Synthesis, Purification, and Characterization of Tetraphosphine Ligands Deniz Cevik

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis, Purification, and Characterization of Tetraphosphine Ligands Deniz Cevik Synthesis, purification, and characterization of tetraphosphine ligands Deniz Cevik To cite this version: Deniz Cevik. Synthesis, purification, and characterization of tetraphosphine ligands. Other. Univer- sité Paris-Saclay, 2017. English. NNT : 2017SACLX026. tel-01631221 HAL Id: tel-01631221 https://pastel.archives-ouvertes.fr/tel-01631221 Submitted on 8 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLX026 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY PREPAREE A ÉCOLE POLYTECHNIQUE ECOLE DOCTORALE N° 517 2MIB | Sciences chimiques : Molécules, matériaux, instrumentation et biosystèmes Spécialité de doctorat : Chimie Par Mme. Deniz Çevik Synthesis, Purification, and Characterization of Tetraphosphine Ligands Thèse présentée et soutenue à Palaiseau, le 17. Juillet 2017 : Composition du Jury : Mme. Hii, King Kuok (Mimi) Professeur Imperial College London Rapporteure M. Manoury, Eric DR - CNRS au LCC (Toulouse) Rapporteur M. Voituriez, Arnaud DR - CNRS á l’ICSN Président M. van Leeuwen, Piet Chaire d’Attractivité au LPCNO, INSA-Toulouse Co-directeur de thèse M. Carmichael, Duncan CR - CNRS á LCM (École Polytechnique) Directeur de thèse Index II Index Index II Acknowledgment .................................................................................................. VII Annotations ............................................................................................................. IX Chapter 1 Introduction ........................................................................................ 11 1.1 Phosphine Ligands in Homogeneous Catalysis............................................. 11 1.1.1 Ligand Effects of Phosphines ........................................................................ 11 Electronic and Steric Parameters of Monophosphines ................................ 11 1.1.2 Describing Diphosphines .............................................................................. 13 1.2 Bimetallic Catalysts ....................................................................................... 15 1.2.1 Enzyme catalysis ........................................................................................... 15 1.2.2 Synthetic bimetallic catalysts ....................................................................... 16 Synthesis and Characterization .................................................................... 22 1.2.3 Homobimetallic Catalysts ............................................................................. 23 1.2.4 Heterobimetallic Catalyst ............................................................................. 28 1.2.5 Bimetallic Catalysts developed by van Leeuwen and Co-Workers .............. 29 Chapter 2 Design and Synthesis of Tetraphosphine Ligands ............................. 31 2.1 Introduction .................................................................................................. 31 2.2 Symmetry of the Target Ligands................................................................... 33 2.3 Retrosynthetic Analyses of the Designed Ligand system ............................. 36 2.3.1 Retrosyntheses of the Introduction of Two Diphosphine Chains ................ 37 2.3.2 Retrosyntheses of the Introduction of the Phosphines 2-by-2 (stepwise) .. 38 2.3.3 Protection of Phosphines ............................................................................. 41 2.4 Synthetic Methods ....................................................................................... 44 2.4.1 Synthesis of the DBDOC-H2 Ligand Precursor .............................................. 44 2.4.2 Synthesis of the BFBF-H2 Ligand Precursor .................................................. 46 2.4.3 Bromination of the DBDOC Backbone .......................................................... 47 2.5 Introduction of the Phosphines 2-by-2 ........................................................ 49 2.5.1 Phosphination of the Backbone ................................................................... 49 2.5.2 Generating Secondary Phosphines on the Backbones ................................. 51 2.5.3 Backbone flexibility and Steric Interactions in DBDOC derivatives .............. 62 2.5.4 Alternative Routes to Generate Secondary Phosphines on the Backbone .. 67 Palladium-Catalyzed Cross-Coupling of H-Phosphinates ............................. 70 2.5.5 Conclusion .................................................................................................... 73 2.6 Electrophiles suitable for the introduction of chelating sidearms ............... 74 2.6.1 Preparation of the Electrophilic Phosphine Precursors ............................... 74 Index III 2.6.2 Synthesis of a ‘Side-Arm’ Electrophile bearing Phosphine Borane groups .. 75 Syntheses of Alternative ‘Side-Arm’ Electrophiles ....................................... 81 2.7 Synthesis of Tetraphosphines....................................................................... 84 2.7.1 Synthesis of Tetraphosphines Using Cyclic Sulfates ..................................... 93 2.8 Synthesis of Tetraphosphines: A Comparison of Stepwise Synthetic Routes ........................................................................................................... 97 2.8.1 Removal of the Borane-Groups from Compound 58 ................................. 102 2.9 Conclusion .................................................................................................. 