United States Patent (19) 11 Patent Number: 4,698,448 Ude Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 Patent Number: 4,698,448 Ude Et Al United States Patent (19) 11 Patent Number: 4,698,448 Ude et al. 45 Date of Patent: Oct. 6, 1987 54 METHOD FOR MAKING AROMATIC 3231331 3/1984 Fed. Rep. of Germany . PHOSPHORUS COMPOUNDS 1561198 2/1980 United Kingdom. 75) Inventors: Werner Ude, Darmstadt; Siegmund OTHER PUBLICATIONS Besecke, Seeheim-Jugenheim; Achim Kosolapoff et al, Organic Phosphorus Compounds, Riemann, Marburg; Guenther Wiley InterSc., N.Y., vol. 1, pp. 60 & 61 (1972). Schroeder, Ober-Ramstadt, all of Kosolapoff et al, Organic Phosphorus Compounds, Fed. Rep. of Germany Wiley InterSc., N.Y., vol. 3, pp. 379-383 (1972). (73) Assignee: Röhm GmbH, Darmstadt, Fed. Rep. Kosolapoff et al, Organic Phosphorus Compounds, of Germany Wiley-InterSc., vol. 4, pp. 15, 16 and 44 (1972). Chem. Abstr. 52, 20038a (1958). 21 Appl. No.: 751,625 Chem. Abstr, 87, 40281v (1977). 22 Filed: Jul. 2, 1985 Chem. Abstr. 83, 43459n (1975). Chem. Abstr. 96, 6000d (1982). 30 Foreign Application Priority Data J. Org. Chem 42(12), 10 (1977). Jul. 10, 1984 DE Fed. Rep. of Germany ....... 3.425282 Chem. Ber. 102 (9), 2922-2929 (1969). 51) Int. Cl'................................................ CO7F 9/53 Chem. Ber. 102 (9), 2914-2921 (1969). 52 U.S. C. ........................................ 568/14: 568/15; Primary Examiner-Helen M. S. Sneed 568/16; 568/17 Attorney, Agent, or Firm-Curtis, Morris & Safford 58) Field of Search ........................ 568/16, 17, 14, 15 57 ABSTRACT 56) References Cited Compounds of the formula U.S. PATENT DOCUMENTS 2,138,835 12/1938 Butz .................................. 568/14 X (m 2,902,517 9/1959 Schmerling ........................... 568/17 X-Air - Ar-X, 3,032,589 5/1962 Hoffmann et al. .... ... 568/14X 3,331,878 7/1967 Priestley ............ ... 568/17 X R 3,450,772 6/1969 Bridger et al. ...................... 260/63 4,052,463 10/1977 Uhing et al. .......................... 568/14 4,087,408 5/1978 Moedritzer ........ ... 568/15 X wherein R is lower alkyl or aryl, Y is oxygen or sulfur, 4,447,584 5/1984 Bergeret et al.... ... 568/14 X m is 0 or 1, Ar is arylene, and X is halogen, methyl, or 4,463,159 7/1984 Besecke et al. ..................... 528/167 aryloxy, or polymers containing repeating units of this 4,472,570 9/1984 Besecke et al. .... 528/167 kind are prepared from a compound R-P(Y)Cl2, 4,492,805 1/1985 Besecke et al. ..................... 568/O12 where r is 0 or 1 but is never greater than m, by reaction with one or two molar parts of a compound H-ArX in FOREIGN PATENT DOCUMENTS the presence of a Friedel-Crafts catalyst. 1238024 4/1967 Fed. Rep. of Germany . 3203186 8/1983 Fed. Rep. of Germany . 2 Claims, No Drawings 4,698,448 1 2 fire hazard due to the use of ether, and the risk that METHOD FOR MAKING AROMATIC explosive peroxides may form. PHOSPHORUS COMPOUNDS It is further known to form an aromatic/phosphorus bond through a Friedel-Crafts reaction. Thus, V. V. The present invention relates to methods for making 5 certain aromatic phosphorus compounds, and to such Korschak (Isvestija Akademi Nauk USSR, Otdel, compounds. Chim. 1958, pp. 595-601) reacted para-chlorophenyldi Phosphorus-containing polyarylene ethers having chlorophosphine with dibenzyl in the presence of alu repeating units of the structure minum chloride to give oligomeric compounds with O repeating units of the structure (9) O-Air', -CH-CH-CH- CH2 P C6H4C R 15 These oligomers do not have the desired polyether wherein R' is alkyl or aryl, Ar' is a bivalent aromatic structure shown herein at the outset, nor are they suit group, and q is 0 or 1, are known from published Ger able for use as intermediates in the preparation of such man patent application DOS No. 3203 186 as difficultly 20 polyethers. combustible or noncombustible plastics having resis 6. In published German patent application DAS No. tance to high temperatures and a high softening temper 1,238,024, arylated phosphorus/thio compounds are ature. prepared from trichlorophosphine sulfide or its deriva The present invention relates