Synthesis of Phosphine-Alkene Ligands and 3-Hydroxy Piperidines Using Organolithium Chemistry Chehasnah Haji-Cheteh

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Phosphine-Alkene Ligands and 3-Hydroxy Piperidines Using Organolithium Chemistry Chehasnah Haji-Cheteh Synthesis of Phosphine-Alkene Ligands and 3-Hydroxy Piperidines Using Organolithium Chemistry Chehasnah Haji-Cheteh Doctor of Philosophy University of York Chemistry March 2016 Abstract Abstract This thesis describes synthetic routes to P-stereogenic phosphine-alkene ligands and 3- hydroxy piperidines containing heteroaromatics via lithiation-trapping of phosphine boranes or N-Boc pyrrolidine. Both topics are introduced in chapter 1. Chapter 2 presents a route to a new type of P-stereogenic phosphine-alkene ligand B prepared by racemic lithiation of t-butyldimethylphosphine borane or dimethylphenylphosphine borane using s-BuLi. Different allylic halides were used to trap the lithiated R1 = Ph, t-Bu intermediate to give chiral alkene-phosphine boranes A. R2 = H, Me, Br In chapter 3, 3-hydroxy piperidines were synthesised from the ring expansion of hydroxy pyrrolidines. Two novel, short and simple synthetic routes were developed (as shown below). Lithiation-trapping reaction of N-Boc pyrrolidine C using pyridine carboxaldehydes gave N-Boc pyrrolidine alcohols syn-D and anti-D. On the other hand, an alternative approach to obtain 3-hydroxy piperidines anti-H starting from N-trityl prolinal E derived from (S)-proline was investigated. Addition of lithiated heteroaromatics, generated from a Br/Li exchange reaction, to N-trityl prolinal E diastereoselectively gave N-trityl alcohols anti-F. The Boc or trityl deprotection and reductive amination then gave N-benzyl pyrrolidines syn-G and anti-G. Finally, the ring expansion via an aziridinium ion of alcohols syn-G and anti-G gave 3-hydroxy piperidines syn-H and anti-H. The stereochemistry of 3- hydroxy piperidines syn-H and anti-H was proven using J-values in the 1H NMR spectra. 2 List of Contents List of Contents Abstract……………………………………………………………………………..2 List of Contents……………………………………………………………………..3 List of Tables………………………………………………………………………..5 Acknowledgements………………………………………………………………....6 Author’s Declaration………………………………………………………………..7 Chapter 1 Introduction………………………………………………………………..8 1.1 Introduction to Organolitium Reagents………………………………………..9 1.2 Overview of Lithiation-Trapping of Phosphine-Boranes……………………..10 1.3 Overview of Lithiation-Trapping of N-Boc Pyrrolidine………………………17 Chapter 2 Investigation of the Synthesis of P-Stereogenic Phosphine-Alkene Ligands………………………………………………………………………………..22 2.1 Introduction to Chiral Phosphine-Alkene Ligands……………………………23 2.2 Synthesis of Chiral Phosphine-Alkene Ligands………………………………25 2.3 Project Outline………………………………………………………………..35 2.4 Synthesis of Dimethylphosphine Boranes…………………………………….36 2.5 Racemic Lithiation of t-Butyl Dimethylphosphine Borane and Trapping with Allylic Halides under Different Conditions………………………………………..37 2.6 Racemic Lithiation of Phenyl Dimethylphosphine Borane and Trapping with Allylic Halides under Different Conditions………………………………………..45 2.7 Investigation of Borane Deprotection…………………………………………49 2.8 Aymmetric Lithiation of Phenyl Dimethylphosphine Borane and Trapping with Allyl Bromide………………………………………………………………...51 2.9 Synthesis of Dihomoallylic Phosphine Boranes………………………………53 2.10 Conclusions and Future Work………………………………………………..54 3 List of Contents Chapter 3 Investigation of New Routes to 2-Heteroaryl 3-Hydroxy Piperidines…57 3.1 Brief Introduction of New Routes to 3-Hydroxy Piperidines…………………58 3.2 Overview of Synthesis Routes to 3-Hydroxy Piperidnes……………………..59 3.3 Project Outline………………………………………………………………..77 3.4 Investgation of Synthetic Routes from N-Boc Pyrrolidine……………………78 3.4.1 Lithiation-Trapping of N-Boc Pyrrolidine………………………………..78 3.4.2 Reduction of N-Boc Pyrrolidinones………….