103 Chapter 3 Introduction of Diphosphine Chains directly onto the DBDOC backbone .................................................................................................... 105 3.1 Analysis and Synthesis of Unsymmetric Bisphosphines ............................. 105 3.1.1 Reductive Cleavage of a P–Ar bond in bis(diphenylphosphanyl)alkanes ... 106 3.1.2 Synthesis of the Unsymmetric Bis(phosphine)s from two different P- fragments.................................................................................................... 107 3.1.3 Chlorination of Unsymmetric Bisphosphines ............................................. 109 3.2 Coupling Reactions ..................................................................................... 110 3.2.1 Copper Induced P–C Bond Formation ........................................................ 110 3.2.2 Palladium Catalyzed Cross-Coupling .......................................................... 111 3.3 Conclusion .................................................................................................. 111 Chapter 4 Coordination Chemistry ................................................................... 113 1.1 Coordination Chemistry with DBDOCphos at Pd(II) and Pt(II) centers ............ 114 1.1.1 Conclusion ..................................................................................................... 123 1.2 Coordination Chemistry of Tetraphosphines at Pd(II) and Pt(II) centers ........ 124 1.3 Conclusion ........................................................................................................ 128 Chapter 5 Palladium Catalyzed Carbonylation and Related Reactions ........... 130 5.1 General Introduction .................................................................................. 130 5.2 Hydroformylation ....................................................................................... 130 5.3 Palladium Catalyzed Hydroformylation ...................................................... 131 5.4 Palladium-Catalyzed Hydroformylation of α-Olefins ................................. 136 5.5 DBDOCphos System in Palladium-Catalyzed Hydroformylation ................ 137 5.6 Tetraphosphine Systems in Pd-catalyzed Hydroformylation ..................... 139 5.6.1 The Effect of Anions on Palladium-catalyzed Hydroformylation ............... 140 5.6.2 Acid Affecting the Ligand and Hydroformylation ....................................... 142 5.6.3 Influence of the Metal-to-Ligand Ratio on Hydroformylation ................... 143 5.6.4 Rhodium catalyzed hydroformylation1,324 .................................................. 144 5.7 Conclusion .................................................................................................. 145 IV Chapter 6 Experimental Section ....................................................................... 147 6.1 General procedures .................................................................................... 147 6.1.1 Solvents and Reagents ................................................................................ 147 6.2 Experiments conducted inTarragona ......................................................... 147 6.3 Experiments conducted in Palaiseau .......................................................... 148 6.4 Experiments conducted in Saint Andrews.................................................. 149 6.5 Syntheses .................................................................................................... 150 6.6 Coordination Chemistry.............................................................................. 168 6.7 Batch
Recommended publications
  • Electronic Structure and Crystal Phase Stability of Palladium Hydrides
    Electronic structure and crystal phase stability of palladium hydrides Abdesalem Houari∗ Theoretical Physics Laboratory, Department of Physics, University of Bejaia, Bejaia, Algeria Samir F. Matar† CNRS, ICMCB, Universit´ede Bordeaux, 33600 Pessac, France Volker Eyert‡ Materials Design SARL, 92120 Montrouge, France (Dated: November 4, 2014) The results of electronic structure calculations for a variety of palladium hydrides are presented. The calculations are based on density functional theory and used different local and semilocal approximations. The thermodynamic stability of all structures as well as the electronic and chemical bonding properties are addressed. For the monohydride, taking into account the zero-point energy is important to identify the octahedral Pd-H arrangement with its larger voids and, hence, softer hydrogen vibrational modes as favorable over the tetrahedral arrangement as found in the zincblende and wurtzite structures. Stabilization of the rocksalt structure is due to strong bonding of the 4d and 1s orbitals, which form a characteristic split-off band separated from the main d-band group. Increased filling of the formerly pure d states of the metal causes strong reduction of the density of states at the Fermi energy, which undermines possible long-range ferromagnetic order otherwise favored by strong magnetovolume effects. For the dihydride, octahedral Pd-H arrangement as realized e.g. in the pyrite structure turns out to be unstable against tetrahedral arrangemnt as found in the fluorite structure. Yet, from both heat of formation and chemical bonding considerations the dihydride turns out to be less favorable than the monohydride. Finally, the vacancy ordered defect phase Pd3H4 follows the general trend of favoring the octahedral arrangement of the rocksalt structure for Pd:H ratios less or equal to one.
