Department of Chemistry University of Durham A

Total Page:16

File Type:pdf, Size:1020Kb

Department of Chemistry University of Durham A Durham E-Theses Tailored ligands for zinc coordination Edlin, Christopher David How to cite: Edlin, Christopher David (1998) Tailored ligands for zinc coordination, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4787/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Tailored Ligands For Zinc Coordination by Christopher David Edlin B.Sc. (Hons) The copyright of this thesis rests with the author. No quotation from it should be published without die written consent of the author and information derived from it should be acknowledged. Department of Chemistry University of Durham A Thesis submitted for the degree of Doctor of Philosophy September 1998 1 3 JAW 1999 Abstract Tailored Ligands For Zinc Coordination Selective coordination to zinc over other members of the first row transition metal series is important for the commercial application of lipophilic ligands for the hydrometallurgic recovery of the metal. In order to achieve selectivity for zinc(n) over other ions, particularly copper(II) and iron(HT), ligands have to be designed which take advantage of zinc's preferred tetrahedral coordination geometry and the borderline donor atom preference of the metal. With such ligands in mind, three new classes of ligand system have been designed and synthesised based on the benzimidazole, quinoline and pyridine ring systems with appended phosphinic and thiophosphinic acid anionic donor groups. Benzimidazole ligands which bind zinc in a 2:1 manner in solution have been made and their complexation ability assessed by ESMS, 31P NMR, liquid-liquid extraction, fluorescence and UV absorption spectroscopic methods. A bisbenzimidazole ligand with a C3 spacer in the 2,2' position was synthesised and shown to bind zinc initially in a 2:1 manner, at low metal concentrations, and predominantly as a 1:1 species at higher metal concentrations. The formation constant for the ML complex was shown to be logK\n=5 by analysis of the NMR titration curve, which was in close agreement with the value obtained from liquid-liquid extraction studies. A directly linked 2,2'- bisbenzimidazole system was also synthesised as an extension to previous work, however isolation of the target ligand proved to be difficult due to the insolubility of the desired bis-acid. 8-(Quinolinyl)phenylphosphinic acid and 8-(2-methylquinolinyl)phenylphosphinic acid were also synthesised and their solution complexation behaviour studied in detail. The unsubstituted ligand appeared to form 1:1 complexes with zinc at all the metal concentrations studied, and the absence of the methyl substituent does not inhibit coordination to the ferric ion. In contrast the methyl substituted ligand initially forms a 2:1 L:M complex, and 1:1 complexes at higher metal concentrations. The initial ML2 complex probably involves coordination of two of the phosphinic acid moieties. Three pyridyl derived ligand systems were also synthesised varying the bulk of the C-6 substituent and the effect of the phosphinic versus the thiophosphinic acid moiety towards zinc coordination was examined. Both of the methyl appended ligands were shown to bind zinc in a 2:1 manner, with the thiophosphinic acid exhibiting a greater avidity for zinc. In contrast, the unsubstituted ligand predominantly forms 1:1 complexes at all metal concentrations. Christopher David Edlin, 1998 - ii - Declaration The content of this thesis represents the work of the author unless indicated to the contrary or acknowledged by reference. The thesis describes the results of research carried out in the Department of Chemistry at the University of Durham, and also at Zeneca Specialties, Blackley between October 1995 and September 1998. This work has not been submitted for a higher degree in any other academic institution. Statement of Copyright The copyright of this thesis rests with the author. Any quotation published or any information derived from it should be acknowledged. Acknowledgements I would like to thank my supervisor, Professor David Parker, for his enthusiasm, help, encouragement and sometimes optimism throughout the time I have worked with him. For my short stay at Zeneca, 1 thank Dr. Dom Cupertino for looking after me. I am also grateful to many staff in the department, without whom this work would not have been possible; Alan Kenwright, Ian McKeag, Julia Say and Ray Matthews for NMR; Mike Jones and Lara Turner for Mass Spectroscopy; Ritu Kataky for electrochemistry; Lenny Lauchlin for help with HPLC, ion analysis (and football!); and the remainder of the technical staff of the department for all their help over the years. Special thanks are due to everbody who has passed through CG27 (the 'Wolfson' laboratory!) over the past three years, particularly Steve, for their support, friendship, laughs and a few beers! Thanks to all the members of Grad. Soc football club for a great few years and the occaisonal sore head on a Saturday morning, and to all the members of SC Chemistry for a cup winning year! Financial support from the EPSRC and Zeneca (under the CASE scheme) is gratefully acknowledged - iii - To Mum and Dad - iv - Contents Chapter One 1. Introduction ........ 