……………………………84 3.4.3 Ring Expansion of N-Methyl Hydroxy Pyrrolidines to Piperidines……….91 3.4.4 Ring Expansion of N-Benzyl Hydroxy Pyrrolidines to Piperidines……….96 3.4.5 Proof of Stereochemistry of Hydroxy Pyrrolidines………………………104 3.4.6 Overview and Limitations of Initial Route………………………………107 3.5 Investigation of Synthetic Routes from (S)-Proline………………………….108 3.5.1 Synthesis and Reactions of N-Benzyl Pyrrolidinal and N-Benzyl Pyrrolidinones……………………………………………………….108 3.5.2 Synthesis of 3-Hydroxy Piperidines from N-Trityl Pyrrolidinal…………114 3.6 Conclusions and Future Work………………………………………………124 Chapter 4 Experimental…………………………………………………………….127 4.1 General Methods…………………………………………………………….127 4.2 General Procedures…………………………………………………………..128 4.3 Experimental for Chapter 2………………………………………………….131 4.4 Experimental for Chapter 3………………………………………………….151 Abbreviations………………………………………………………………………...213 Chapter 5 References……………………………………………………………….218 4 List of Tables List of Tables Table 1.1…………………………………………………………………………………...14 Table 1.2…………………………………………………………………………………...18 Table 1.3…………………………………………………………………………………...19 Table 2.1…………………………………………………………………………………...38 Table 2.2…………………………………………………………………………………...44 Table 2.3…………………………………………………………………………………...46 Table 2.4…………………………………………………………………………………...48 Table 2.5……………………………………………………………………………….......51 Table 3.1……………………………………………………………………………….......82 Table 3.2……………………………………………………………………………….......83 Table 3.3……………………………………………………………………………….......88 Table 3.4……………………………………………………………………………….......90 Table 3.5……………………………………………………………………………….......97 Table 3.6……………………………………………………………………………….......99 Table 3.7……………………………………………………………………………….....110 Table 3.8……………………………………………………………………………….....115 5 Acknowledgements Acknowledgements First of all, I would like to thank Prof. Peter O’Brien for the great opportunity to join this wonderful group. Without his encouragement and guidance, this research would not have been possible. In addition, I would like to thank Prof. Ian Fairlamb for his suggestions and the use of the ReactIR equipment. I would also like to thank Dr. John Slattery for his assistance and advice as my independent panel member. Next, I would like to thank all past and present members of the POB group for their friendliness and helpful lab-work suggestions. In no particular order, Giorgio, Xiao, Peter, Graeme, Dave, Mary, Giacomo, Sarah, Adam, Alice, Mickey, Masakazu and Will. I would also like to thank Peter and Joe from the Parsons group for making my time in the lab enjoyable as well. Additional thanks go to the Fairlamb group in particular to Charlotte for ReactIR advice, and the Taylor group for advice and loan of chemicals. The research presented in this thesis would not have been possible without considerable support from the technical staff in the Department of Chemistry. Thus, I would like to thank Steve and Mike from stores, Heather for the NMR service, Karl for mass spectrometry and Graeme McAllister for lab-work advice and maintenance of the dry solvents machine. I would like to thank all of my Thai friends, in particular to Nong and Fon, for sharing a good time during my PhD and being beside me every moment. I would also like to thank Angie Bell from the Open Door Team. Without her support, this research would not have been possible or have progressed. An addition acknowledgement goes to the Royal Thai Government for funding and support during my living in York. Finally, I would like to thank my beloved mum and dad, who are always with me through the highs and lows, give me unconditional love and have encouraged me throughout my stay in the U.K. 6 Author’s Declaration Author’s Declaration This research project in this thesis is my own and was carried out at the University of York between April 2011 and March 2016. This work is, to the best of my knowledge, original except where due reference has been made to other authors and/or co-workers. Part of this work has been reproduced in a published paper: Lüthy, M.; Wheldon, M. C.; Haji-Cheteh, C.; Atobe, M.; Bond, P. S.; O’Brien, P.; Hubbard, R. E.; Fairlamb, I. J. S.; Lead-oriented synthesis: Investigation of organolithium-mediated routes to 3-D scaffolds and 3-D shape analysis of a virtual lead-like library, Bioorg. Med. Chem. 2015, 23, 2680-2694. 