    [Show full text]
  • Design and Synthesis of Chiral Ligands and Their Applications in Transition
    The Pennsylvania State University The Graduate School Department of Chemistry DESIGN AND SYNTHESIS OF CHIRAL LIGANDS AND THEIR APPLICATIONS IN TRANSITION METAL-CATALYZED ASYMMETRIC REACTIONS A Dissertation in Chemistry by Wei Li 2012 Wei Li Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2012 The dissertation of Wei Li was reviewed and approved* by the following: Gong Chen Assistant Professor of Chemistry Dissertation Advisor Chair of Committee Tom Mallouk Evan Pugh Professor of Material Chemistry and Physics Alex Radosevich Assistant Professor of Chemistry Qing Wang Associate Professor of Material Science and Engineering Xumu Zhang Professor of Chemistry Special Member Barbara J. Garrison Shapiro Professor of Chemistry Head of the Department of Chemistry *Signatures are on file in the Graduate School iii ABSTRACT Transition metal catalyzed reactions are among the most powerful and direct approaches for the synthesis of organic molecules. During the past several decades, phosphorous-containing ligands have been extensively studied in transition metal - catalyzed transformations particularly asymmetric hydrogenations. Development of new chiral ligands and efficient catalyst systems for various prochiral unsaturated substrates in asymmetric hydrogenations are the focus of this dissertation. An important family of atropisomeric biaryl bisphosphine ligands, C3*-TunePhos and related bisaminophosphines have been designed and synthesized. The Ru catalysts of the highly modular C3*-TunePhos have been proved to be highly efficient (up to 99.8% ee, up to 1,000,000 TON) for practical asymmetric hydrogenations of a wide range of unfunctionalized ketones as well as α-, β- keto esters and N-2-substituted allylphthalimides. The synthetic utility of bisaminophosphine ligands was studied for rhodium-catalyzed asymmetric hydrogenations of α-dehydroamino acid esters, affording up to 98% ee’s.
    [Show full text]
  • Synthesis of C2-Symmetric P-Chiral Bis(Phosphine Borane)
    Synthesis of C2-symmetric P-chiral bis(phosphine borane)s and their application in rhodium(I) catalyzed asymmetric transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University © Copyright by Holly Ann Heath (2001) Abstract: A new development for the synthesis C2-Synnnetric P-Chiral Bis(phosphine borane) ligands is reported, These ligands are based on the asymmetric induction of prochiral phosphine ligands with organolithium/chiral diamine complexes. These ligands have been evaluated in asymmetric rhodium(I) catalyzed hydrogenation and [4 + 2] cycloisomerization reactions. Enantiomeric excesses as high as 99% were obtained for ene-diene cycloadditions. Synthesis of C2-Symmetric P-Chiral Bis(phosphine borane)s and Their Application in Rhodium(I) Catalyzed Asymmetric Transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University Bozeman, Montana March 2001 ii APPROVAL of a dissertation submitted by Holly Ann Heath This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. Dr. Thomas Livinghouse < Chairperson, Graduate Committee Date Approved for the Department of Chemistry Dr. Paul A. Grieco Department Head Approved for the College of Graduate Studies Dr. Bruce R. McLeod Graduate Dean Date iii STATEMENT OF PERMISSION TO USE In presenting this dissertation .in partial fulfillment of the requirements for a doctoral degree at Montana State University-Bozeman, I agree that the Library shall make it available to borrowers under rules of the Library.
