Jacqueline Garland Phd Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Jacqueline Garland Phd Thesis STUDIES IN PHOSPHORUS-SELENIUM CHEMISTRY Jacqueline Garland A Thesis Submitted for the Degree of PhD at the University of St Andrews 2013 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/3688 This item is protected by original copyright Studies in Phosphorus-Selenium Chemistry Jacqueline Garland This thesis is submitted in partial fulfilment for the degree of Doctor of Philosophy (PhD.) at the University of St Andrews and Doctor rerum naturalium (Dr. rer. nat.) at the Universität Leipzig 21st February 2013 Supervisors: Prof. J. D. Woollins Prof. E Hey-Hawkins Declarations I, Jacqueline Garland, hereby certify that this thesis, which is approximately 53000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September, 2008 and as a candidate for the degree of July 2009; in the higher study for which this is a record was carried out in the University of St Andrews and the Universität Leipzig between 2008 and 2013. Date: 21st February 2013 Signature of candidate: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD. in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date: 21st February 2013 Signature of supervisor: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Dr. rer. nat. in the Universität Leipzig and that the candidate is qualified to submit this thesis in application for that degree. Date: 21st February 2013 Signature of supervisor: 1 In submitting this thesis to the University of St Andrews and the Universität Leipzig I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby. I also understand that the title and the abstract will be published, and that a copy of the work may be made and supplied to any bona fide library or research worker, that my thesis will be electronically accessible for personal or research use unless exempt by award of an embargo as requested below, and that the library has the right to migrate my thesis into new electronic forms as required to ensure continued access to the thesis. I have obtained any third-party copyright permissions that may be required in order to allow such access and migration, or have requested the appropriate embargo below. The following is an agreed request by candidate and supervisor regarding the electronic publication of this thesis: (i) Access to printed copy and electronic publication of thesis through the University of St Andrews and the Universität Leipzig. Date: 21st February 2013 Signature of candidate: Date: 21st February 2013 Signature of supervisor: Date: 21st February 2013 Signature of supervisor: 2 Acknowledgements First and foremost, I would like thank Derek, without whom I would be half the chemist I am today. Thank you for believing in me, supporting me and giving me the odd nudge when I needed it. Thanks also must go to Alex, who has offered endless support and natters, just as I thought I was going mad. Many thanks go to Prof. Hey- Hawkins, for her help and guidance on the project and for giving me the opportunity to work in her laboratories. Without the help of the technicians and other academic staff in analysis, none of this work would have been characterised. Many thanks therefore are needed to go to Tomas and Melanja in NMR (extra thanks to Tomas for putting up with my less than intelligent questions), Caroline Horsburgh in MS, Stephen Boyer at London Met for the experimental analyses and a massive thanks to Alex and Team Crystallography, for all their work on solving my ‘I made something’ efforts. Here I must also mention Bobby Cathcart for his unending banter and all those in the workshops, stores and offices. I must also thank the conglomerate for an enjoyable experience both in the lab and in the pub. I am indebted to Dr. Ken Armstrong and Matt Ray for teaching me the rules of football, Dr. Brian Morton for teaching me the rules of fashion and Dr. Paul Waddell for filling in the vast gaps between. Special thanks go to Fergus and Lynzi for reading and correcting my book and their diplomacy for never once saying it was dull. Becca, Lucy and Marie, my Mafia, I thank for their support and love, as well as destroying my house and my sleep patterns and of course Fergus for employing us all. I thank Conor for the countless cups of tea, Kasun, Joy and Paula for being the shiny, happy and smily people that they are and Surge for the banter. A big shout out must go to the UEA gang, without whom I would have gone mental in the final six months. Dr. Mould: We did it. To my girlies: Alex, Dani, Ini, Lynzi, Sarah and Zoe thank you for putting up with my moaning, stress and tears, but also giving me the love and support that I need. Thanks for reminding me that I am both not as clever as I make out to be and yet also smarter than I think I am. I feel I must also give a special mention to gin here, and his girlfriend tonic, without whom I would be more well off, but a lot more stressed. 