7 Chapter 1 Introduction Chapter 1 Introduction This thesis contains research into the synthesis of two different types of heterocyclic structures. The first topic involved the design and synthesis of a new class of P-stereogenic phosphine-alkene ligands shown by phosphines 1 (Figure 1.1). The second topic concerned the development of new methodology for the synthesis of 2-aryl-3-hydroxy piperidines 2 (Figure 1.1). Although both target molecules 1 and 2 have very different structures, one of the key synthetic steps to each of them involved the use of strong organolithium bases such as n-BuLi and s-BuLi to carry out a lithiation or deprotonation step. In the phosphine project (Chapter 2), lithiation of phosphine boranes was used. In contrast, in the piperidines project (Chapter 3), N-Boc pyrrolidine 3 was lithiated, trapped and eventually ring-expanded. Figure 1.1 8 Chapter 1 Introduction 1.1 Introduction to Organolithium Reagents Over the past decades, organolithium reagents have continued to play an important role in modern organic synthesis. Due to their powerful basicity, most deprotonation chemistry makes use of organolithium reagents.1 A number of total syntheses of natural products and drug compounds make use of the wide range of organolitium reagents such as MeLi, n-BuLi, s-BuLi, t-BuLi and PhLi as strong bases. In the work described in this thesis, the commercially available reagents n-BuLi and s-BuLi were used to deprotonate the starting phosphine borane or N-Boc pyrrolidine to form the respective lithiated intermediates. Compared to s-BuLi, n-BuLi is less basic and less reactive. It is well known that
Recommended publications
  • Synthesis of C2-Symmetric P-Chiral Bis(Phosphine Borane)
    Synthesis of C2-symmetric P-chiral bis(phosphine borane)s and their application in rhodium(I) catalyzed asymmetric transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University © Copyright by Holly Ann Heath (2001) Abstract: A new development for the synthesis C2-Synnnetric P-Chiral Bis(phosphine borane) ligands is reported, These ligands are based on the asymmetric induction of prochiral phosphine ligands with organolithium/chiral diamine complexes. These ligands have been evaluated in asymmetric rhodium(I) catalyzed hydrogenation and [4 + 2] cycloisomerization reactions. Enantiomeric excesses as high as 99% were obtained for ene-diene cycloadditions. Synthesis of C2-Symmetric P-Chiral Bis(phosphine borane)s and Their Application in Rhodium(I) Catalyzed Asymmetric Transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University Bozeman, Montana March 2001 ii APPROVAL of a dissertation submitted by Holly Ann Heath This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. Dr. Thomas Livinghouse < Chairperson, Graduate Committee Date Approved for the Department of Chemistry Dr. Paul A. Grieco Department Head Approved for the College of Graduate Studies Dr. Bruce R. McLeod Graduate Dean Date iii STATEMENT OF PERMISSION TO USE In presenting this dissertation .in partial fulfillment of the requirements for a doctoral degree at Montana State University-Bozeman, I agree that the Library shall make it available to borrowers under rules of the Library.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec
    United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec. 26, 1989 (54) PROCESS FOR THE PREPARATION OF Kosolapoff, G. M. et al. Organic Phosphorus Compounds AROMATIC PHOSPHORUS-CHLORNE (1973) vol. 4 at p. 95. Wiley-Interscience, Publ. COMPOUNDS Kosolapoff, Gennady M. Organophosphorus Com 75 Inventor: Hans-Jerg Kleiner, pounds (1958), John Wiley & Sons, Publ. pp. 59-60. Kronberg/Taunus, Fed. Rep. of Primary Examiner-Paul J. Killos Germany Attorney, Agent, or Firm-Curtis, Morris & Safford 73) Assignee: Hoechst Aktiengesellschaft, 57 ABSTRACT Frankfurt am Main, Fed. Rep. of Aromatic phosphorus-chlorine compounds, especially Germany diphenylphosphinyl chloride (C6H5)2P(O)Cl, phenyl phosphonyl dichloride C6HsP(O)Cl2, dichlorophenyl 21 Appl. No.: 554,591 phosphine C6HsPCl2 and chlorodiphenylphosphine (C6H5)2PCl, and the corresponding sulfur analogs, are 22 Filed: Nov. 23, 1983 obtained by reaction of aromatic phosphorus com 30 Foreign Application Priority Data pounds, which contain oxygen or sulfur, of the formula I Nov. 27, 1982 DE Fed. Rep. of Germany ....... 