    [Show full text]
  • Phosphorus-Containing Amino Acids with a P–C Bond in the Side Chain Or a P–O, P–Sorp–N Bond: Cite This: RSC Adv., 2020, 10, 6678 from Synthesis to Applications
    RSC Advances View Article Online REVIEW View Journal | View Issue Phosphorus-containing amino acids with a P–C bond in the side chain or a P–O, P–SorP–N bond: Cite this: RSC Adv., 2020, 10, 6678 from synthesis to applications a b b Mathieu Arribat, Florine Cavelier * and Emmanuelle Remond´ * Since the discovery of (L)-phosphinothricin in the year 1970, the development of a-amino acids bearing a phosphorus group has been of renewed interest due to their diverse applications, including their use in [18F]-fluorolabeling, as fluorescent probes, as protecting groups and in the reversible immobilization of amino acids or peptide derivatives on carbon nanomaterials. Considerable progress has also been achieved in the field of antiviral agents, through the development of phosphoramidate prodrugs, which increase significantly the intracellular delivery of nucleoside monophosphate and monophosphonate analogues. This review aims to summarize the strategies reported in the literature for the synthesis of P(III), P(IV) and P(V) phosphorus-containing amino acids with P–C, P–O, P–SorP–N bonds in the side Received 2nd December 2019 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. chains and their related applications, including their use in natural products, ligands for asymmetric Accepted 22nd January 2020 catalysis, peptidomimetics, therapeutic agents, chemical reagents, markers and nanomaterials. The DOI: 10.1039/c9ra10917j discussion is organized according to the position of the phosphorus atom linkage to the amino acid side rsc.li/rsc-advances chain, either in an a-, b-, g-ord-position or to a hydroxyl, thiol or amino group. 1. Introduction phosphinothricin has engendered the development of numerous drugs for neurodegenerative disease treatment.
    [Show full text]
  • Argonne Report.Pdf
    CONTENTS NOTATION ........................................................................................................................... xi ABSTRACT ........................................................................................................................... 1 1 INTRODUCTION ........................................................................................................... 5 1.1 Overview of the Emergency Response Guidebook ................................................ 5 1.2 Organization of this Report ..................................................................................... 7 2 GENERAL METHODOLOGY ....................................................................................... 9 2.1 TIH List ................................................................................................................... 10 2.1.1 Background ................................................................................................. 10 2.1.2 Changes in the TIH List for the ERG2012 ................................................. 11 2.2 Shipment and Release Scenarios ............................................................................ 11 2.2.1 Shipment Profiles ........................................................................................ 12 2.2.2 Treatment of Chemical Agents ................................................................... 14 2.3 Generics, Mixtures, and Solutions .......................................................................... 17 2.4 Analysis of Water-Reactive
    [Show full text]
  • Solvents for Sustainable Chemical Processes
    Green Chemistry Accepted Manuscript This is an Accepted Manuscript, which has been through the RSC Publishing peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, which is prior Cutting-edge research for a greener sustainable future www.rsc.org/greenchem Volume 12 | Number 9 | September 2010 | Pages 1481–1676 to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available. To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication. More information about Accepted Manuscripts can be found in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or ISSN 1463-9262 COMMUNICATION CRITICAL REVIEW Luque, Varma and Baruwati Dumesic et al. graphics contained in the manuscript submitted by the author(s) which may alter Magnetically seperable organocatalyst Catalytic conversion of biomass for homocoupling of arylboronic acids to biofuels 1463-9262(2010)12:9;1-U content, and that the standard Terms & Conditions and the ethical guidelines that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these Accepted Manuscript manuscripts or any consequences arising from the use of any information contained in them. www.rsc.org/greenchem Registered Charity Number 207890 Page 1 of 64 Green Chemistry TOC: Layout 1: This review highlights solvent systems Pamela Pollet* [a,c] , Evan A.