2 1.1 Metal Recovery ....... 2 1.2 Hydrometallurgy ....... 3 1.3 Coordination Chemistry . 11 1.4 Ligand Design Requirements ..... 22 1.5 Ligand Design and Target Ligands ..... 25 1.6 Scope of Work 26 1.7 References ........ 28 Chapter Two 2 Introduction to Phosphorus Chemistry .... 33 2.1 The Need For Phosphinic Acids ..... 33 2.2 Comparison of Phosphinic and Carboxylic Acids ... 34 2.3 Phosphinic Acids Linked Directly to an Aromatic Ring . 34 2.4 Phosphinic Acids Linked by a Nitrogen Spacer to an Aromatic Ring 39 2.5 References . 41 Chapter Three 3. Benzimidazole Based Ligands ..... 44 3.1 Benzimidazoles ....... 44 3.2 Previous Aspects of Benzimidazole Zinc Coordination . 45 3.3 Design of Monobenzimidazole Ligand .... 48 3.4 Ligand Synthesis ....... 50 3.5 Solution Complexation Behaviour ..... 57 3.6 Dimethylthiophosphoryl Ligand System .... 70 3.7 Ligand Synthesis ....... 72 3.8 Solution Complexation Behaviour ..... 74 3.9 2,2'-Bisbenzimidazole Ligand ..... 79 3.10 Improved Ligand Design ...... 79 3.11 Ligand Synthesis .80 3.12 A Trime thy lene Spaced Bisbenzimidazole Ligand ... 88 3.13 Ligand Design ....... 88 3.14 Ligand Synthesis .90 3.15 Solution Complexation Behaviour ..... 98 - v - 3.16 Conclusions and Summary .... 3.17 References ...... Chapter Four 4 Quinoline Based Ligand Systems 4.1 Quinolines ...... 4.2 Zinc Coordination and Fluorescence Probes . 4.3 Design of New Ligand System 4.4 Synthesis ...... 4.5 Solution Coordination Chemistry 4.6 Conclusions ...... 4.7 References ...... Chapter Five 5 Pyridyl Derived Ligand Systems 5.1 Pyridines ...... 5.2 Examples of Pyridyl Based Ligands for Zinc Coordination 5.3 Ligand Design ..... 5.4 Syntheis ...... 5.5 Solution Coordination Chemistry 5.6 Conclusions ...... 5.7 References ...... Chapter Six 6 Experimental Methods .... 6.1 Methods ...... 6.2 Chapter Two Experimental . 6.3 Chapter Three Experimental .... 6.4 Chapter Four Experimental .... 6.5 Chapter Five Experimental .... 6.6 References ...... Appendices ....... - vi - Abbreviations Ac acetyl AT aromatic aq aqueous bz benzyl Bu butyl °C degrees celsius CF crystal field CFT crystal field theory CFSE crystal field stabilisation energy Ch. chapter CHEF chelation enhanched fluoresence CHN carbon, hydrogen, nitrogen combustion analysis CI chemical ionisation cy cyclohexyl d doublet 8 chemical shift 2D two dimensional DCI dicyclohexylcarbodiimide DCM dichloromethane dd doublet of doublets D2EHPA di(2-ethylhexyl)phosphoric acid DIBAL-H di-wo-Butyl Aluminium Hydride DMF N, N-dimethylformamide DMSO dimethylsulfoxide e" electron EDCI l,r-dimethylaminopropyl)-3-ethylcarbomide hydrochloride EDTA ethylene diamine diacetic acid EI electron impact ionisation en ethylenediamine ESMS electrospray mass spectrometry Et ethyl EtOH ethanol Eqn. Equation eV electron volt Fig. figure FTIR fourier transform infra red h hours HDOP di(n-octyl)phosphinic acid - vii - HEHfEHP] 2-ethylhexylphosphonic acid mono 2-ethylhexyl ester HOMO highest occupied molecular orbital HPLC high performance liquid chromatography HSAB hard and soft, acid and base Hz hertz I ionic strength ICT internal charge transfer IR infra red J coupling constant K kelvin L ligand LDA lithium diisopropylamide lit literature LUMO lowest unoccupied molecular orbital m multiplet M metal Me methyl MeOH methanol mm millimetre M/L metal:ligand ratio min minute m. p. melting point MS mass spectrometry n neutron I2N3 1,5,9 triazacycldodecane 12N4 1,4,7,10 tetra-aza cyclododecane HN4 1,5,8,12 tetra-aza cycloundecane run nanometer NMR nuclear magnetic resonance NOE nuclear overhauser effect p pentet PCC pyridinium chloro chromate Ph phenyl PhH benzene PhMe toluene PPA polyphosphoric acid q quartet ri ionic radius Rf retention time s singlet - viii - ha half life t triplet TBDMS terriary-butyldimethylsilyl td triplet of doublets tt triplet of triplets TFA trifluoroacetic acid THF tetrahydrofuran tic thin layer chromatography tren tris(ethylenediamine) Ts toluene sulfonyl UV ultra violet VT variable temperature - LX - Chapter One Introduction Chapter One: Introduction 1 Introduction A brief comparison is made between the more traditional methods of metal recovery (1.1) and hydrometallurgy, the industrial focus of this work (1.2). The set-up and factors influencing the design of the industrial extractants currently employed are surveyed in the second section.