324.4031 511 Int, C.'................................................ CO7C 5/02 52 U.S. C. .................................... 562/815; 562/818; 562/819 58) Field of Search ..................................... 260/543 P in which X=O or S, and m= 1, 2 or 3, with phosphorus 56) References Cited chlorine compounds of the formula II U.S. PATENT DOCUMENTS (C6H5)3P Cln (II) 3,244,745 4/1966 Toy et al. ........................ 260/543 P FOREIGN PATENT DOCUMENTS in which n=1, 2 or 3, at temperatures between about 0093420 4/1983 European Pat. Off. 330 and 700° C. Preferred starting materials are tri phenylphosphine oxide (C6H5)3PO and phosphorus OTHER PUBLICATIONS trichloride PCl3.
    [Show full text]
  • Hazardous Substances (Chemicals) Transfer Notice 2006
    16551655 OF THURSDAY, 22 JUNE 2006 WELLINGTON: WEDNESDAY, 28 JUNE 2006 — ISSUE NO. 72 ENVIRONMENTAL RISK MANAGEMENT AUTHORITY HAZARDOUS SUBSTANCES (CHEMICALS) TRANSFER NOTICE 2006 PURSUANT TO THE HAZARDOUS SUBSTANCES AND NEW ORGANISMS ACT 1996 1656 NEW ZEALAND GAZETTE, No. 72 28 JUNE 2006 Hazardous Substances and New Organisms Act 1996 Hazardous Substances (Chemicals) Transfer Notice 2006 Pursuant to section 160A of the Hazardous Substances and New Organisms Act 1996 (in this notice referred to as the Act), the Environmental Risk Management Authority gives the following notice. Contents 1 Title 2 Commencement 3 Interpretation 4 Deemed assessment and approval 5 Deemed hazard classification 6 Application of controls and changes to controls 7 Other obligations and restrictions 8 Exposure limits Schedule 1 List of substances to be transferred Schedule 2 Changes to controls Schedule 3 New controls Schedule 4 Transitional controls ______________________________ 1 Title This notice is the Hazardous Substances (Chemicals) Transfer Notice 2006. 2 Commencement This notice comes into force on 1 July 2006. 3 Interpretation In this notice, unless the context otherwise requires,— (a) words and phrases have the meanings given to them in the Act and in regulations made under the Act; and (b) the following words and phrases have the following meanings: 28 JUNE 2006 NEW ZEALAND GAZETTE, No. 72 1657 manufacture has the meaning given to it in the Act, and for the avoidance of doubt includes formulation of other hazardous substances pesticide includes but
    [Show full text]
  • Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications
    materials Review Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications Sophie Wendels †, Thiebault Chavez †, Martin Bonnet, Khalifah A. Salmeia * and Sabyasachi Gaan * Additives and Chemistry Group, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; [email protected] (S.W.); [email protected] (T.C.); [email protected] (M.B.) * Correspondence: [email protected] (K.A.S.); [email protected] (S.G.); Tel.: +41-587-657-038 (K.A.S.); +41-587-657-611 (S.G.) † These two authors contributed equally to this work. Received: 13 May 2017; Accepted: 4 July 2017; Published: 11 July 2017 Abstract: Organophosphorus compounds containing P-C bonds are increasingly developed as flame retardant additives due to their excellent thermal and hydrolytic stability and ease of synthesis. The latest development (since 2010) in organophosphorus flame retardants containing P-C bonds summarized in this review. In this review, we have broadly classified such phosphorus compounds based on the carbon unit linked to the phosphorus atom i.e., could be a part of either an aliphatic or an aromatic unit. We have only considered those published literature where a P-C bond was created as a part of synthetic strategy to make either an intermediate or a final organophosphorus compound with an aim to use it as a flame retardant. General synthetic strategies to create P-C bonds are briefly discussed. Most popular synthetic strategies used for developing P-C containing phosphorus based flame retardants include Michael addition, Michaelis–Arbuzov, Friedels–Crafts and Grignard reactions.