to a new method for making such polyarylene ethers or to monomeric start tives in which one or two chlorine atoms are replaced ing compounds for such polyarylene ethers. The pro 25 by organic groups, and aromatic hydrocarbons in the cess involves a Friedel-Crafts reaction. presence of aluminum chloride or other Friedel-Crafts According to the aformentioned published German catalysts. The chlorine atoms contained in the chlori patent application, the polyarylene ethers there named nated phosphine sulfide used are replaced by aromatic are obtainable, for example, by the reaction of equimo 30 nuclei. However, this synthesis produces neither poly lar amounts of di(fluorophenyl)phenylphosphine oxide mers nor starting materials from which phosphorus and of an aromatic diol such as dioxydiphenyl ether, containing polyarylene ethers can be obtained accord with cleavage of hydrogen fluoride in the presence of a ing to published German patent application DOS No. base. The di(fluorophenyl)phenylphosphine oxide and 32 O3 188. analogous starting compounds are prepared by reacting 35 the Grignard reagent of a brominated aromatic hydro G. Olah and D. Hehemann (J. Org. Chem., Vol. 42, carbon compound with dichlorophenylphosphine or 1977, p. 2190) have found that phosphorus trichloride dichlorophenylphosphine oxide in ether as the solvent, can be reacted in the presence of sulfur and of Friedel for example by the route Crafts catalysts with aromatic hydrocarbons to give good yields of triarylphosphine sulfides, which can be converted to the corresponding triarylphosphines by means of reducing agents. F Br + Mg - GF MgBr The present inventors set themselves the task of pre paring phosphorus-containing polyarylene ethers hav 45 ing the structure given earlier herein, or intermediates suitable for their preparation which contain a phospho 2F MgBr + Cl2P=(O)0 or 1) --G rus atom bound to two aromatic nuclei and which can be converted by known processes to phosphorus-con taining polyarylene ethers, in good yield from low-cost 50 starting materials by a process which is technically readily controllable. In a narrower sense, the object was to prepare in said (Q)(0 or 1) advantageous manner compounds of the formula 55 F P F (YOn (I) Xa-Ara- -A-x. R However, for a number of reasons the formation of a bond between the phosphorus atom and an aromatic nucleus by way of a Grignard reaction is not well suited wherein R is lower alkyl or aryl, Y is oxygen or sulfur, for a commercial process, regardless of whether the m is 0 or 1, Ar is arylene, and X is halogen, methyl, or latter is to be used directly for the production of poly aryloxy. The compounds will be phosphorus-containing mers or for the preparation of monomeric starting mate 65 polyarylene ethers if X is an aryloxy group which in rials therefor. Among these reasons are the necessity of turn is linked to a further unit having the structure using expensive bromine compounds, ether, and metal represented in the formula, as in polymers with repeat lic magnesium, the high sensitivity of the reaction, the ing units of the structure 4,698,448 4. compound of the formula H-ArX in the presence of a Friedel-Crafts catalyst. The compounds of formula (I) wherein m=1 and Y = sulfur are new substances which, when polymerized, form synthetic resins having valu able properties. The phosphorus-containing starting compound "Aryl' in this case symbolizes a bifunctional aromatic R-POY)Cl2 may, depending on the presence and na group which may be different from the group repre ture of the group Y, be sented by Ar. For example, it may be a phenyl group or (A) a dichlorophosphine, R-PCl2, a polynuclear aromatic group having the structure 10 (B) a dichlorophosphine oxide, R-POCl2, or (C) a dichlorophosphine sulfide, R-PSCl2. The reactivity, and hence the preferability in the pro -(Aro) cess of the invention, increases from dichlorophosphine R' -, oxide to dichlorophosphine to dichlorophosphine sul 15 fide. The reactivity of dichlorophosphine (A) will cor respond to that of dichlorophosphine sulfide (C) if the wherein R' is a covalent single bond, oxygen, sulfur, reaction is