Recommended publications
  • Synthesis of C2-Symmetric P-Chiral Bis(Phosphine Borane)
    Synthesis of C2-symmetric P-chiral bis(phosphine borane)s and their application in rhodium(I) catalyzed asymmetric transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University © Copyright by Holly Ann Heath (2001) Abstract: A new development for the synthesis C2-Synnnetric P-Chiral Bis(phosphine borane) ligands is reported, These ligands are based on the asymmetric induction of prochiral phosphine ligands with organolithium/chiral diamine complexes. These ligands have been evaluated in asymmetric rhodium(I) catalyzed hydrogenation and [4 + 2] cycloisomerization reactions. Enantiomeric excesses as high as 99% were obtained for ene-diene cycloadditions. Synthesis of C2-Symmetric P-Chiral Bis(phosphine borane)s and Their Application in Rhodium(I) Catalyzed Asymmetric Transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University Bozeman, Montana March 2001 ii APPROVAL of a dissertation submitted by Holly Ann Heath This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. Dr. Thomas Livinghouse < Chairperson, Graduate Committee Date Approved for the Department of Chemistry Dr. Paul A. Grieco Department Head Approved for the College of Graduate Studies Dr. Bruce R. McLeod Graduate Dean Date iii STATEMENT OF PERMISSION TO USE In presenting this dissertation .in partial fulfillment of the requirements for a doctoral degree at Montana State University-Bozeman, I agree that the Library shall make it available to borrowers under rules of the Library.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec
    United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec. 26, 1989 (54) PROCESS FOR THE PREPARATION OF Kosolapoff, G. M. et al. Organic Phosphorus Compounds AROMATIC PHOSPHORUS-CHLORNE (1973) vol. 4 at p. 95. Wiley-Interscience, Publ. COMPOUNDS Kosolapoff, Gennady M. Organophosphorus Com 75 Inventor: Hans-Jerg Kleiner, pounds (1958), John Wiley & Sons, Publ. pp. 59-60. Kronberg/Taunus, Fed. Rep. of Primary Examiner-Paul J. Killos Germany Attorney, Agent, or Firm-Curtis, Morris & Safford 73) Assignee: Hoechst Aktiengesellschaft, 57 ABSTRACT Frankfurt am Main, Fed. Rep. of Aromatic phosphorus-chlorine compounds, especially Germany diphenylphosphinyl chloride (C6H5)2P(O)Cl, phenyl phosphonyl dichloride C6HsP(O)Cl2, dichlorophenyl 21 Appl. No.: 554,591 phosphine C6HsPCl2 and chlorodiphenylphosphine (C6H5)2PCl, and the corresponding sulfur analogs, are 22 Filed: Nov. 23, 1983 obtained by reaction of aromatic phosphorus com 30 Foreign Application Priority Data pounds, which contain oxygen or sulfur, of the formula I Nov. 27, 1982 DE Fed. Rep. of Germany ....... 324.4031 511 Int, C.'................................................ CO7C 5/02 52 U.S. C. .................................... 562/815; 562/818; 562/819 58) Field of Search ..................................... 260/543 P in which X=O or S, and m= 1, 2 or 3, with phosphorus 56) References Cited chlorine compounds of the formula II U.S. PATENT DOCUMENTS (C6H5)3P Cln (II) 3,244,745 4/1966 Toy et al. ........................ 260/543 P FOREIGN PATENT DOCUMENTS in which n=1, 2 or 3, at temperatures between about 0093420 4/1983 European Pat. Off. 330 and 700° C. Preferred starting materials are tri phenylphosphine oxide (C6H5)3PO and phosphorus OTHER PUBLICATIONS trichloride PCl3.
