Enzyme Activity by Design: an Artificial Rhodium

Total Page:16

File Type:pdf, Size:1020Kb

Enzyme Activity by Design: an Artificial Rhodium Edinburgh Research Explorer Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes Citation for published version: Jarvis, AG, Obrecht, L, Deuss, PJ, Laan, W, Gibson, EK, Wells, PP & Kamer, PCJ 2017, 'Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes', Angewandte Chemie International Edition, vol. 56, no. 44, pp. 13596-13600. https://doi.org/10.1002/anie.201705753 Digital Object Identifier (DOI): 10.1002/anie.201705753 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Angewandte Chemie International Edition General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 10. Oct. 2021 Angewandte Communications Chemie International Edition:DOI:10.1002/anie.201705753 Catalyst Design Very Important Paper German Edition:DOI:10.1002/ange.201705753 Enzyme Activity by Design:AnArtificial Rhodium Hydroformylase for Linear Aldehydes Amanda G. Jarvis,* Lorenz Obrecht, Peter J. Deuss,Wouter Laan, Emma K. Gibson, Peter P. Wells,and Paul C. J. Kamer* Abstract: Artificial metalloenzymes (ArMs) are hybrid cata- rates and performances achieved by natural enzymes.[3] In lysts that offer aunique opportunity to combine the superior addition, the molecular recognition and shape selectivity of performance of natural protein structures with the unnatural proteins have typically not been exploited. Themost success- reactivity of transition-metal catalytic centers.Therefore,they ful approach to create ArMs has been the use of non-covalent providethe prospect of highly selective and active catalytic anchoring strategies utilizing protein scaffolds with strong chemical conversions for whichnatural enzymes are unavail- supramolecular recognition motifs such as avidin.[4] In these able.Herein, we show how by rationally combining robust site- ArMs,the binding site is used to carry the active metal center specific phosphine bioconjugation methods and alipid-bind- or bind metal-containing cofactors,restricting the possible ing protein (SCP-2L), an artificial rhodium hydroformylase applications of the binding properties of the protein. An was developed that displays remarkable activities and selectiv- alternative approach utilizes site-selective protein modifica- ities for the biphasic production of long-chain linear aldehydes tion methods[5] to incorporate transition metals into awide under benign aqueous conditions.Overall, this study demon- range of protein scaffolds whilst leaving the proteinsinnate strates that judiciously chosen protein-binding scaffolds can be binding capabilities largely intact. Any protein scaffold can be adapted to obtain metalloenzymes that provide the reactivity of used, allowing the exploitation of the almost unlimited range the introduced metal center combined with specifically of highly specific substrate-binding capabilities of proteins. intended product selectivity. Therefore,virtually any organometallic non-natural catalytic reaction can be merged with the sophisticated biological The development of substrate- and product-specific catalytic performance of enzymes,and this approach offers significant processes that operate efficiently at mild reaction temper- opportunities for the design of ArMs aiming at high atures is amajor challenge for the synthetic chemistry selectivity by shape-selective product formation. Herein, we community.[1] Enzymes are naturesmain catalysts and demonstrate the potential of such ArMs through the develop- catalyze numerous chemical transformations,typically under ment of artificial rhodium enzymes derived from aprotein benign conditions.However,many desired chemical reactions scaffold that was selected for its apolar substrate-binding are not performed by nature,and therefore,there are no properties.These ArMs enable selective aldehyde formation suitable natural enzymes.Artificial metalloenzymes (ArMs) in the biphasic hydroformylation of long-chain linear alkenes, provide away to bridge that gap between natural and areaction for which no natural enzymes are known, and chemical synthesis,providing enzymes for unnatural reac- which is challenged in current industrial applications by the tions.[2] Despite these successes,most ArMs do not meet the low solubility of the substrates in the aqueous phase.