phosphine C6HsPCl2 and chlorodiphenylphosphine (C6H5)2PCl, and the corresponding sulfur analogs, are 22 Filed: Nov. 23, 1983 obtained by reaction of aromatic phosphorus com 30 Foreign Application Priority Data pounds, which contain oxygen or sulfur, of the formula I Nov. 27, 1982 DE Fed. Rep. of Germany ....... 324.4031 511 Int, C.'................................................ CO7C 5/02 52 U.S. C. .................................... 562/815; 562/818; 562/819 58) Field of Search ..................................... 260/543 P in which X=O or S, and m= 1, 2 or 3, with phosphorus 56) References Cited chlorine compounds of the formula II U.S. PATENT DOCUMENTS (C6H5)3P Cln (II) 3,244,745 4/1966 Toy et al. ........................ 260/543 P FOREIGN PATENT DOCUMENTS in which n=1, 2 or 3, at temperatures between about 0093420 4/1983 European Pat. Off. 330 and 700° C. Preferred starting materials are tri phenylphosphine oxide (C6H5)3PO and phosphorus OTHER PUBLICATIONS trichloride PCl3.
    [Show full text]
  • Hazardous Substances (Chemicals) Transfer Notice 2006
    16551655 OF THURSDAY, 22 JUNE 2006 WELLINGTON: WEDNESDAY, 28 JUNE 2006 — ISSUE NO. 72 ENVIRONMENTAL RISK MANAGEMENT AUTHORITY HAZARDOUS SUBSTANCES (CHEMICALS) TRANSFER NOTICE 2006 PURSUANT TO THE HAZARDOUS SUBSTANCES AND NEW ORGANISMS ACT 1996 1656 NEW ZEALAND GAZETTE, No. 72 28 JUNE 2006 Hazardous Substances and New Organisms Act 1996 Hazardous Substances (Chemicals) Transfer Notice 2006 Pursuant to section 160A of the Hazardous Substances and New Organisms Act 1996 (in this notice referred to as the Act), the Environmental Risk Management Authority gives the following notice. Contents 1 Title 2 Commencement 3 Interpretation 4 Deemed assessment and approval 5 Deemed hazard classification 6 Application of controls and changes to controls 7 Other obligations and restrictions 8 Exposure limits Schedule 1 List of substances to be transferred Schedule 2 Changes to controls Schedule 3 New controls Schedule 4 Transitional controls ______________________________ 1 Title This notice is the Hazardous Substances (Chemicals) Transfer Notice 2006. 2 Commencement This notice comes into force on 1 July 2006. 3 Interpretation In this notice, unless the context otherwise requires,— (a) words and phrases have the meanings given to them in the Act and in regulations made under the Act; and (b) the following words and phrases have the following meanings: 28 JUNE 2006 NEW ZEALAND GAZETTE, No. 72 1657 manufacture has the meaning given to it in the Act, and for the avoidance of doubt includes formulation of other hazardous substances pesticide includes but
    [Show full text]
  • Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications
    materials Review Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications Sophie Wendels †, Thiebault Chavez †, Martin Bonnet, Khalifah A. Salmeia * and Sabyasachi Gaan * Additives and Chemistry Group, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; [email protected] (S.W.); [email protected] (T.C.); [email protected] (M.B.) * Correspondence: [email protected] (K.A.S.); [email protected] (S.G.); Tel.: +41-587-657-038 (K.A.S.); +41-587-657-611 (S.G.) † These two authors contributed equally to this work. Received: 13 May 2017; Accepted: 4 July 2017; Published: 11 July 2017 Abstract: Organophosphorus compounds containing P-C bonds are increasingly developed as flame retardant additives due to their excellent thermal and hydrolytic stability and ease of synthesis. The latest development (since 2010) in organophosphorus flame retardants containing P-C bonds summarized in this review. In this review, we have broadly classified such phosphorus compounds based on the carbon unit linked to the phosphorus atom i.e., could be a part of either an aliphatic or an aromatic unit. We have only considered those published literature where a P-C bond was created as a part of synthetic strategy to make either an intermediate or a final organophosphorus compound with an aim to use it as a flame retardant. General synthetic strategies to create P-C bonds are briefly discussed. Most popular synthetic strategies used for developing P-C containing phosphorus based flame retardants include Michael addition, Michaelis–Arbuzov, Friedels–Crafts and Grignard reactions.