    [Show full text]
  • Hazardous Substances (Chemicals) Transfer Notice 2006
    16551655 OF THURSDAY, 22 JUNE 2006 WELLINGTON: WEDNESDAY, 28 JUNE 2006 — ISSUE NO. 72 ENVIRONMENTAL RISK MANAGEMENT AUTHORITY HAZARDOUS SUBSTANCES (CHEMICALS) TRANSFER NOTICE 2006 PURSUANT TO THE HAZARDOUS SUBSTANCES AND NEW ORGANISMS ACT 1996 1656 NEW ZEALAND GAZETTE, No. 72 28 JUNE 2006 Hazardous Substances and New Organisms Act 1996 Hazardous Substances (Chemicals) Transfer Notice 2006 Pursuant to section 160A of the Hazardous Substances and New Organisms Act 1996 (in this notice referred to as the Act), the Environmental Risk Management Authority gives the following notice. Contents 1 Title 2 Commencement 3 Interpretation 4 Deemed assessment and approval 5 Deemed hazard classification 6 Application of controls and changes to controls 7 Other obligations and restrictions 8 Exposure limits Schedule 1 List of substances to be transferred Schedule 2 Changes to controls Schedule 3 New controls Schedule 4 Transitional controls ______________________________ 1 Title This notice is the Hazardous Substances (Chemicals) Transfer Notice 2006. 2 Commencement This notice comes into force on 1 July 2006. 3 Interpretation In this notice, unless the context otherwise requires,— (a) words and phrases have the meanings given to them in the Act and in regulations made under the Act; and (b) the following words and phrases have the following meanings: 28 JUNE 2006 NEW ZEALAND GAZETTE, No. 72 1657 manufacture has the meaning given to it in the Act, and for the avoidance of doubt includes formulation of other hazardous substances pesticide includes but
    [Show full text]
  • Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications
    materials Review Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications Sophie Wendels †, Thiebault Chavez †, Martin Bonnet, Khalifah A. Salmeia * and Sabyasachi Gaan * Additives and Chemistry Group, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; [email protected] (S.W.); [email protected] (T.C.); [email protected] (M.B.) * Correspondence: [email protected] (K.A.S.); [email protected] (S.G.); Tel.: +41-587-657-038 (K.A.S.); +41-587-657-611 (S.G.) † These two authors contributed equally to this work. Received: 13 May 2017; Accepted: 4 July 2017; Published: 11 July 2017 Abstract: Organophosphorus compounds containing P-C bonds are increasingly developed as flame retardant additives due to their excellent thermal and hydrolytic stability and ease of synthesis. The latest development (since 2010) in organophosphorus flame retardants containing P-C bonds summarized in this review. In this review, we have broadly classified such phosphorus compounds based on the carbon unit linked to the phosphorus atom i.e., could be a part of either an aliphatic or an aromatic unit. We have only considered those published literature where a P-C bond was created as a part of synthetic strategy to make either an intermediate or a final organophosphorus compound with an aim to use it as a flame retardant. General synthetic strategies to create P-C bonds are briefly discussed. Most popular synthetic strategies used for developing P-C containing phosphorus based flame retardants include Michael addition, Michaelis–Arbuzov, Friedels–Crafts and Grignard reactions.