[6] [*] Dr.A.G.Jarvis, Dr.L.Obrecht, Dr.P.J.Deuss, Dr.W.Laan, and Prof. P. C. J. Kamer Diamond Light Source, Harwell Science & Innovation Campus School of Chemistry,University of St Andrews Didcot, Oxfordshire, OX11 0DE (UK) North Haugh, St Andrews,Fife, KY16 9ST (UK) Prof. P. C. J. Kamer E-mail:[email protected] Bioinspired Homo- & HeterogeneousCatalysis Dr.P.J.Deuss Leibniz Institute for Catalysis Department of Chemical Engineering (ENTEG) Albert-Einstein-Strasse 29a, 18059 Rostock (Germany) UniversityofGroningen E-mail:[email protected] Nijenborgh 4, 9747 AG Groningen (The Netherlands) Dr.W.Laan Dr.E.K.Gibson Current address:Phoreon, Bioincubator I Department of Chemistry,University College London Gaston Geenslaan 1, 3001 Leuven (Belgium) 20 Gordon Street, London WC1H 0AJ (UK) Supportinginformation and the ORCID identification number(s) for Dr.E.K.Gibson, Dr.P.P.Wells the author(s) of this article can be found under: UK Catalysis Hub, Research Complex at Harwell https://doi.org/10.1002/anie.201705753. Research data supporting Rutherford Appleton Laboratory this publicationcan be accessed at DOI:10.17630/03fa38f2-b858- Harwell Science & Innovation Campus 4fff-a478-83e61672955c. Didcot, Oxfordshire, OX11 0FA (UK) 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. Dr.P.P.Wells KGaA. This is an open access article under the terms of the Creative School of Chemistry,University of Southampton Commons AttributionLicense, which permits use, distribution and Southampton, SO17 1BJ (UK) reproduction in any medium, provided the original work is properly cited. 13596 2017 The Authors. Published by Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim Angew.Chem.Int. Ed. 2017, 56,13596 –13600 Angewandte Communications Chemie Scheme 1. A) Synthesis of the artificialmetalloproteins. B) Hydrofor- mylation of 1-octene. AA = amino acid. Figure 1. A) The use of the apolar tunnel to introduce regioselectivity We have previously reported amethod that enables such into hydroformylation. B) The apolar tunnel in SCP-2L, showing the an approach for the synthesis of ArMs containing metal- position of Triton X-100 in the tunnel in the original crystal structure binding phosphine ligands (Scheme 1A).[5a,7] Rhodium–phos- (PDB No. 1IKT),[13] the tunnel dimensions, and the positions of A100 phine complexes are known to be highly active and robust and V83. hydroformylation catalysts,and thus our strategy provides the prospect of enzymatic hydroformylation reactions.Rhodium– protein hybrids tested to date in hydroformylation have linear product (Figure 1A). To introduce the catalytic rho- utilized dative protein–rhodium interactions with limited dium–phosphine complexes,two mutants containing unique success.[8] Although this has led to unprecedented linear cysteines at either end of the tunnel were prepared (SCP-2L selectivities for the hydroformylation of styrene,[9] theexact V83C and SCP-2L A100C;Figure 1B).[5a,14] These two nature of the active species,and thus the origin of the mutants,obtained in excellent yields,showed little structural selectivity,isstill unclear.[10] Rhodium-catalyzed hydroformy- permutations and similar aliphatic substrate binding capabil- lation is used on a800000 ton scale to produce butyraldehyde ities as the wild-type (WT) protein (see the Supporting from propene under biphasic conditions,[11] allowing for the Information, Table S3). Both SCP-2L mutants were success- recovery of the expensive rhodium 3,3’,3’’-phosphanetriyl- fully modified with aldehyde phosphines P1–P3 through tris(benzenesulfonic acid) trisodium salt catalyst (Rh/ acysteine modification strategy (Scheme 1A;for character- TPPTS). Long-chain aldehydes are desired by industry as ization data for SCP-2L V83C–1–(P1–P3), see Ref.[5a];for they are important precursors for the production of deter- SCP-2L A100C–1–(P1–P3), see the Supporting Information). gents and plasticizers.[12] This process is not feasible for long- Therhodium proteins (SCP-2LV83C/A100C–1–(P1–P3)– chain alkenes (> 5Catoms) owing to their low solubility in Rh) were obtained by the addition of Rh(acac)(CO)2.Other water.[6] Rh precursors did not selectively bind to the phosphine (see Fatty acid transporter proteins contain apolar tunnels and Table S4 for MS and metal loading analysis). Their catalytic clefts to bind their hydrophobic cargo.The steroid carrier activity was investigated in the hydroformylation of 1-octene protein type 2like (SCP-2L) domain of the human multi- at 358Cand 80 bar synthesis gas (Figure 2, Scheme 1B,and functional enzyme 2(MFE-2) was identified as asuitable Table S5). To minimize
Recommended publications
  • Solvents for Sustainable Chemical Processes