carried out in the presence of elemental sul carbonyl, sulfonyl, methylene, or isopropylidene, or fur, in which case a product of the formula (I) with a 20 P=S bond (m=1, Y=S) is formed by sulfonation. The O reactivity of dichlorophosphine oxide is markedly I lower and satisfactory only for reaction with aromatic -P-, compounds of the formula H-Ar-O-Aryl to give polymeric products of the formula (I). For reaction with other aromatic compounds H-ArX, compounds 25 of types (A) and (C) therefore are highly preferable. The group R may be lower alkyl which as a rule contains not more than 4 carbon atoms. Methyl groups preferably oxygen or isopropylidene. Bridging groups are preferred. R is preferably an aryl group, and more R" free of hydrogen are preferred. n is an integer, at particularly an unsubstituted phenyl group. least 1 and generally not greater than 10, preferably 1 to 30 Phosphine compounds of the types (A), (B) and (C) 5. When n is greater than 1, the groups R' may be are known in the art and are obtainable by Friedel different. The terminal phenyl groups are preferably Crafts arylation of the corresponding phosphorus tri attached to an oxygen or sulfur atom or to a methylene chlorides or by the reaction of such trichlorides with or isopropylidene group. p is 0 or 1. alkyl halides. However, formula (I) may also represent intermedi 35 The aromatic compound H-ArX will usually con ate products which can be converted into phosphorus tain a phenyl group unsubstituted in the ortho position containing polyarylene ethers either directly or after or, preferably, in the para position.
Recommended publications
  • Synthesis of C2-Symmetric P-Chiral Bis(Phosphine Borane)
    Synthesis of C2-symmetric P-chiral bis(phosphine borane)s and their application in rhodium(I) catalyzed asymmetric transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University © Copyright by Holly Ann Heath (2001) Abstract: A new development for the synthesis C2-Synnnetric P-Chiral Bis(phosphine borane) ligands is reported, These ligands are based on the asymmetric induction of prochiral phosphine ligands with organolithium/chiral diamine complexes. These ligands have been evaluated in asymmetric rhodium(I) catalyzed hydrogenation and [4 + 2] cycloisomerization reactions. Enantiomeric excesses as high as 99% were obtained for ene-diene cycloadditions. Synthesis of C2-Symmetric P-Chiral Bis(phosphine borane)s and Their Application in Rhodium(I) Catalyzed Asymmetric Transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University Bozeman, Montana March 2001 ii APPROVAL of a dissertation submitted by Holly Ann Heath This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. Dr. Thomas Livinghouse < Chairperson, Graduate Committee Date Approved for the Department of Chemistry Dr. Paul A. Grieco Department Head Approved for the College of Graduate Studies Dr. Bruce R. McLeod Graduate Dean Date iii STATEMENT OF PERMISSION TO USE In presenting this dissertation .in partial fulfillment of the requirements for a doctoral degree at Montana State University-Bozeman, I agree that the Library shall make it available to borrowers under rules of the Library.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec
    United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec. 26, 1989 (54) PROCESS FOR THE PREPARATION OF Kosolapoff, G. M. et al. Organic Phosphorus Compounds AROMATIC PHOSPHORUS-CHLORNE (1973) vol. 4 at p. 95. Wiley-Interscience, Publ. COMPOUNDS Kosolapoff, Gennady M. Organophosphorus Com 75 Inventor: Hans-Jerg Kleiner, pounds (1958), John Wiley & Sons, Publ. pp. 59-60. Kronberg/Taunus, Fed. Rep. of Primary Examiner-Paul J. Killos Germany Attorney, Agent, or Firm-Curtis, Morris & Safford 73) Assignee: Hoechst Aktiengesellschaft, 57 ABSTRACT Frankfurt am Main, Fed. Rep. of Aromatic phosphorus-chlorine compounds, especially Germany diphenylphosphinyl chloride (C6H5)2P(O)Cl, phenyl phosphonyl dichloride C6HsP(O)Cl2, dichlorophenyl 21 Appl. No.: 554,591 phosphine C6HsPCl2 and chlorodiphenylphosphine (C6H5)2PCl, and the corresponding sulfur analogs, are 22 Filed: Nov. 23, 1983 obtained by reaction of aromatic phosphorus com 30 Foreign Application Priority Data pounds, which contain oxygen or sulfur, of the formula I Nov. 27, 1982 DE Fed. Rep. of Germany ....... 