3 Ich möchte mich bei Dr. Sebastian Bauer, Dr. Carolin Limburg, Dr. Steffen Tschirschwitz und Dr. Matthias Scholz bedanken für ihre Hilfe, Unterstützung und all ihre Ratschläge im Labor. Ich habe eine wunderschöne Zeit in den Leipziger Laboren gehabt und ihre Weisheit war nicht zu toppen! Zunächst möchte ich mich bei all denjenigen im AK H2 bedanken, insbesondere Ivana, Julian, Tobi, Paul und Susi die mich während der Promotion unterstützt haben. Ein besonderen dank gilt an Tobi und Sebastian für das Korrekturlesen. Mein Dank gilt auch an Dr. Peter Lönnecke für die Messung und Lösung der Kristallstrukturen, Frau Zäbe für die zahlreiche NMR-Messungen, Frau Scholz für die Aufnahme der IR‐Spektren, sowie Fr. Oehme für die Aufnahme der Massenspektren und den Herren Eckert und Fatum für die Anfertigung und Reparatur von Glasgeräten. An Frau Aust: Danke danke danke, für all die Unterstützung, Liebe und Hilfe die du mir immer gegeben hast als ich sie brauchte. An mein kleines Brüderchen: *That face*. An Jule, Steffen, Anna, Basti und Nicole, Team Arschtritt: ich hätte es nie geschafft ohne eure Unterstützung. Tausend mal dank! An die Herren Groß, Eschberger, Hirschfeld und Geigenmüller, Team Gin: stellt mal den Hendrick’s kalt und bereitet schonmal das Boot vor, ich bin gleich wieder da. An den Chemie-, Ba-Hu- und mittlerweile auch Medielferrat, sowie alle Leiziger Studentenclubs: Ihr seid die Besten. Vielen lieben dank für die Erinnerungen, den Spass sowie den Schwachsinn, der dazu gehört hat, Mitglied im Elferrat zu sein. Es war mir eine Ehre, bleibt so wie ihr seid und behaltet eure Narrheit. To Mum, Dad, my Maffew and the rest of the supporting cast I call my family: Thanks to all of you for being there and doing what you do best: Picking me up when I’m down and helping me see the lighter side of life. Without you guys I would be lost!! Oh and thanks to Skimble for ‘writing’ the whole thing for me/with me. One final question though… Chemiker, wo seid ihr? 4 Abstract Phosphorus-Selenium chemistry has seen a surge in development over the last five to ten years thanks to the optimisation of the synthesis of 2,4-diphenyl-1,3,2,4- diselenadiphosphetane-2,4-diselenide, Woollins’ Reagent. This selenium analogue of the well known Lawesson’s Reagent has proved itself to be a valuable asset to modern inorganic chemistry, providing a route to novel heterocycles, as well as acting as a selenation reagent with a wide range of functional groups. A series of new ammonium phenylphosphonamidodiselenoate ligands were synthesised via the reaction of Woollins’ Reagent with a range of amines. The products were obtained in high yields and could be used as ligands for the synthesis of novel metal complexes. The reaction of diisopropylamine N-isopropyl-P- phenylphosphonamidodiselenoate with nickel(II) acetate produces a dimeric structure, whilst the reaction with copper(II) acetate yields a beautiful cluster of the form Cu6Se3L6. The phenylphosphonamidodiselenoate ligands were further reacted with a range of cis-Pt(PR3)2Cl2 complexes to form a library of 20 novel compounds, which were studied by 31P{1H}, 77Se{1H} and 195Pt{1H} NMR spectroscopy. The X-ray crystal structure of one of these compounds was obtained, which confirmed the atom connectivity and spatial arrangement of the complexes and the geometry around the platinum centre. During investigations into the above-mentioned platinum complexes, it was postulated that an increase in steric bulk of the phosphine ligands would aid crystallisation of the products. As such, trimesityl-, dimesitylphenyl- and mesityldiphenyl phosphine were synthesised and reacted with elemental sulfur and selenium and hydrogen peroxide, as well as Pt(cod)Cl2 and K2[PtCl4], yielding nine new structures, all of which were characterised by X-ray crystallography, 31P{1H}, 13C{1H} and 1H NMR spectroscopy.