    [Show full text]
  • Rhodium Complex Catalyzed Alcohol Carbonylation Reactions
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1979 Rhodium Complex Catalyzed Alcohol Carbonylation Reactions Joseph Leo Nothnagel Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Nothnagel, Joseph Leo, "Rhodium Complex Catalyzed Alcohol Carbonylation Reactions" (1979). Electronic Theses and Dissertations. 5041. https://openprairie.sdstate.edu/etd/5041 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. RHODIUM COMPLEX CATALY ZED ALCOHOL CARBONYLATION REACTIONS BY JOSEPH LEO NOTHNAGEL A thesis submitted in partical ful fillment of the requir ements for the degree Ma ster of Science , Major in Chemistry , South Dakota State Univers ity "SOUTH DAKOTA STATE UNIVERSITY LIBRARY RHODIUM COMPLEX CATALYZED ALCOHOL CARBONYLATION REACTIONS This dissertation is approved as a creditable and indep endent investigation by a.candidate for the degree , Master of Science, and is acceptable as meeting the dis­ sertation requirements for the degree, but without imply­ ing that the conclusions reached by the candidate are necessarily the conclusions of the major department . Thesis adpiser Date Head , Chemistry Department Date ACKNOWLEDGEMENTS To Dr . Ols·on who, like all great teachers, gave far more than he received; To my wi fe who , as a loving wife, put up with one too many accidents; To my parents , who have always been with me, TABLE OF CONTENTS page .
    [Show full text]
  • Jacqueline Garland Phd Thesis
    STUDIES IN PHOSPHORUS-SELENIUM CHEMISTRY Jacqueline Garland A Thesis Submitted for the Degree of PhD at the University of St Andrews 2013 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/3688 This item is protected by original copyright Studies in Phosphorus-Selenium Chemistry Jacqueline Garland This thesis is submitted in partial fulfilment for the degree of Doctor of Philosophy (PhD.) at the University of St Andrews and Doctor rerum naturalium (Dr. rer. nat.) at the Universität Leipzig 21st February 2013 Supervisors: Prof. J. D. Woollins Prof. E Hey-Hawkins Declarations I, Jacqueline Garland, hereby certify that this thesis, which is approximately 53000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September, 2008 and as a candidate for the degree of July 2009; in the higher study for which this is a record was carried out in the University of St Andrews and the Universität Leipzig between 2008 and 2013. Date: 21st February 2013 Signature of candidate: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD. in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date: 21st February 2013 Signature of supervisor: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Dr.
    [Show full text]
  • OFFICE William B
    Patented Mar. 2, 1954 2,671,079 UNITED STATES PATENT 2,671,079 PHosPHoRUS-conTAINING PolyMERs OFFICE William B. McCormack, Wilmington, Del, as signor to E. I. du Pont de Nemours and Com pany, Wilmington, Del, a corporation of Dela Wate No Drawing. Application August 7, 1951, Serial No. 240,813 1. 14 Claims. (CI260-92.3) This invention relates to new phosphorus-con taining interpolymers and to a process for obtain The dihalophosphine to be used in this process ing them. has the formula RPX2, in which R, represents a In my copending application Serial No. 240,814, member of the group consisting of alkyl, aryland there are described stable, heat-resistant poly aralkyl radicals and X represents a member of mers containing phosphorus in the form of phoS the group consisting of chlorine and bromine, phine oxide groups. These polymers are prepared The preferred phosphines are dichlorophenyl by the reaction of a hydroxyl-containing com phosphine and dichloroethylphosphine. A wide pound, such as Water or an alcohol, With a phoS variety of phosphine derivatives having the gene phorus-containing interpolymer in which the eral formula, shown may be employed. Represen phosphorus is present as dihalotertiaryphosphine O tative compounds include those in which R, rep groups. The latter interpolymers are the sub resents an alkyl group such as methyl, ethyl, ject of the present application. - propyl, butyl or octyl; an aryl group Such as It is an object of this invention to provide phenyl or alpha- or beta-naphthyl, or an aral polymeric products containing phosphorus, which kyl group such as benzyl or phenylethyl.