    Green Chemistry Accepted Manuscript This is an Accepted Manuscript, which has been through the RSC Publishing peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, which is prior Cutting-edge research for a greener sustainable future www.rsc.org/greenchem Volume 12 | Number 9 | September 2010 | Pages 1481–1676 to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available. To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication. More information about Accepted Manuscripts can be found in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or ISSN 1463-9262 COMMUNICATION CRITICAL REVIEW Luque, Varma and Baruwati Dumesic et al. graphics contained in the manuscript submitted by the author(s) which may alter Magnetically seperable organocatalyst Catalytic conversion of biomass for homocoupling of arylboronic acids to biofuels 1463-9262(2010)12:9;1-U content, and that the standard Terms & Conditions and the ethical guidelines that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these Accepted Manuscript manuscripts or any consequences arising from the use of any information contained in them. www.rsc.org/greenchem Registered Charity Number 207890 Page 1 of 64 Green Chemistry TOC: Layout 1: This review highlights solvent systems Pamela Pollet* [a,c] , Evan A.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,650,546 Chaudhari Et Al
    USOO5650546A United States Patent (19) 11 Patent Number: 5,650,546 Chaudhari et al. 45 Date of Patent: Jul. 22, 1997 54) PROCESS FOR THE CATALYTIC OTHER PUBLICATIONS HYDROGENATION OF ORGANC Renaud et al., “Synthesis of a new family of water-soluble COMPOUNDS tertiary phosphine ligands and of their rhodium(I) com plexes; olefin hydrogenation in aqueous and biphasic (75) Inventors: Raghunath Vitthal Chaudhari; media”. Journal of Organometallic Chemistry, 419 (1991) Bhalchandra Mahadeo Bhanage; 403-415. Sunil Sadashiv Divekar; Raj Smith et al., “Metal Carbonyl Derivatives of a Water Soluble Madhukar Deshpande, all of Phosphine". Inorganica Chimica Acta, 62 (1982) 135-139. Maharashtra, India Hablot et al., "Gas-Liquid-Liquid Reaction. Using Water Soluble Catalyst”, Chemical Engineering Science, vol. 47. 73 Assignee: Council of Scientific Industrial No. 9-11, pp. 2689-2694, 1992. Resear, New Delhi, India Bailey et al., “Immobilized Transition-Metal Carbonyls and Related Catalysts”. Chemical Reviews, vol. 81. No. 2, pp. 21 Appl. No.: 358,222 110-148, 1981. 22 Filed: Dec. 16, 1994 Kalck et al., “Use of Water-Soluble Ligands in Homoge neous Catalysis”. Advances in Organometallic Chemistry, 51 Int. Cl. ................. C07C 5/10; CO7C 29/14; vol. 34, pp. 219-284, 1992. CO7C 49/62 Primary Examiner-Glenn A. Caldarola 52 U.S. Cl. .......................... 585/269; 585/266:568/434; Assistant Examiner-Bekir L. Yildirim 568/462; 568/881 Attorney, Agent, or Firm-Pennie & Edmonds LLP 58 Field of Search ......................... 524/709; 568/434, 568/451, 454, 462, 881: 556/15; 585/269, 57 ABSTRACT 266, 268 A process for the hydrogenation of organic compounds using water soluble catalyst in a biphasic media by: (A) 56 References Cited forming an organo-water dispersion of (i) an organic phase U.S.
    [Show full text]
  • Rh(I) Complexes in Catalysis: a Five-Year Trend
    molecules Review Rh(I) Complexes in Catalysis: A Five-Year Trend Serenella Medici * , Massimiliano Peana * , Alessio Pelucelli and Maria Antonietta Zoroddu Department of Chemistry and Pharmacy, University of Sassari, Vienna 2, 07100 Sassari, Italy; [email protected] (A.P.); [email protected] (M.A.Z.) * Correspondence: [email protected] (S.M.); [email protected] (M.P.) Abstract: Rhodium is one of the most used metals in catalysis both in laboratory reactions and industrial processes. Despite the extensive exploration on “classical” ligands carried out during the past decades in the field of rhodium-catalyzed reactions, such as phosphines, and other com- mon types of ligands including N-heterocyclic carbenes, ferrocenes, cyclopentadienyl anion and pentamethylcyclopentadienyl derivatives, etc., there is still lively research activity on this topic, with considerable efforts being made toward the synthesis of new preformed rhodium catalysts that can be both efficient and selective. Although the “golden age” of homogeneous catalysis might seem over, there is still plenty of room for improvement, especially from the point of view of a more sustainable chemistry. In this review, temporally restricted to the analysis of literature during the past five years (2015–2020), the latest findings and trends in the synthesis and applications of Rh(I) complexes to catalysis will be presented. From the analysis of the most recent literature, it seems clear that rhodium-catalyzed processes still represent a stimulating challenge for the metalloorganic chemist that is far from being over. Keywords: rhodium; catalysis; Rh(I) complexes Citation: Medici, S.; Peana, M.; Pelucelli, A.; Zoroddu, M.A. Rh(I) Complexes in Catalysis: A Five-Year 1.