    [Show full text]
  • Measurement Technique for the Determination of Photolyzable
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. D13, PAGES 15,999-16,004,JULY 20, 1997 Measurement techniquefor the determination of photolyzable chlorine and bromine in the atmosphere G. A. Impey,P. B. Shepson,• D. R. Hastie,L. A. Bartie• Departmentof Chemistryand Centre for AtmosphericChemistry, York University,Toronto, Ontario, Canada Abstract. A techniquehas been developed to enablemeasurement of photolyzablechlorine and bromineat tracelevels in the troposphere.In thismethod, ambient air is drawnt•ough a cylindricalflow cell, whichis irradiatedwith a Xe arc lamp. In the reactionvessel of the photoactivehalogen detector (PHD), photolyrically active molecules Clp (including C12, HOC1, C1NO,C1NO2, and C1ONO2) and Brp (including Br2, HOBr, BrNO, BrNO2, and BrONO2) are photolyzed,and the halogenatoms produced react with properieto form stablehalogenated products.These products are thensampled and subsequently separated and detected by gas chromatography.The systemis calibratedusing low concentrationmixtures of C12and Br2 in air from commerciallyavailable permeation sources. We obtaineddetection limits of 4 pptv and 9 pptv as Br2 andC12, respectively, for 36 L samples. 1. Introduction (or C12)in the Arctic, largely as a result of the lack of suitable analyticalmethodologies. This paperreports the developmentof The episodicdestruction of groundlevel ozonein the Arctic at a measurementtechnique for the determinationof rapidly sunriseis a phenomenonthat hasbeen observed for many years. photolyzingchlorine (referred to hereas Clp) and bromine (Brp) With the onsetof polar sunrise,ozone levels are often observed speciesat pansper trillion by volume(pptv) mixingratios in the to drop from a backgroundconcentration of •40 ppbv to almost atmosphere.Impey et al. [this issue]discuss the resultsobserved zero on a timescaleof a day or less [Barrie et al., 1988] for from a field studyconducted in the Canadianhigh Arctic at Alert, periodsof 1-10 days.
    [Show full text]
  • Some Transition Metal Complexes of Trivalent Phosphorus Esters
    AN ABSTRACT OF THE THESIS OF HARRY VAUGHN STUDER for the MASTER OF SCIENCE (Name) (Degree) inCHEMISTRY (Inorganic) presented on ///( (Major) / (Date') Title: SOME TRANSITION METAL COMPLEXES OF TRIVALENT PHOSPHORUS ESTERS Redacted for Privacy Abstract approved: Dr. In T. Yoke r The ligands in the series EtnP(OEt)3_11, n = 0 - 3,all form pseudotetrahedral high-spin bis -complexes with cobalt (II) chloride. Magnetic, spectrophotometric, conductivity, and molecular weight data show that the phosphorus ester ligands (but not the phosphine) also form five-coordinate low-spin tris-complexes; these can be isolated with the phosphonite and phosphinite ligands, while the existence of the tris -phosphite is marginal.At cobalt (II) to phosphorus ester mole ratios of 1:2, a mixture of species is present in all cases.All are non-conducting in nitrobenzene. The ester complexes are much more susceptible to autoxidation than is the phosphine complex. Some Transition Metal Complexes of Trivalent Phosphorus Esters by Harry Vaughn Studer A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science June 1972 APPROVED: Redacted for Privacy Profes of Chemi str y / in crge of major Redacted for Privacy Head of Department of Chemistry Redacted for Privacy Dean of Graduate School Date thesis is presented Typed by Donna Olson f arry Vatighn Studer ACKNOWLEDGEMENTS The author wishes to thank his research advisor, Dr. John T. Yoke, for his expert direction of this research, for his patience, and for the opportunity of learning through association with him. Acknowledgement is made to the donors of the Petroleum Re- search Fund, administered by the American Chemical Society, for the support of this work.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,650,546 Chaudhari Et Al