    [Show full text]
  • Rhodium Complex Catalyzed Alcohol Carbonylation Reactions
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1979 Rhodium Complex Catalyzed Alcohol Carbonylation Reactions Joseph Leo Nothnagel Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Nothnagel, Joseph Leo, "Rhodium Complex Catalyzed Alcohol Carbonylation Reactions" (1979). Electronic Theses and Dissertations. 5041. https://openprairie.sdstate.edu/etd/5041 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. RHODIUM COMPLEX CATALY ZED ALCOHOL CARBONYLATION REACTIONS BY JOSEPH LEO NOTHNAGEL A thesis submitted in partical ful fillment of the requir ements for the degree Ma ster of Science , Major in Chemistry , South Dakota State Univers ity "SOUTH DAKOTA STATE UNIVERSITY LIBRARY RHODIUM COMPLEX CATALYZED ALCOHOL CARBONYLATION REACTIONS This dissertation is approved as a creditable and indep endent investigation by a.candidate for the degree , Master of Science, and is acceptable as meeting the dis­ sertation requirements for the degree, but without imply­ ing that the conclusions reached by the candidate are necessarily the conclusions of the major department . Thesis adpiser Date Head , Chemistry Department Date ACKNOWLEDGEMENTS To Dr . Ols·on who, like all great teachers, gave far more than he received; To my wi fe who , as a loving wife, put up with one too many accidents; To my parents , who have always been with me, TABLE OF CONTENTS page .
    [Show full text]
  • Jacqueline Garland Phd Thesis
    STUDIES IN PHOSPHORUS-SELENIUM CHEMISTRY Jacqueline Garland A Thesis Submitted for the Degree of PhD at the University of St Andrews 2013 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/3688 This item is protected by original copyright Studies in Phosphorus-Selenium Chemistry Jacqueline Garland This thesis is submitted in partial fulfilment for the degree of Doctor of Philosophy (PhD.) at the University of St Andrews and Doctor rerum naturalium (Dr. rer. nat.) at the Universität Leipzig 21st February 2013 Supervisors: Prof. J. D. Woollins Prof. E Hey-Hawkins Declarations I, Jacqueline Garland, hereby certify that this thesis, which is approximately 53000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September, 2008 and as a candidate for the degree of July 2009; in the higher study for which this is a record was carried out in the University of St Andrews and the Universität Leipzig between 2008 and 2013. Date: 21st February 2013 Signature of candidate: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD. in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date: 21st February 2013 Signature of supervisor: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Dr.
    [Show full text]
  • OFFICE William B
    Patented Mar. 2, 1954 2,671,079 UNITED STATES PATENT 2,671,079 PHosPHoRUS-conTAINING PolyMERs OFFICE William B. McCormack, Wilmington, Del, as signor to E. I. du Pont de Nemours and Com pany, Wilmington, Del, a corporation of Dela Wate No Drawing. Application August 7, 1951, Serial No. 240,813 1. 14 Claims. (CI260-92.3) This invention relates to new phosphorus-con taining interpolymers and to a process for obtain The dihalophosphine to be used in this process ing them. has the formula RPX2, in which R, represents a In my copending application Serial No. 240,814, member of the group consisting of alkyl, aryland there are described stable, heat-resistant poly aralkyl radicals and X represents a member of mers containing phosphorus in the form of phoS the group consisting of chlorine and bromine, phine oxide groups. These polymers are prepared The preferred phosphines are dichlorophenyl by the reaction of a hydroxyl-containing com phosphine and dichloroethylphosphine. A wide pound, such as Water or an alcohol, With a phoS variety of phosphine derivatives having the gene phorus-containing interpolymer in which the eral formula, shown may be employed. Represen phosphorus is present as dihalotertiaryphosphine O tative compounds include those in which R, rep groups. The latter interpolymers are the sub resents an alkyl group such as methyl, ethyl, ject of the present application. - propyl, butyl or octyl; an aryl group Such as It is an object of this invention to provide phenyl or alpha- or beta-naphthyl, or an aral polymeric products containing phosphorus, which kyl group such as benzyl or phenylethyl.