Recommended publications
  • Durham E-Theses
    Durham E-Theses Some reactions of phosphorus compounds as studied by 31p nmr techniques Nisbet, M. P. How to cite: Nisbet, M. P. (1976) Some reactions of phosphorus compounds as studied by 31p nmr techniques, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8177/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk To Mum, Dad, and Steven Everything in this universe is made of one element which is a note, a single note. Atoms are really vibrations, you know, which are extensions of the BIG note. Everything is one note, even the ponies. Francis Vincent Zappa 1967 Declaration The work described in this thesis was carried out in the University of Durham between September 19 72 and July 1975. This work has not been submitted, either completely or in part, for a degree in this or any other university and is the original work of the author except where acknowledged by reference.
    [Show full text]
  • United States Patent (19) 11) E Re
    United States Patent (19) 11) E Re. 30,279 Toy et al. (45) Reissued May 20, 1980 54 PROCESS FOR PREPARING ALKYLOR 3,813,435 5/1974 Wood et al. ...................... 260/543 P ARYL PHOSPHORUS HALOES AND 3,847,979 1/1974 Richards .......................... 260/543 P MXED SOMERS THEREOF FOREIGN PATENT DOCUMENTS (75) Inventors: Arthur D. F. Toy, Stamford, Conn.; 1184767 3/1970 United Kingdom ................. 260/543 P Eugene H. Uhing, Ridgewood, N.J. OTHER PUBLICATIONS 73) Assignee: Stauffer Chemical Company, Westport, Conn. Ethyl Corp., Development Products Bulletin, Feb. 1969. 21 Appl. No.: 854 Richard et al., “J.A.C.S.", vol. 83 (1961), pp. 1722-1726. (22 Filed: Jan. 4, 1979 Kosolapoff, "Organo Phos. Comps.", pp. 152, 162 (1950). Related U.S. Patent Documents Sommer, "Zeit Anorg. Alleg. Chem.'", 1970,376(1), pp. Reissue of: 37-43. 64 Patent No.: 3,897,491 issued: Jul. 29, 1975 Primary Examiner-Norman Morgenstern Appl. No.: 151955 Attorney, Agent, or Firn-Paul J. Juettner Fied: Jun. 10, 1971 57 ABSTRACT 51) int.C. ................................................ COTF 9/42 Alkyl or aryl phosphonic or phosphonothioic dihalides 52) U.S. C. ........................... 260/543 P 260/45.7 P; and phosphinic or phosphinothioic monohalides are 260/45.7 PS prepared by reacting an alkyl halide or aryl halide re 58) Field of Search ......... 260/543 P, 45.7 P, 45.7 PS spectively with a tri-valent phosphorus compound hav (56) References Cited ing at least two halogens attached thereto, and prefera bly three two halogens such as phosphorus trihalide, in U.S. PATENT DOCUMENTS the presence of P4O10or P4S10 under at least autogenous 2,345,690 4/1944 Solmssen .........................