    USOO5650546A United States Patent (19) 11 Patent Number: 5,650,546 Chaudhari et al. 45 Date of Patent: Jul. 22, 1997 54) PROCESS FOR THE CATALYTIC OTHER PUBLICATIONS HYDROGENATION OF ORGANC Renaud et al., “Synthesis of a new family of water-soluble COMPOUNDS tertiary phosphine ligands and of their rhodium(I) com plexes; olefin hydrogenation in aqueous and biphasic (75) Inventors: Raghunath Vitthal Chaudhari; media”. Journal of Organometallic Chemistry, 419 (1991) Bhalchandra Mahadeo Bhanage; 403-415. Sunil Sadashiv Divekar; Raj Smith et al., “Metal Carbonyl Derivatives of a Water Soluble Madhukar Deshpande, all of Phosphine". Inorganica Chimica Acta, 62 (1982) 135-139. Maharashtra, India Hablot et al., "Gas-Liquid-Liquid Reaction. Using Water Soluble Catalyst”, Chemical Engineering Science, vol. 47. 73 Assignee: Council of Scientific Industrial No. 9-11, pp. 2689-2694, 1992. Resear, New Delhi, India Bailey et al., “Immobilized Transition-Metal Carbonyls and Related Catalysts”. Chemical Reviews, vol. 81. No. 2, pp. 21 Appl. No.: 358,222 110-148, 1981. 22 Filed: Dec. 16, 1994 Kalck et al., “Use of Water-Soluble Ligands in Homoge neous Catalysis”. Advances in Organometallic Chemistry, 51 Int. Cl. ................. C07C 5/10; CO7C 29/14; vol. 34, pp. 219-284, 1992. CO7C 49/62 Primary Examiner-Glenn A. Caldarola 52 U.S. Cl. .......................... 585/269; 585/266:568/434; Assistant Examiner-Bekir L. Yildirim 568/462; 568/881 Attorney, Agent, or Firm-Pennie & Edmonds LLP 58 Field of Search ......................... 524/709; 568/434, 568/451, 454, 462, 881: 556/15; 585/269, 57 ABSTRACT 266, 268 A process for the hydrogenation of organic compounds using water soluble catalyst in a biphasic media by: (A) 56 References Cited forming an organo-water dispersion of (i) an organic phase U.S.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec
    United States Patent (19) 11 Patent Number: 4,889,661 Kleiner 45 Date of Patent: Dec. 26, 1989 (54) PROCESS FOR THE PREPARATION OF Kosolapoff, G. M. et al. Organic Phosphorus Compounds AROMATIC PHOSPHORUS-CHLORNE (1973) vol. 4 at p. 95. Wiley-Interscience, Publ. COMPOUNDS Kosolapoff, Gennady M. Organophosphorus Com 75 Inventor: Hans-Jerg Kleiner, pounds (1958), John Wiley & Sons, Publ. pp. 59-60. Kronberg/Taunus, Fed. Rep. of Primary Examiner-Paul J. Killos Germany Attorney, Agent, or Firm-Curtis, Morris & Safford 73) Assignee: Hoechst Aktiengesellschaft, 57 ABSTRACT Frankfurt am Main, Fed. Rep. of Aromatic phosphorus-chlorine compounds, especially Germany diphenylphosphinyl chloride (C6H5)2P(O)Cl, phenyl phosphonyl dichloride C6HsP(O)Cl2, dichlorophenyl 21 Appl. No.: 554,591 phosphine C6HsPCl2 and chlorodiphenylphosphine (C6H5)2PCl, and the corresponding sulfur analogs, are 22 Filed: Nov. 23, 1983 obtained by reaction of aromatic phosphorus com 30 Foreign Application Priority Data pounds, which contain oxygen or sulfur, of the formula I Nov. 27, 1982 DE Fed. Rep. of Germany ....... 324.4031 511 Int, C.'................................................ CO7C 5/02 52 U.S. C. .................................... 562/815; 562/818; 562/819 58) Field of Search ..................................... 260/543 P in which X=O or S, and m= 1, 2 or 3, with phosphorus 56) References Cited chlorine compounds of the formula II U.S. PATENT DOCUMENTS (C6H5)3P Cln (II) 3,244,745 4/1966 Toy et al. ........................ 260/543 P FOREIGN PATENT DOCUMENTS in which n=1, 2 or 3, at temperatures between about 0093420 4/1983 European Pat. Off. 330 and 700° C. Preferred starting materials are tri phenylphosphine oxide (C6H5)3PO and phosphorus OTHER PUBLICATIONS trichloride PCl3.