324.4031 511 Int, C.'................................................ CO7C 5/02 52 U.S. C. .................................... 562/815; 562/818; 562/819 58) Field of Search ..................................... 260/543 P in which X=O or S, and m= 1, 2 or 3, with phosphorus 56) References Cited chlorine compounds of the formula II U.S. PATENT DOCUMENTS (C6H5)3P Cln (II) 3,244,745 4/1966 Toy et al. ........................ 260/543 P FOREIGN PATENT DOCUMENTS in which n=1, 2 or 3, at temperatures between about 0093420 4/1983 European Pat. Off. 330 and 700° C. Preferred starting materials are tri phenylphosphine oxide (C6H5)3PO and phosphorus OTHER PUBLICATIONS trichloride PCl3.
    [Show full text]
  • Hazardous Substances (Chemicals) Transfer Notice 2006
    16551655 OF THURSDAY, 22 JUNE 2006 WELLINGTON: WEDNESDAY, 28 JUNE 2006 — ISSUE NO. 72 ENVIRONMENTAL RISK MANAGEMENT AUTHORITY HAZARDOUS SUBSTANCES (CHEMICALS) TRANSFER NOTICE 2006 PURSUANT TO THE HAZARDOUS SUBSTANCES AND NEW ORGANISMS ACT 1996 1656 NEW ZEALAND GAZETTE, No. 72 28 JUNE 2006 Hazardous Substances and New Organisms Act 1996 Hazardous Substances (Chemicals) Transfer Notice 2006 Pursuant to section 160A of the Hazardous Substances and New Organisms Act 1996 (in this notice referred to as the Act), the Environmental Risk Management Authority gives the following notice. Contents 1 Title 2 Commencement 3 Interpretation 4 Deemed assessment and approval 5 Deemed hazard classification 6 Application of controls and changes to controls 7 Other obligations and restrictions 8 Exposure limits Schedule 1 List of substances to be transferred Schedule 2 Changes to controls Schedule 3 New controls Schedule 4 Transitional controls ______________________________ 1 Title This notice is the Hazardous Substances (Chemicals) Transfer Notice 2006. 2 Commencement This notice comes into force on 1 July 2006. 3 Interpretation In this notice, unless the context otherwise requires,— (a) words and phrases have the meanings given to them in the Act and in regulations made under the Act; and (b) the following words and phrases have the following meanings: 28 JUNE 2006 NEW ZEALAND GAZETTE, No. 72 1657 manufacture has the meaning given to it in the Act, and for the avoidance of doubt includes formulation of other hazardous substances pesticide includes but
    [Show full text]
  • Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications
    materials Review Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications Sophie Wendels †, Thiebault Chavez †, Martin Bonnet, Khalifah A. Salmeia * and Sabyasachi Gaan * Additives and Chemistry Group, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; [email protected] (S.W.); [email protected] (T.C.); [email protected] (M.B.) * Correspondence: [email protected] (K.A.S.); [email protected] (S.G.); Tel.: +41-587-657-038 (K.A.S.); +41-587-657-611 (S.G.) † These two authors contributed equally to this work. Received: 13 May 2017; Accepted: 4 July 2017; Published: 11 July 2017 Abstract: Organophosphorus compounds containing P-C bonds are increasingly developed as flame retardant additives due to their excellent thermal and hydrolytic stability and ease of synthesis. The latest development (since 2010) in organophosphorus flame retardants containing P-C bonds summarized in this review. In this review, we have broadly classified such phosphorus compounds based on the carbon unit linked to the phosphorus atom i.e., could be a part of either an aliphatic or an aromatic unit. We have only considered those published literature where a P-C bond was created as a part of synthetic strategy to make either an intermediate or a final organophosphorus compound with an aim to use it as a flame retardant. General synthetic strategies to create P-C bonds are briefly discussed. Most popular synthetic strategies used for developing P-C containing phosphorus based flame retardants include Michael addition, Michaelis–Arbuzov, Friedels–Crafts and Grignard reactions.