    [Show full text]
  • Synthesis of Phosphine-Alkene Ligands and 3-Hydroxy Piperidines Using Organolithium Chemistry Chehasnah Haji-Cheteh
    Synthesis of Phosphine-Alkene Ligands and 3-Hydroxy Piperidines Using Organolithium Chemistry Chehasnah Haji-Cheteh Doctor of Philosophy University of York Chemistry March 2016 Abstract Abstract This thesis describes synthetic routes to P-stereogenic phosphine-alkene ligands and 3- hydroxy piperidines containing heteroaromatics via lithiation-trapping of phosphine boranes or N-Boc pyrrolidine. Both topics are introduced in chapter 1. Chapter 2 presents a route to a new type of P-stereogenic phosphine-alkene ligand B prepared by racemic lithiation of t-butyldimethylphosphine borane or dimethylphenylphosphine borane using s-BuLi. Different allylic halides were used to trap the lithiated R1 = Ph, t-Bu intermediate to give chiral alkene-phosphine boranes A. R2 = H, Me, Br In chapter 3, 3-hydroxy piperidines were synthesised from the ring expansion of hydroxy pyrrolidines. Two novel, short and simple synthetic routes were developed (as shown below). Lithiation-trapping reaction of N-Boc pyrrolidine C using pyridine carboxaldehydes gave N-Boc pyrrolidine alcohols syn-D and anti-D. On the other hand, an alternative approach to obtain 3-hydroxy piperidines anti-H starting from N-trityl prolinal E derived from (S)-proline was investigated. Addition of lithiated heteroaromatics, generated from a Br/Li exchange reaction, to N-trityl prolinal E diastereoselectively gave N-trityl alcohols anti-F. The Boc or trityl deprotection and reductive amination then gave N-benzyl pyrrolidines syn-G and anti-G. Finally, the ring expansion via an aziridinium ion of alcohols syn-G and anti-G gave 3-hydroxy piperidines syn-H and anti-H. The stereochemistry of 3- hydroxy piperidines syn-H and anti-H was proven using J-values in the 1H NMR spectra.
    [Show full text]
  • Open NLD Thesis FINAL.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science DEVELOPMENT OF PHOSPHORUS-CATALYZED REDUCTIONS VIA P(III)/P(V) CYCLING WITH STRAINED PHOSPHORUS CATALYSTS A Dissertation in Chemistry by Nicole L. Dunn 2016 Nicole L. Dunn Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2016 The dissertation of Nicole L. Dunn was reviewed and approved* by the following: Alexander T. Radosevich Assistant Professor of Chemistry Dissertation Advisor Chair of Committee Kenneth S. Feldman Professor of Chemistry Chemistry Graduate Program Chair Scott T. Phillips Associate Professor of Chemistry Martarano Career Development Professorship Joshua D. Lambert Associate Professor of Food Science *Signatures are on file in the Graduate School iii ABSTRACT Phosphorus catalysis is a growing field that is currently based upon the utility of three major catalytic cycles: 1) three coordinate phosphine to four coordinate phosphonium, 2) three coordinate phosphine to four coordinate phosphine oxide, and 3) four coordinate phosphonium to five coordinate phosphorane. In this thesis, a new mode of phosphorus catalysis will be described, wherein the catalytic cycle relies upon the transition from three-coordinate phosphorus to five- coordinate phosphorane. Specifically, we have developed two systems where geometrically constrained phosphorus(III) compounds catalyze the reduction of unsaturated substrates. In the first system, a planar, T-shaped phosphorus(III) compound is transformed into a five-coordinate hydridophosphorane with no observable intermediates; catalytic reduction of azobenzene is observed with both species in the presence of a reductant. In the second example, a cyclic phosphine catalyzes the reductive transposition of allylic halides. We believe that the demonstrated ability of phosphorus compounds to cycle between three-coordinate and five-coordinate complexes marks the development of new class of phosphorus-catalyzed reactions that could have broad applications in synthetic chemistry.