    [Show full text]
  • The Response of Work Function of Thin Metal Films to Interaction with Hydrogen
    Vol. 114 (2008) ACTA PHYSICA POLONICA A Supplement Proceedings of the Professor Stefan Mr¶ozSymposium The Response of Work Function of Thin Metal Films to Interaction with Hydrogen R. Du¶s¤, E. Nowicka and R. Nowakowski Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52, 01-224 Warszawa, Poland The aim of this paper is to summarize the results of experiments carried out at our laboratory on the response of the work function of several thin ¯lms of transition metals and rare earth metals to interaction with molecular hydrogen. The main focus concerns the description of surface phenomena accompanying the reaction of hydride formation as a result of the adsor- bate's incorporation into the bulk of the thin ¯lms. Work function changes ¢© caused by adsorption and reaction concern the surface, hence this ex- perimental method is appropriate for solving the aforementioned problem. A di®erentiation is made between the work function changes ¢© due to cre- ation of speci¯c adsorption states characteristic of hydrides, and ¢© arising as a result of surface defects and protrusions induced in the course of the reaction. The topography of thin metal ¯lms and thin hydride ¯lms with defects and protrusions was illustrated by means of atomic force microscopy. For comparison, the paper discusses work function changes caused by H2 in- teraction with thin ¯lms of metals which do not form hydrides (for example platinum), or when this interaction is performed under conditions excluding hydride formation for thermodynamic reasons. Almost complete diminishing of ¢© was observed, in spite of signi¯cant hydrogen uptake on some rare earth metals, caused by formation of the ordered H{Y{H surface phase.
    [Show full text]
  • An X-Ray Study of Palladium Hydrides up to 100 Gpa: Synthesis and Isotopic Effects Bastien Guigue, Grégory Geneste, Brigitte Leridon, Paul Loubeyre
    An x-ray study of palladium hydrides up to 100 GPa: Synthesis and isotopic effects Bastien Guigue, Grégory Geneste, Brigitte Leridon, Paul Loubeyre To cite this version: Bastien Guigue, Grégory Geneste, Brigitte Leridon, Paul Loubeyre. An x-ray study of palladium hydrides up to 100 GPa: Synthesis and isotopic effects. Journal of Applied Physics, American Institute of Physics, 2020, 127 (7), pp.075901. 10.1063/1.5138697. hal-03024503 HAL Id: hal-03024503 https://hal.archives-ouvertes.fr/hal-03024503 Submitted on 11 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An x-ray study of palladium hydrides up to 100 GPa: Synthesis and isotopic eects. Bastien Guigue,1, 2 Grégory Geneste,2 Brigitte Leridon,1 and Paul Loubeyre2, a) 1)LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France 2)CEA, DAM, DIF, F-91297 Arpajon, France (Dated: 10 December 2020) The stable forms of palladium hydrides up to 100 GPa were investigated using the direct reaction of palladium with hydrogen (deuterium) in a laser-heated diamond anvil cell. The structure and volume of PdH(D)x were measured using synchrotron x-ray diffraction.
    [Show full text]