    [Show full text]
  • Rhodium Complex Catalyzed Alcohol Carbonylation Reactions
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1979 Rhodium Complex Catalyzed Alcohol Carbonylation Reactions Joseph Leo Nothnagel Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Nothnagel, Joseph Leo, "Rhodium Complex Catalyzed Alcohol Carbonylation Reactions" (1979). Electronic Theses and Dissertations. 5041. https://openprairie.sdstate.edu/etd/5041 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. RHODIUM COMPLEX CATALY ZED ALCOHOL CARBONYLATION REACTIONS BY JOSEPH LEO NOTHNAGEL A thesis submitted in partical ful fillment of the requir ements for the degree Ma ster of Science , Major in Chemistry , South Dakota State Univers ity "SOUTH DAKOTA STATE UNIVERSITY LIBRARY RHODIUM COMPLEX CATALYZED ALCOHOL CARBONYLATION REACTIONS This dissertation is approved as a creditable and indep endent investigation by a.candidate for the degree , Master of Science, and is acceptable as meeting the dis­ sertation requirements for the degree, but without imply­ ing that the conclusions reached by the candidate are necessarily the conclusions of the major department . Thesis adpiser Date Head , Chemistry Department Date ACKNOWLEDGEMENTS To Dr . Ols·on who, like all great teachers, gave far more than he received; To my wi fe who , as a loving wife, put up with one too many accidents; To my parents , who have always been with me, TABLE OF CONTENTS page .
    [Show full text]
  • Jacqueline Garland Phd Thesis
    STUDIES IN PHOSPHORUS-SELENIUM CHEMISTRY Jacqueline Garland A Thesis Submitted for the Degree of PhD at the University of St Andrews 2013 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/3688 This item is protected by original copyright Studies in Phosphorus-Selenium Chemistry Jacqueline Garland This thesis is submitted in partial fulfilment for the degree of Doctor of Philosophy (PhD.) at the University of St Andrews and Doctor rerum naturalium (Dr. rer. nat.) at the Universität Leipzig 21st February 2013 Supervisors: Prof. J. D. Woollins Prof. E Hey-Hawkins Declarations I, Jacqueline Garland, hereby certify that this thesis, which is approximately 53000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September, 2008 and as a candidate for the degree of July 2009; in the higher study for which this is a record was carried out in the University of St Andrews and the Universität Leipzig between 2008 and 2013. Date: 21st February 2013 Signature of candidate: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD. in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date: 21st February 2013 Signature of supervisor: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Dr.
    [Show full text]
  • Synthesis of Phosphine-Alkene Ligands and 3-Hydroxy Piperidines Using Organolithium Chemistry Chehasnah Haji-Cheteh
    Synthesis of Phosphine-Alkene Ligands and 3-Hydroxy Piperidines Using Organolithium Chemistry Chehasnah Haji-Cheteh Doctor of Philosophy University of York Chemistry March 2016 Abstract Abstract This thesis describes synthetic routes to P-stereogenic phosphine-alkene ligands and 3- hydroxy piperidines containing heteroaromatics via lithiation-trapping of phosphine boranes or N-Boc pyrrolidine. Both topics are introduced in chapter 1. Chapter 2 presents a route to a new type of P-stereogenic phosphine-alkene ligand B prepared by racemic lithiation of t-butyldimethylphosphine borane or dimethylphenylphosphine borane using s-BuLi. Different allylic halides were used to trap the lithiated R1 = Ph, t-Bu intermediate to give chiral alkene-phosphine boranes A. R2 = H, Me, Br In chapter 3, 3-hydroxy piperidines were synthesised from the ring expansion of hydroxy pyrrolidines. Two novel, short and simple synthetic routes were developed (as shown below). Lithiation-trapping reaction of N-Boc pyrrolidine C using pyridine carboxaldehydes gave N-Boc pyrrolidine alcohols syn-D and anti-D. On the other hand, an alternative approach to obtain 3-hydroxy piperidines anti-H starting from N-trityl prolinal E derived from (S)-proline was investigated. Addition of lithiated heteroaromatics, generated from a Br/Li exchange reaction, to N-trityl prolinal E diastereoselectively gave N-trityl alcohols anti-F. The Boc or trityl deprotection and reductive amination then gave N-benzyl pyrrolidines syn-G and anti-G. Finally, the ring expansion via an aziridinium ion of alcohols syn-G and anti-G gave 3-hydroxy piperidines syn-H and anti-H. The stereochemistry of 3- hydroxy piperidines syn-H and anti-H was proven using J-values in the 1H NMR spectra.