    [Show full text]
  • Synthesis, Purification, and Characterization of Tetraphosphine Ligands Deniz Cevik
    Synthesis, purification, and characterization of tetraphosphine ligands Deniz Cevik To cite this version: Deniz Cevik. Synthesis, purification, and characterization of tetraphosphine ligands. Other. Univer- sité Paris-Saclay, 2017. English. NNT : 2017SACLX026. tel-01631221 HAL Id: tel-01631221 https://pastel.archives-ouvertes.fr/tel-01631221 Submitted on 8 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLX026 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY PREPAREE A ÉCOLE POLYTECHNIQUE ECOLE DOCTORALE N° 517 2MIB | Sciences chimiques : Molécules, matériaux, instrumentation et biosystèmes Spécialité de doctorat : Chimie Par Mme. Deniz Çevik Synthesis, Purification, and Characterization of Tetraphosphine Ligands Thèse présentée et soutenue à Palaiseau, le 17. Juillet 2017 : Composition du Jury : Mme. Hii, King Kuok (Mimi) Professeur Imperial College London Rapporteure M. Manoury, Eric DR - CNRS au LCC (Toulouse) Rapporteur M. Voituriez, Arnaud DR - CNRS á l’ICSN Président M. van Leeuwen, Piet Chaire d’Attractivité au LPCNO, INSA-Toulouse
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,698,448 Ude Et Al
    United States Patent (19) 11 Patent Number: 4,698,448 Ude et al. 45 Date of Patent: Oct. 6, 1987 54 METHOD FOR MAKING AROMATIC 3231331 3/1984 Fed. Rep. of Germany . PHOSPHORUS COMPOUNDS 1561198 2/1980 United Kingdom. 75) Inventors: Werner Ude, Darmstadt; Siegmund OTHER PUBLICATIONS Besecke, Seeheim-Jugenheim; Achim Kosolapoff et al, Organic Phosphorus Compounds, Riemann, Marburg; Guenther Wiley InterSc., N.Y., vol. 1, pp. 60 & 61 (1972). Schroeder, Ober-Ramstadt, all of Kosolapoff et al, Organic Phosphorus Compounds, Fed. Rep. of Germany Wiley InterSc., N.Y., vol. 3, pp. 379-383 (1972). (73) Assignee: Röhm GmbH, Darmstadt, Fed. Rep. Kosolapoff et al, Organic Phosphorus Compounds, of Germany Wiley-InterSc., vol. 4, pp. 15, 16 and 44 (1972). Chem. Abstr. 52, 20038a (1958). 21 Appl. No.: 751,625 Chem. Abstr, 87, 40281v (1977). 22 Filed: Jul. 2, 1985 Chem. Abstr. 83, 43459n (1975). Chem. Abstr. 96, 6000d (1982). 30 Foreign Application Priority Data J. Org. Chem 42(12), 10 (1977). Jul. 10, 1984 DE Fed. Rep. of Germany ....... 3.425282 Chem. Ber. 102 (9), 2922-2929 (1969). 51) Int. Cl'................................................ CO7F 9/53 Chem. Ber. 102 (9), 2914-2921 (1969). 52 U.S. C. ........................................ 568/14: 568/15; Primary Examiner-Helen M. S. Sneed 568/16; 568/17 Attorney, Agent, or Firm-Curtis, Morris & Safford 58) Field of Search ........................ 568/16, 17, 14, 15 57 ABSTRACT 56) References Cited Compounds of the formula U.S. PATENT DOCUMENTS 2,138,835 12/1938 Butz .................................. 568/14 X (m 2,902,517 9/1959 Schmerling ........................... 568/17 X-Air - Ar-X, 3,032,589 5/1962 Hoffmann et al.
    [Show full text]
  • Synthesis and Applications of P-Chirogenic and Axially Chiral P,N-Phosphines As Ligands and Organocatalysts
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Synthesis and Applications of P-Chirogenic and Axially Chiral P,N-Phosphines as Ligands and Organocatalysts Kristian H. O. Andersson Department of Chemical and Biological Engineering / Organic Chemistry CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2011 Synthesis and Applications of P-Chirogenic and Axially Chiral P,N-Phosphines as Ligands and Organocatalysts. KRISTIAN H. O. ANDERSSON ISBN 978-91-7385-615-7 © KRISTIAN H. O. ANDERSSON, 2011. Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 3296 ISSN 0346-718X Department of Chemical and Biological Engineering Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone + 46 (0)31-772 1000 Cover: Clockwise from the top left: 10 g of starting material for compound 60a in a round-bottom flask. Catalytic amount (~3 mg) of compound 60a in the tip of a glass pipette. Purification of an attempted synthesis of a P-chirogenic phosphine. Structure drawing of compound 60a. Printed by Chalmers Reproservice Gothenburg, Sweden 2011 ”If you can dream – and not make dreams your master; If you can think – and not make thoughts your aim; If you can meet with Triumph and Disaster And treat those two impostors just the same;” Rudyard Kipling – “If-” Synthesis and Applications of P-Chirogenic and Axially Chiral P,N- Phosphines as Ligands and Organocatalysts. Kristian H. O. Andersson Department of Chemical and Biological Engineering / Organic Chemistry Chalmers University of Technology Abstract This thesis deals with the enantioselective synthesis of chiral mixed phosphorous/nitrogen compounds and some of their applications in asymmetric synthesis. For the most part, the compounds are P-chirogenic, with the chirality centered on the phosphorous atom.
    [Show full text]