    [Show full text]
  • Rhodium Complex Catalyzed Alcohol Carbonylation Reactions
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1979 Rhodium Complex Catalyzed Alcohol Carbonylation Reactions Joseph Leo Nothnagel Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Nothnagel, Joseph Leo, "Rhodium Complex Catalyzed Alcohol Carbonylation Reactions" (1979). Electronic Theses and Dissertations. 5041. https://openprairie.sdstate.edu/etd/5041 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. RHODIUM COMPLEX CATALY ZED ALCOHOL CARBONYLATION REACTIONS BY JOSEPH LEO NOTHNAGEL A thesis submitted in partical ful fillment of the requir ements for the degree Ma ster of Science , Major in Chemistry , South Dakota State Univers ity "SOUTH DAKOTA STATE UNIVERSITY LIBRARY RHODIUM COMPLEX CATALYZED ALCOHOL CARBONYLATION REACTIONS This dissertation is approved as a creditable and indep endent investigation by a.candidate for the degree , Master of Science, and is acceptable as meeting the dis­ sertation requirements for the degree, but without imply­ ing that the conclusions reached by the candidate are necessarily the conclusions of the major department . Thesis adpiser Date Head , Chemistry Department Date ACKNOWLEDGEMENTS To Dr . Ols·on who, like all great teachers, gave far more than he received; To my wi fe who , as a loving wife, put up with one too many accidents; To my parents , who have always been with me, TABLE OF CONTENTS page .
    [Show full text]
  • Jacqueline Garland Phd Thesis
    STUDIES IN PHOSPHORUS-SELENIUM CHEMISTRY Jacqueline Garland A Thesis Submitted for the Degree of PhD at the University of St Andrews 2013 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/3688 This item is protected by original copyright Studies in Phosphorus-Selenium Chemistry Jacqueline Garland This thesis is submitted in partial fulfilment for the degree of Doctor of Philosophy (PhD.) at the University of St Andrews and Doctor rerum naturalium (Dr. rer. nat.) at the Universität Leipzig 21st February 2013 Supervisors: Prof. J. D. Woollins Prof. E Hey-Hawkins Declarations I, Jacqueline Garland, hereby certify that this thesis, which is approximately 53000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September, 2008 and as a candidate for the degree of July 2009; in the higher study for which this is a record was carried out in the University of St Andrews and the Universität Leipzig between 2008 and 2013. Date: 21st February 2013 Signature of candidate: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD. in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date: 21st February 2013 Signature of supervisor: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Dr.
    [Show full text]
  • OFFICE William B
    Patented Mar. 2, 1954 2,671,079 UNITED STATES PATENT 2,671,079 PHosPHoRUS-conTAINING PolyMERs OFFICE William B. McCormack, Wilmington, Del, as signor to E. I. du Pont de Nemours and Com pany, Wilmington, Del, a corporation of Dela Wate No Drawing. Application August 7, 1951, Serial No. 240,813 1. 14 Claims. (CI260-92.3) This invention relates to new phosphorus-con taining interpolymers and to a process for obtain The dihalophosphine to be used in this process ing them. has the formula RPX2, in which R, represents a In my copending application Serial No. 240,814, member of the group consisting of alkyl, aryland there are described stable, heat-resistant poly aralkyl radicals and X represents a member of mers containing phosphorus in the form of phoS the group consisting of chlorine and bromine, phine oxide groups. These polymers are prepared The preferred phosphines are dichlorophenyl by the reaction of a hydroxyl-containing com phosphine and dichloroethylphosphine. A wide pound, such as Water or an alcohol, With a phoS variety of phosphine derivatives having the gene phorus-containing interpolymer in which the eral formula, shown may be employed. Represen phosphorus is present as dihalotertiaryphosphine O tative compounds include those in which R, rep groups. The latter interpolymers are the sub resents an alkyl group such as methyl, ethyl, ject of the present application. - propyl, butyl or octyl; an aryl group Such as It is an object of this invention to provide phenyl or alpha- or beta-naphthyl, or an aral polymeric products containing phosphorus, which kyl group such as benzyl or phenylethyl.