    [Show full text]
  • Open NLD Thesis FINAL.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science DEVELOPMENT OF PHOSPHORUS-CATALYZED REDUCTIONS VIA P(III)/P(V) CYCLING WITH STRAINED PHOSPHORUS CATALYSTS A Dissertation in Chemistry by Nicole L. Dunn 2016 Nicole L. Dunn Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2016 The dissertation of Nicole L. Dunn was reviewed and approved* by the following: Alexander T. Radosevich Assistant Professor of Chemistry Dissertation Advisor Chair of Committee Kenneth S. Feldman Professor of Chemistry Chemistry Graduate Program Chair Scott T. Phillips Associate Professor of Chemistry Martarano Career Development Professorship Joshua D. Lambert Associate Professor of Food Science *Signatures are on file in the Graduate School iii ABSTRACT Phosphorus catalysis is a growing field that is currently based upon the utility of three major catalytic cycles: 1) three coordinate phosphine to four coordinate phosphonium, 2) three coordinate phosphine to four coordinate phosphine oxide, and 3) four coordinate phosphonium to five coordinate phosphorane. In this thesis, a new mode of phosphorus catalysis will be described, wherein the catalytic cycle relies upon the transition from three-coordinate phosphorus to five- coordinate phosphorane. Specifically, we have developed two systems where geometrically constrained phosphorus(III) compounds catalyze the reduction of unsaturated substrates. In the first system, a planar, T-shaped phosphorus(III) compound is transformed into a five-coordinate hydridophosphorane with no observable intermediates; catalytic reduction of azobenzene is observed with both species in the presence of a reductant. In the second example, a cyclic phosphine catalyzes the reductive transposition of allylic halides. We believe that the demonstrated ability of phosphorus compounds to cycle between three-coordinate and five-coordinate complexes marks the development of new class of phosphorus-catalyzed reactions that could have broad applications in synthetic chemistry.
    [Show full text]
  • Synthesis, Purification, and Characterization of Tetraphosphine Ligands Deniz Cevik
    Synthesis, purification, and characterization of tetraphosphine ligands Deniz Cevik To cite this version: Deniz Cevik. Synthesis, purification, and characterization of tetraphosphine ligands. Other. Univer- sité Paris-Saclay, 2017. English. NNT : 2017SACLX026. tel-01631221 HAL Id: tel-01631221 https://pastel.archives-ouvertes.fr/tel-01631221 Submitted on 8 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLX026 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY PREPAREE A ÉCOLE POLYTECHNIQUE ECOLE DOCTORALE N° 517 2MIB | Sciences chimiques : Molécules, matériaux, instrumentation et biosystèmes Spécialité de doctorat : Chimie Par Mme. Deniz Çevik Synthesis, Purification, and Characterization of Tetraphosphine Ligands Thèse présentée et soutenue à Palaiseau, le 17. Juillet 2017 : Composition du Jury : Mme. Hii, King Kuok (Mimi) Professeur Imperial College London Rapporteure M. Manoury, Eric DR - CNRS au LCC (Toulouse) Rapporteur M. Voituriez, Arnaud DR - CNRS á l’ICSN Président M. van Leeuwen, Piet Chaire d’Attractivité au LPCNO, INSA-Toulouse
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,698,448 Ude Et Al
    United States Patent (19) 11 Patent Number: 4,698,448 Ude et al. 45 Date of Patent: Oct. 6, 1987 54 METHOD FOR MAKING AROMATIC 3231331 3/1984 Fed. Rep. of Germany . PHOSPHORUS COMPOUNDS 1561198 2/1980 United Kingdom. 75) Inventors: Werner Ude, Darmstadt; Siegmund OTHER PUBLICATIONS Besecke, Seeheim-Jugenheim; Achim Kosolapoff et al, Organic Phosphorus Compounds, Riemann, Marburg; Guenther Wiley InterSc., N.Y., vol. 1, pp. 60 & 61 (1972). Schroeder, Ober-Ramstadt, all of Kosolapoff et al, Organic Phosphorus Compounds, Fed. Rep. of Germany Wiley InterSc., N.Y., vol. 3, pp. 379-383 (1972). (73) Assignee: Röhm GmbH, Darmstadt, Fed. Rep. Kosolapoff et al, Organic Phosphorus Compounds, of Germany Wiley-InterSc., vol. 4, pp. 15, 16 and 44 (1972). Chem. Abstr. 