    [Show full text]
  • United States Patent (19) 11) 4,133,830 Uhing Et Al
    United States Patent (19) 11) 4,133,830 Uhing et al. 45) Jan. 9, 1979 54 PROCESS FOR PREPARING ALKYLOR ARYL THOPHOSPHORUS HALDES AND MEXED SOMERS THEREOF 75 Inventors: Eugene H. Uhing, Pleasantville; Francis A. Via, Yorktown Heights, both of N.Y. 73) Assignee: Stauffer Chemical Company, wherein R is a C1 to Coalkyl radical, cycloalkyl of 5-6 Westport, Conn. carbon atoms in the ring and the C1-C4 alkyl substituted derivative thereof, an aralkyl radical of up to two fused (21) Appl. No.: 765,705 rings, the alkyl portion having from 1 to 20 carbon atoms, an aryl radical of up to three fused rings and the 22 Filed: Feb. 4, 1977 C1-C4 alkyl derivatives thereof, and biphenyl and the 51 Int. Cl? .......................... C07H9/34; C07H9/42 C1-C4 alkyl derivatives thereof, X is a halogen of chlo (52) rine or bromine, and Z is either R or X, by the reaction 58) Field of Search ..................................... 260/543 P of a phosphorus halide source, a hydrocarbon source selected from the group consisting of RH, RX and (56) References Cited RSaR, whereina is 1 or 2 and a sulfur source under U.S. PATENT DOCUMENTS autogenous pressure in an autoclave at a temperature 3,429,916 2/1969 Baker et al. ...................... 260/543 P ranging from about 175 C. to about 450° C. by recy 3,726,918 4/1973 Toy et al. ......................... 260/543 P cling to successive runs a by-product of the reaction 3,790,629 2/1974 Uhing et al. ... 260/543 P remaining after separation of the RPCS)XZ product 3,803,226 4/1974 Uhing et al.
    [Show full text]
  • Synthesis of C2-Symmetric P-Chiral Bis(Phosphine Borane)
    Synthesis of C2-symmetric P-chiral bis(phosphine borane)s and their application in rhodium(I) catalyzed asymmetric transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University © Copyright by Holly Ann Heath (2001) Abstract: A new development for the synthesis C2-Synnnetric P-Chiral Bis(phosphine borane) ligands is reported, These ligands are based on the asymmetric induction of prochiral phosphine ligands with organolithium/chiral diamine complexes. These ligands have been evaluated in asymmetric rhodium(I) catalyzed hydrogenation and [4 + 2] cycloisomerization reactions. Enantiomeric excesses as high as 99% were obtained for ene-diene cycloadditions. Synthesis of C2-Symmetric P-Chiral Bis(phosphine borane)s and Their Application in Rhodium(I) Catalyzed Asymmetric Transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University Bozeman, Montana March 2001 ii APPROVAL of a dissertation submitted by Holly Ann Heath This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. Dr. Thomas Livinghouse < Chairperson, Graduate Committee Date Approved for the Department of Chemistry Dr. Paul A. Grieco Department Head Approved for the College of Graduate Studies Dr. Bruce R. McLeod Graduate Dean Date iii STATEMENT OF PERMISSION TO USE In presenting this dissertation .in partial fulfillment of the requirements for a doctoral degree at Montana State University-Bozeman, I agree that the Library shall make it available to borrowers under rules of the Library.
    [Show full text]
  • United States Patent Office Paieated Aug
    2,847,458 United States Patent Office Paieated Aug. 2, 1958 2 products of the reaction. Thus it is not surprising that either no structures or incorrect structures have been 2,847,458 assigned to them. Generally these reaction products of the prior art have been reacted with other materials PREPARATION OF ARYLPHOSPHONCACDS such as organic and inorganic bases, metal sulfides, al Tsai H. 'Chao, Somerville, Hans Z. Lecher, Painfield, and cohols, phenols, thiols, aluminum chloride and other Ruth A. Greenwood, Somerville, N. J., assignors to hydrocarbons in order to produce products which were American Cyanamid Company, New York, N. Y., a to be used as additives to mineral oils to prevent cor corporation of Maine rosion or to impart extreme pressure lubricating or de No Drawing. Application March 25, 1955 tergent properties to the oils. Some of these products Serial No. 496,934 have also been proposed as flotation agents. The prior art reaction products of aromatic hydrocar 15 Claims. (Cl. 260-500) bons with phosphorus pentasulfide have never been corn pletely hydrolyzed to form phosphonic acids. Some such This invention relates to a new process of preparing crude reaction products have been blown with steam or arylphosphonic acids. It also relates to arylthionophos nitrogen to remove malodorous thiocompounds which are phine sulfides which are new compounds and are inter formed as by-products. However, the prior art empha mediates in said process. sized that after this treatment the products still contained A number of arylphosphonic acids having the formula substantial amounts of sulfur, that is to say they were ArPO(OH) in which Ar is an aryl radical have been 20 not completely hydrolyzed.