    [Show full text]
  • Open NLD Thesis FINAL.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science DEVELOPMENT OF PHOSPHORUS-CATALYZED REDUCTIONS VIA P(III)/P(V) CYCLING WITH STRAINED PHOSPHORUS CATALYSTS A Dissertation in Chemistry by Nicole L. Dunn 2016 Nicole L. Dunn Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2016 The dissertation of Nicole L. Dunn was reviewed and approved* by the following: Alexander T. Radosevich Assistant Professor of Chemistry Dissertation Advisor Chair of Committee Kenneth S. Feldman Professor of Chemistry Chemistry Graduate Program Chair Scott T. Phillips Associate Professor of Chemistry Martarano Career Development Professorship Joshua D. Lambert Associate Professor of Food Science *Signatures are on file in the Graduate School iii ABSTRACT Phosphorus catalysis is a growing field that is currently based upon the utility of three major catalytic cycles: 1) three coordinate phosphine to four coordinate phosphonium, 2) three coordinate phosphine to four coordinate phosphine oxide, and 3) four coordinate phosphonium to five coordinate phosphorane. In this thesis, a new mode of phosphorus catalysis will be described, wherein the catalytic cycle relies upon the transition from three-coordinate phosphorus to five- coordinate phosphorane. Specifically, we have developed two systems where geometrically constrained phosphorus(III) compounds catalyze the reduction of unsaturated substrates. In the first system, a planar, T-shaped phosphorus(III) compound is transformed into a five-coordinate hydridophosphorane with no observable intermediates; catalytic reduction of azobenzene is observed with both species in the presence of a reductant. In the second example, a cyclic phosphine catalyzes the reductive transposition of allylic halides. We believe that the demonstrated ability of phosphorus compounds to cycle between three-coordinate and five-coordinate complexes marks the development of new class of phosphorus-catalyzed reactions that could have broad applications in synthetic chemistry.
    [Show full text]
  • Chapter 7 Experimental
    Chapter 7 Experimental 7 Experimental 7.1 General Procedures All manipulations of metal complexes and air sensitive reagents were performed under an inert atmosphere of nitrogen either by the use of standard Schlenk and vacuum line techniques or in a nitrogen-filled glove box. Solutions were transferred using double ended needles (cannulae) and gas tight syringes. Glassware and double ended needles were oven dried at 160°C overnight. All reagents, including 1 5 N labelled compounds, were purchased from Sigma-Aldrich Pty. Ltd., except dimethylphenylphosphine, triallylphosphine, 1,2-bis (dimethylphosphino)ethane, and 1,2-bis (diethylphosphino)ethane, which were purchased from Strem Chemicals, Inc. and used as received. For the purposes of air sensitive manipulations and in the preparation of metal complexes, diethyl ether, tetrahydrofuran, hexane, toluene and benzene were stored over sodium wire and distilled prior to use from sodium/benzophenone ketyl under nitrogen. Methanol was dried over and distilled from magnesium turnings. Acetone was dried over and distilled from CaSO 4 . Dimethylformamide was dried over activated molecular sieves. Absolute ethanol, 2-methoxyethanol, 2,2-dimethoxypropane and anhydrous chloroform were used as received. - 221 - Chapter 7 Experimental All bulk compressed gases were obtained from British Oxygen Company (BOC Gases). Argon (>99.99%) and nitrogen (>99.5%) were passed through drying columns of potassium hydroxide before use. Methyl bromide (>95%), carbon monoxide (>98%) and dihydrogen (>99%) were used as supplied. Vinyl bromide was purchased from Sigma-Aldrich and used as supplied. Air sensitive NMR samples were either prepared in a nitrogen-filled glove-box or by transferring the solutions by double ended needles through an air tight septum seal.