52, 20038a (1958). 21 Appl. No.: 751,625 Chem. Abstr, 87, 40281v (1977). 22 Filed: Jul. 2, 1985 Chem. Abstr. 83, 43459n (1975). Chem. Abstr. 96, 6000d (1982). 30 Foreign Application Priority Data J. Org. Chem 42(12), 10 (1977). Jul. 10, 1984 DE Fed. Rep. of Germany ....... 3.425282 Chem. Ber. 102 (9), 2922-2929 (1969). 51) Int. Cl'................................................ CO7F 9/53 Chem. Ber. 102 (9), 2914-2921 (1969). 52 U.S. C. ........................................ 568/14: 568/15; Primary Examiner-Helen M. S. Sneed 568/16; 568/17 Attorney, Agent, or Firm-Curtis, Morris & Safford 58) Field of Search ........................ 568/16, 17, 14, 15 57 ABSTRACT 56) References Cited Compounds of the formula U.S. PATENT DOCUMENTS 2,138,835 12/1938 Butz .................................. 568/14 X (m 2,902,517 9/1959 Schmerling ........................... 568/17 X-Air - Ar-X, 3,032,589 5/1962 Hoffmann et al.
    [Show full text]
  • Synthesis and Applications of P-Chirogenic and Axially Chiral P,N-Phosphines As Ligands and Organocatalysts
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Synthesis and Applications of P-Chirogenic and Axially Chiral P,N-Phosphines as Ligands and Organocatalysts Kristian H. O. Andersson Department of Chemical and Biological Engineering / Organic Chemistry CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2011 Synthesis and Applications of P-Chirogenic and Axially Chiral P,N-Phosphines as Ligands and Organocatalysts. KRISTIAN H. O. ANDERSSON ISBN 978-91-7385-615-7 © KRISTIAN H. O. ANDERSSON, 2011. Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 3296 ISSN 0346-718X Department of Chemical and Biological Engineering Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone + 46 (0)31-772 1000 Cover: Clockwise from the top left: 10 g of starting material for compound 60a in a round-bottom flask. Catalytic amount (~3 mg) of compound 60a in the tip of a glass pipette. Purification of an attempted synthesis of a P-chirogenic phosphine. Structure drawing of compound 60a. Printed by Chalmers Reproservice Gothenburg, Sweden 2011 ”If you can dream – and not make dreams your master; If you can think – and not make thoughts your aim; If you can meet with Triumph and Disaster And treat those two impostors just the same;” Rudyard Kipling – “If-” Synthesis and Applications of P-Chirogenic and Axially Chiral P,N- Phosphines as Ligands and Organocatalysts. Kristian H. O. Andersson Department of Chemical and Biological Engineering / Organic Chemistry Chalmers University of Technology Abstract This thesis deals with the enantioselective synthesis of chiral mixed phosphorous/nitrogen compounds and some of their applications in asymmetric synthesis. For the most part, the compounds are P-chirogenic, with the chirality centered on the phosphorous atom.
    [Show full text]
  • Department of Chemistry University of Durham A
    Durham E-Theses Tailored ligands for zinc coordination Edlin, Christopher David How to cite: Edlin, Christopher David (1998) Tailored ligands for zinc coordination, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4787/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Tailored Ligands For Zinc Coordination by Christopher David Edlin B.Sc. (Hons) The copyright of this thesis rests with the author. No quotation from it should be published without die written consent of the author and information derived from it should be acknowledged. Department of Chemistry University of Durham A Thesis submitted for the degree of Doctor of Philosophy September 1998 1 3 JAW 1999 Abstract Tailored Ligands For Zinc Coordination Selective coordination to zinc over other members of the first row transition metal series is important for the commercial application of lipophilic ligands for the hydrometallurgic recovery of the metal.
    [Show full text]