    [Show full text]
  • Thiophosphation of 2-Methyl-2-Nitro-L-Propanol and the Preparation of Monothiophosphoric Acid J
    Journal of Research of the National Bureau of Standards Vol. 48, No. 4, April 1952 Research Paper 2318 Thiophosphation of 2-Methyl-2-Nitro-l-Propanol and the Preparation of Monothiophosphoric Acid J. V. Karabinos, R. A. Paulson, and W. H. Smith The thiophosphation of a nitroalcohol was studied in ether and in pyridine solution. When 2-methyl-2-nitro-l-propanol was refluxed with phosphorus pentasulfide in ether, the corresponding dithiophosphate was formed. In pyridine solution, however, a pyridine salt of the secondary dithiophosphate was formed. A pyridine salt of metatrithophosphoric acid was also isolated from the latter reaction, and this salt was hydrolyzed to pyridinium monothiophosphate. Monothiophosphoric acid monohydrate itself was obtained, for the first time, by application of ion-exchange and lyophilizing techniques to its pyridine salt. 1. Introduction HPS3 + 3H20->H3PS03 + 2H2S. The reaction of phosphorus pentasulfide with The formulas for the pyridinium salts III and IV organic hydroxy compounds reportedly [1 to 4]* may be represented as follows: yields secondary dithiophosphates (I). (C5H5N)2.HPS3. (III). C5H5N.H3PS03. (IV) (RO)2P(S)SH. (I) It is possible that substance III, rather than phos­ An extension of this reaction to a nitroalcohol is phorus pentasulfide, acts as the thiating agent in described. When 2-methyl-2-nitro-l-propanol was pyridine solution [5]. refluxed with phosphorus pentasulfide in ethyl ether, From the mother liquors obtained by the reaction a product melting at 104° G was obtained that gave of phosphorus pentasulfide with the nitroalcohol in elemental analyses and a molecular-weight value pyridine solution, still another crystalline substance .corresponding to 0,0'-bis(2-methyl-2-nitro-propyl-) was obtained; this substance melted at 103° to 104° C dithiophosphate (II).
    [Show full text]
  • Low Oxidation State Group 15 Chemistry: New Synthetic Methods Towards Polymers
    Low Oxidation State Group 15 Chemistry: New Synthetic Methods Towards Polymers By Erin L. Norton A Thesis Submitted to the Faculty of Graduate Studies and Research through the Department of Chemistry and Biochemistry in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-42260-1 Our file Notre reference ISBN: 978-0-494-42260-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • 638 Subpart A—Phosphorus Production Subcategory Subpart B
    § 422.10 40 CFR Ch. I (7–1–12 Edition) Subpart A—Phosphorus Subpart D—Defluorinated Production Subcategory Phosphate Rock Subcategory § 422.10 Applicability; description of SOURCE: 41 FR 25975, June 23, 1976, unless the phosphorus production sub- otherwise noted. category. The provisions of this subpart are ap- § 422.40 Applicability; description of plicable to discharges of pollutants re- the defluorinated phosphate rock sulting from the production of phos- subcategory. phorus and ferrophosphorus by smelt- The provisions of this subpart are ap- ing of phosphate ore. plicable to discharges resulting from the defluorination of phosphate rock Subpart B—Phosphorus by application of high temperature treatment along with wet process phos- Consuming Subcategory phoric acid, silica and other reagents. § 422.20 Applicability; description of the phosphorus consuming sub- § 422.41 Specialized definitions. category. For the purpose of this subpart: The provisions of this subpart are ap- (a) Except as provided below, the gen- plicable to discharges of pollutants re- eral definitions, abbreviations, and sulting from the manufacture of phos- methods of analysis set forth in 40 CFR phoric acid, phosphorus pentoxide, part 401 shall apply to this subpart. (b) The term phosphorus pentasulfide, phosphorus process waste water means any water which, during manu- trichloride, and phosphorus facturing or processing, comes into di- oxychloride directly from elemental rect contact with or results from the phosphorus. The production of phos- production or use of any raw material, phorus trichloride and phosphorus intermediate product, finished product, oxychloride creates waste water pollut- by-product, or waste product. The term ants not completely amenable to the ‘‘process waste water’’ does not include procedures utilized for best practicable contaminated nonprocess waste water, control technology currently available.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec
    United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec. 26, 1989 (54) PROCESS FOR THE PREPARATION OF Kosolapoff, G. M. et al. Organic Phosphorus Compounds AROMATIC PHOSPHORUS-CHLORNE (1973) vol. 4 at p. 95. Wiley-Interscience, Publ. COMPOUNDS Kosolapoff, Gennady M. Organophosphorus Com 75 Inventor: Hans-Jerg Kleiner, pounds (1958), John Wiley & Sons, Publ. pp. 59-60. Kronberg/Taunus, Fed. Rep. of Primary Examiner-Paul J. Killos Germany Attorney, Agent, or Firm-Curtis, Morris & Safford 73) Assignee: Hoechst Aktiengesellschaft, 57 ABSTRACT Frankfurt am Main, Fed. Rep. of Aromatic phosphorus-chlorine compounds, especially Germany diphenylphosphinyl chloride (C6H5)2P(O)Cl, phenyl phosphonyl dichloride C6HsP(O)Cl2, dichlorophenyl 21 Appl. No.: 554,591 phosphine C6HsPCl2 and chlorodiphenylphosphine (C6H5)2PCl, and the corresponding sulfur analogs, are 22 Filed: Nov. 23, 1983 obtained by reaction of aromatic phosphorus com 30 Foreign Application Priority Data pounds, which contain oxygen or sulfur, of the formula I Nov. 27, 1982 DE Fed. Rep. of Germany ....... 324.4031 511 Int, C.'................................................ CO7C 5/02 52 U.S. C. .................................... 562/815; 562/818; 562/819 58) Field of Search ..................................... 260/543 P in which X=O or S, and m= 1, 2 or 3, with phosphorus 56) References Cited chlorine compounds of the formula II U.S. PATENT DOCUMENTS (C6H5)3P Cln (II) 3,244,745 4/1966 Toy et al. ........................ 260/543 P FOREIGN PATENT DOCUMENTS in which n=1, 2 or 3, at temperatures between about 0093420 4/1983 European Pat. Off. 330 and 700° C. Preferred starting materials are tri phenylphosphine oxide (C6H5)3PO and phosphorus OTHER PUBLICATIONS trichloride PCl3.
    [Show full text]
  • China's Role in the Chemical and Biological Disarmament Regimes
    ERIC CRODDY China’s Role in the Chemical and Biological Disarmament Regimes ERIC CRODDY Eric Croddy is a Senior Research Associate at the Chemical and Biological Weapons Nonproliferation Program, Center for Nonproliferation Studies, Monterey Institute of International Studies. He is the author of Chemical and Biological Warfare: A Comprehensive Survey for the Concerned Citizen (New York: Copernicus Books, 2001). odern China has been linked with the prolif- least—and with considerable diplomatic effort—China eration of nuclear, chemical, and missile weap- broadcasts its commitment to both the CWC and the Mons technology to states of proliferation con- BWC. cern, and its compliance with arms control and disarma- Few unclassified publications analyze the role that CBW ment is seen as key to the effectiveness of weapons of have played in Chinese military strategy, nor is much in- 1 mass destruction (WMD) nonproliferation efforts. In this formation available on Beijing’s approach to negotiating context, the answer to Gerald Segal’s question, “Does CBW disarmament treaties. This is not surprising: China 2 China really matter?” is most definitely, “Yes.” In the is an extremely difficult subject for study where sensitive realm of chemical and biological weapons (CBW), military matters are concerned. A 1998 report by Dr. Bates Beijing’s role is closely linked to its view of the multilat- Gill, Case Study 6: People’s Republic of China, published eral disarmament regimes for CBW, namely the Chemi- by the Chemical and Biological Arms Control Institute, cal Weapons Convention (CWC) and the Biological and was the first to seriously address the issue of China and Toxin Weapons Convention (BWC), and of related mul- CBW proliferation.