    [Show full text]
  • Synthesis, Purification, and Characterization of Tetraphosphine Ligands Deniz Cevik
    Synthesis, purification, and characterization of tetraphosphine ligands Deniz Cevik To cite this version: Deniz Cevik. Synthesis, purification, and characterization of tetraphosphine ligands. Other. Univer- sité Paris-Saclay, 2017. English. NNT : 2017SACLX026. tel-01631221 HAL Id: tel-01631221 https://pastel.archives-ouvertes.fr/tel-01631221 Submitted on 8 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLX026 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY PREPAREE A ÉCOLE POLYTECHNIQUE ECOLE DOCTORALE N° 517 2MIB | Sciences chimiques : Molécules, matériaux, instrumentation et biosystèmes Spécialité de doctorat : Chimie Par Mme. Deniz Çevik Synthesis, Purification, and Characterization of Tetraphosphine Ligands Thèse présentée et soutenue à Palaiseau, le 17. Juillet 2017 : Composition du Jury : Mme. Hii, King Kuok (Mimi) Professeur Imperial College London Rapporteure M. Manoury, Eric DR - CNRS au LCC (Toulouse) Rapporteur M. Voituriez, Arnaud DR - CNRS á l’ICSN Président M. van Leeuwen, Piet Chaire d’Attractivité au LPCNO, INSA-Toulouse
    [Show full text]
  • Fig. L NICKEL PRE-CATALYSTS and RELATED COMPOSITIONS and METHODS
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/070026 Al 14 May 2015 (14.05.2015) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C07F 15/04 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/US2014/064565 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 7 November 2014 (07.1 1.2014) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/902,484 11 November 2013 ( 11. 11.2013) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: MASSACHUSETTS INSTITUTE OF TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Cambridge, MA 02139 (US).
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,698,448 Ude Et Al
    United States Patent (19) 11 Patent Number: 4,698,448 Ude et al. 45 Date of Patent: Oct. 6, 1987 54 METHOD FOR MAKING AROMATIC 3231331 3/1984 Fed. Rep. of Germany . PHOSPHORUS COMPOUNDS 1561198 2/1980 United Kingdom. 75) Inventors: Werner Ude, Darmstadt; Siegmund OTHER PUBLICATIONS Besecke, Seeheim-Jugenheim; Achim Kosolapoff et al, Organic Phosphorus Compounds, Riemann, Marburg; Guenther Wiley InterSc., N.Y., vol. 1, pp. 60 & 61 (1972). Schroeder, Ober-Ramstadt, all of Kosolapoff et al, Organic Phosphorus Compounds, Fed. Rep. of Germany Wiley InterSc., N.Y., vol. 3, pp. 379-383 (1972). (73) Assignee: Röhm GmbH, Darmstadt, Fed. Rep. Kosolapoff et al, Organic Phosphorus Compounds, of Germany Wiley-InterSc., vol. 4, pp. 15, 16 and 44 (1972). Chem. Abstr. 52, 20038a (1958). 21 Appl. No.: 751,625 Chem. Abstr, 87, 40281v (1977). 22 Filed: Jul. 2, 1985 Chem. Abstr. 83, 43459n (1975). Chem. Abstr. 96, 6000d (1982). 30 Foreign Application Priority Data J. Org. Chem 42(12), 10 (1977). Jul. 10, 1984 DE Fed. Rep. of Germany ....... 3.425282 Chem. Ber. 102 (9), 2922-2929 (1969). 51) Int. Cl'................................................ CO7F 9/53 Chem. Ber. 102 (9), 2914-2921 (1969). 52 U.S. C. ........................................ 568/14: 568/15; Primary Examiner-Helen M. S. Sneed 568/16; 568/17 Attorney, Agent, or Firm-Curtis, Morris & Safford 58) Field of Search ........................ 568/16, 17, 14, 15 57 ABSTRACT 56) References Cited Compounds of the formula U.S. PATENT DOCUMENTS 2,138,835 12/1938 Butz .................................. 568/14 X (m 2,902,517 9/1959 Schmerling ........................... 568/17 X-Air - Ar-X, 3,032,589 5/1962 Hoffmann et al.
    [Show full text]