    [Show full text]
  • Synthesis of Phosphine-Alkene Ligands and 3-Hydroxy Piperidines Using Organolithium Chemistry Chehasnah Haji-Cheteh
    Synthesis of Phosphine-Alkene Ligands and 3-Hydroxy Piperidines Using Organolithium Chemistry Chehasnah Haji-Cheteh Doctor of Philosophy University of York Chemistry March 2016 Abstract Abstract This thesis describes synthetic routes to P-stereogenic phosphine-alkene ligands and 3- hydroxy piperidines containing heteroaromatics via lithiation-trapping of phosphine boranes or N-Boc pyrrolidine. Both topics are introduced in chapter 1. Chapter 2 presents a route to a new type of P-stereogenic phosphine-alkene ligand B prepared by racemic lithiation of t-butyldimethylphosphine borane or dimethylphenylphosphine borane using s-BuLi. Different allylic halides were used to trap the lithiated R1 = Ph, t-Bu intermediate to give chiral alkene-phosphine boranes A. R2 = H, Me, Br In chapter 3, 3-hydroxy piperidines were synthesised from the ring expansion of hydroxy pyrrolidines. Two novel, short and simple synthetic routes were developed (as shown below). Lithiation-trapping reaction of N-Boc pyrrolidine C using pyridine carboxaldehydes gave N-Boc pyrrolidine alcohols syn-D and anti-D. On the other hand, an alternative approach to obtain 3-hydroxy piperidines anti-H starting from N-trityl prolinal E derived from (S)-proline was investigated. Addition of lithiated heteroaromatics, generated from a Br/Li exchange reaction, to N-trityl prolinal E diastereoselectively gave N-trityl alcohols anti-F. The Boc or trityl deprotection and reductive amination then gave N-benzyl pyrrolidines syn-G and anti-G. Finally, the ring expansion via an aziridinium ion of alcohols syn-G and anti-G gave 3-hydroxy piperidines syn-H and anti-H. The stereochemistry of 3- hydroxy piperidines syn-H and anti-H was proven using J-values in the 1H NMR spectra.
    [Show full text]
  • Open NLD Thesis FINAL.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science DEVELOPMENT OF PHOSPHORUS-CATALYZED REDUCTIONS VIA P(III)/P(V) CYCLING WITH STRAINED PHOSPHORUS CATALYSTS A Dissertation in Chemistry by Nicole L. Dunn 2016 Nicole L. Dunn Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2016 The dissertation of Nicole L. Dunn was reviewed and approved* by the following: Alexander T. Radosevich Assistant Professor of Chemistry Dissertation Advisor Chair of Committee Kenneth S. Feldman Professor of Chemistry Chemistry Graduate Program Chair Scott T. Phillips Associate Professor of Chemistry Martarano Career Development Professorship Joshua D. Lambert Associate Professor of Food Science *Signatures are on file in the Graduate School iii ABSTRACT Phosphorus catalysis is a growing field that is currently based upon the utility of three major catalytic cycles: 1) three coordinate phosphine to four coordinate phosphonium, 2) three coordinate phosphine to four coordinate phosphine oxide, and 3) four coordinate phosphonium to five coordinate phosphorane. In this thesis, a new mode of phosphorus catalysis will be described, wherein the catalytic cycle relies upon the transition from three-coordinate phosphorus to five- coordinate phosphorane. Specifically, we have developed two systems where geometrically constrained phosphorus(III) compounds catalyze the reduction of unsaturated substrates. In the first system, a planar, T-shaped phosphorus(III) compound is transformed into a five-coordinate hydridophosphorane with no observable intermediates; catalytic reduction of azobenzene is observed with both species in the presence of a reductant. In the second example, a cyclic phosphine catalyzes the reductive transposition of allylic halides. We believe that the demonstrated ability of phosphorus compounds to cycle between three-coordinate and five-coordinate complexes marks the development of new class of phosphorus-catalyzed reactions that could have broad applications in synthetic chemistry.