    [Show full text]
  • Figure: 30 TAC §335.521(A)(2) [Figure: 30 TAC §335.521(A)(2)]
    Figure: 30 TAC §335.521(a)(2) [Figure: 30 TAC §335.521(a)(2)] Appendix 1, Table 2. Examples of Ignitable Solids. Constituents listed from Department of Transportation Regulations, 49 CFR Part 173 Subpart E, October 1, 1993. (Note: The presence of a constituent on this table in a nonhazardous [non-hazardous] waste does not automatically identify that waste as a Class 1 ignitable waste. The constituents on this table are examples of materials which could be considered Class 1 ignitable waste. The physical characteristics of the waste will be the determining factor as to whether or not a waste is ignitable. Refer to §335.505(2) of this title (relating to Class 1 Waste Determination) for the Class 1 ignitable criteria.) Compound or Material Aluminum, metallic, powder Alkali metal amalgams Alkali metal amides Aluminum alkyl halides Aluminum alkyl hydrides Aluminum alkyls Aluminum borohydrides Aluminum carbide Aluminum ferrosilicon powder Aluminum hydride Aluminum phosphide Aluminum resinate Aluminum silicon powder Ammonium picrate 2, 2'-Azodi-(2,4-dimethyl-4-methoxyvaleronitrile) 2, 2'-Azodi-(2,4-dimethylvaleronitrile) 1, 1' Azodi-(hexahydrobenzonitrile) 2,2'-Azodi (2-methyl-butryronitrile) Azodiisobutryonitrile Barium, metallic Barium alloys, pyrophoric Barium azide Benzene-1,3-disulfohydrazide Benzene sulfohydrazide 4-(Benzyl(ethyl)amino)-3-ethoxybenzenediazonium zinc chloride 4-(Benzyl(methyl)amino)-3-ethoxybenzenediazonium zinc chloride Borneol Boron trifluoride dimethyl etherate 5-tert-Butyl-2,4,6-trinitro-m-xylene Calcium, metallic Calcium
    [Show full text]
  • Hazardous Substances (Chemicals) Transfer Notice 2006
    16551655 OF THURSDAY, 22 JUNE 2006 WELLINGTON: WEDNESDAY, 28 JUNE 2006 — ISSUE NO. 72 ENVIRONMENTAL RISK MANAGEMENT AUTHORITY HAZARDOUS SUBSTANCES (CHEMICALS) TRANSFER NOTICE 2006 PURSUANT TO THE HAZARDOUS SUBSTANCES AND NEW ORGANISMS ACT 1996 1656 NEW ZEALAND GAZETTE, No. 72 28 JUNE 2006 Hazardous Substances and New Organisms Act 1996 Hazardous Substances (Chemicals) Transfer Notice 2006 Pursuant to section 160A of the Hazardous Substances and New Organisms Act 1996 (in this notice referred to as the Act), the Environmental Risk Management Authority gives the following notice. Contents 1 Title 2 Commencement 3 Interpretation 4 Deemed assessment and approval 5 Deemed hazard classification 6 Application of controls and changes to controls 7 Other obligations and restrictions 8 Exposure limits Schedule 1 List of substances to be transferred Schedule 2 Changes to controls Schedule 3 New controls Schedule 4 Transitional controls ______________________________ 1 Title This notice is the Hazardous Substances (Chemicals) Transfer Notice 2006. 2 Commencement This notice comes into force on 1 July 2006. 3 Interpretation In this notice, unless the context otherwise requires,— (a) words and phrases have the meanings given to them in the Act and in regulations made under the Act; and (b) the following words and phrases have the following meanings: 28 JUNE 2006 NEW ZEALAND GAZETTE, No. 72 1657 manufacture has the meaning given to it in the Act, and for the avoidance of doubt includes formulation of other hazardous substances pesticide includes but
    [Show full text]