    [Show full text]
  • Synthesis, Purification, and Characterization of Tetraphosphine Ligands Deniz Cevik
    Synthesis, purification, and characterization of tetraphosphine ligands Deniz Cevik To cite this version: Deniz Cevik. Synthesis, purification, and characterization of tetraphosphine ligands. Other. Univer- sité Paris-Saclay, 2017. English. NNT : 2017SACLX026. tel-01631221 HAL Id: tel-01631221 https://pastel.archives-ouvertes.fr/tel-01631221 Submitted on 8 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLX026 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY PREPAREE A ÉCOLE POLYTECHNIQUE ECOLE DOCTORALE N° 517 2MIB | Sciences chimiques : Molécules, matériaux, instrumentation et biosystèmes Spécialité de doctorat : Chimie Par Mme. Deniz Çevik Synthesis, Purification, and Characterization of Tetraphosphine Ligands Thèse présentée et soutenue à Palaiseau, le 17. Juillet 2017 : Composition du Jury : Mme. Hii, King Kuok (Mimi) Professeur Imperial College London Rapporteure M. Manoury, Eric DR - CNRS au LCC (Toulouse) Rapporteur M. Voituriez, Arnaud DR - CNRS á l’ICSN Président M. van Leeuwen, Piet Chaire d’Attractivité au LPCNO, INSA-Toulouse
    [Show full text]
  • Synthesis and Applications of P-Chirogenic and Axially Chiral P,N-Phosphines As Ligands and Organocatalysts
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Synthesis and Applications of P-Chirogenic and Axially Chiral P,N-Phosphines as Ligands and Organocatalysts Kristian H. O. Andersson Department of Chemical and Biological Engineering / Organic Chemistry CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2011 Synthesis and Applications of P-Chirogenic and Axially Chiral P,N-Phosphines as Ligands and Organocatalysts. KRISTIAN H. O. ANDERSSON ISBN 978-91-7385-615-7 © KRISTIAN H. O. ANDERSSON, 2011. Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 3296 ISSN 0346-718X Department of Chemical and Biological Engineering Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone + 46 (0)31-772 1000 Cover: Clockwise from the top left: 10 g of starting material for compound 60a in a round-bottom flask. Catalytic amount (~3 mg) of compound 60a in the tip of a glass pipette. Purification of an attempted synthesis of a P-chirogenic phosphine. Structure drawing of compound 60a. Printed by Chalmers Reproservice Gothenburg, Sweden 2011 ”If you can dream – and not make dreams your master; If you can think – and not make thoughts your aim; If you can meet with Triumph and Disaster And treat those two impostors just the same;” Rudyard Kipling – “If-” Synthesis and Applications of P-Chirogenic and Axially Chiral P,N- Phosphines as Ligands and Organocatalysts. Kristian H. O. Andersson Department of Chemical and Biological Engineering / Organic Chemistry Chalmers University of Technology Abstract This thesis deals with the enantioselective synthesis of chiral mixed phosphorous/nitrogen compounds and some of their applications in asymmetric synthesis. For the most part, the compounds are P-chirogenic, with the chirality centered on the phosphorous atom.
    [Show full text]
  • Department of Chemistry University of Durham A
    Durham E-Theses Tailored ligands for zinc coordination Edlin, Christopher David How to cite: Edlin, Christopher David (1998) Tailored ligands for zinc coordination, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4787/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Tailored Ligands For Zinc Coordination by Christopher David Edlin B.Sc. (Hons) The copyright of this thesis rests with the author. No quotation from it should be published without die written consent of the author and information derived from it should be acknowledged. Department of Chemistry University of Durham A Thesis submitted for the degree of Doctor of Philosophy September 1998 1 3 JAW 1999 Abstract Tailored Ligands For Zinc Coordination Selective coordination to zinc over other members of the first row transition metal series is important for the commercial application of lipophilic ligands for the hydrometallurgic recovery of the metal.
    [Show full text]