    [Show full text]
  • Kinetics of Hydroformylation of 1-Octene in Ionic Liquid-Organic Biphasic Media Using Rhodium Sulfoxantphos Catalyst
    Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 6179 To link to this article: DOI:10.1016/J.CES.2010.12.040 URL: http://dx.doi.org/10.1016/J.CES.2010.12.040 To cite this version: Deshpande, Raj M. and Kelkar, Ashutosh A. and Sharma, Amit and Julcour-Lebigue, Carine and Delmas, Henri (2011) Kinetics of hydroformylation of 1-octene in ionic liquid-organic biphasic media using rhodium sulfoxantphos catalyst. Chemical Engineering Science, vol. 66 (n°8). pp. 1631-1639. ISSN 0009-2509 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Kinetics of hydroformylation of 1-octene in ionic liquid-organic biphasic media using rhodium sulfoxantphos catalyst R.M. Deshpande a, A.A. Kelkar a, A. Sharma b, C. Julcour-Lebigue b,n, H. Delmas b a Chemical Engineering Division, National Chemical Laboratory, Pune 411008, India b Universite´ de Toulouse, Laboratoire de Ge´nie Chimique, UMR 5503 CNRS/ENSIACET, Toulouse, France a b s t r a c t Biphasic hydroformylation of 1-octene was performed using rhodium sulfoxantphos catalyst dissolved in [BuPy][BF4] ionic liquid. Preliminary experiments proved this system to retain the catalytic complex within the ionic liquid phase and to maintain a high selectivity towards the linear aldehyde (n:iso ratio of 30) over several cycles. Process parameter investigation showed a first order dependence of the initial rate with respect to the catalyst and 1-octene concentrations, but a more complex behavior with respect to hydrogen (fractional order) and carbon monoxide partial pressures (inhibition at high pressures).
    [Show full text]
  • Hydroformylation of 1-Octene Using [Bmim][PF6]
    Hydroformylation of 1-Octene Using [Bmim][PF6]–Decane Biphasic Media and Rhodium Complex Catalyst: Thermodynamic Properties and Kinetic Study Amit Sharma, Carine Julcour-Lebigue, Raj M. Deshpande, Ashutosh A. Kelkar, Henri Delmas To cite this version: Amit Sharma, Carine Julcour-Lebigue, Raj M. Deshpande, Ashutosh A. Kelkar, Henri Delmas. Hy- droformylation of 1-Octene Using [Bmim][PF6]–Decane Biphasic Media and Rhodium Complex Cat- alyst: Thermodynamic Properties and Kinetic Study. Industrial and engineering chemistry research, American Chemical Society, 2010, 49 (21), pp.10698-10706. 10.1021/IE100222K. hal-02353556 HAL Id: hal-02353556 https://hal.archives-ouvertes.fr/hal-02353556 Submitted on 7 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte ( OATAO ) OATAO is an open access repository that collects the work of Toulouse researchers an d makes it freely available over the web where possible. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID : 5857 To link to this article : DOI:10.1021/IE100222K URL: http://dx.doi.org/10.1021/IE100222K To cite this version : Sharma, Amit and Julcour-Lebigue, Carine and Deshpande, Raj M.
    [Show full text]
  • Synthesis, Purification, and Characterization of Tetraphosphine Ligands Deniz Cevik
    Synthesis, purification, and characterization of tetraphosphine ligands Deniz Cevik To cite this version: Deniz Cevik. Synthesis, purification, and characterization of tetraphosphine ligands. Other. Univer- sité Paris-Saclay, 2017. English. NNT : 2017SACLX026. tel-01631221 HAL Id: tel-01631221 https://pastel.archives-ouvertes.fr/tel-01631221 Submitted on 8 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLX026 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY PREPAREE A ÉCOLE POLYTECHNIQUE ECOLE DOCTORALE N° 517 2MIB | Sciences chimiques : Molécules, matériaux, instrumentation et biosystèmes Spécialité de doctorat : Chimie Par Mme. Deniz Çevik Synthesis, Purification, and Characterization of Tetraphosphine Ligands Thèse présentée et soutenue à Palaiseau, le 17. Juillet 2017 : Composition du Jury : Mme. Hii, King Kuok (Mimi) Professeur Imperial College London Rapporteure M. Manoury, Eric DR - CNRS au LCC (Toulouse) Rapporteur M. Voituriez, Arnaud DR - CNRS á l’ICSN Président M. van Leeuwen, Piet Chaire d’Attractivité au LPCNO, INSA-Toulouse
    [Show full text]
  • Aqueous Biphasic Hydroformylation of Higher Olefins Catalyzed By
    Catalysis Letters Vol. 88, Nos. 3–4, June 2003 (# 2003) 219 Aqueous biphasic hydroformylation of higher olefins catalyzed by rhodium complexes with amphiphilic ligands of sulfonated triphenylphosphine analog Qingrong Peng, Yong Yang, Chaojie Wang, Xinli Liao, and Youzhu Yuanà State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen 361005, China Received 14 January 2003; accepted 4 April 2003 The catalytic performances of rhodium complexes with three new amphiphilic phosphine ligands, bis-(3-sodium sulfonatophenyl)-(4-tert-butylphenyl)-phosphine (3), phenyl-(3-sodium sulfonatophenyl)-(4-tert-butyl-phenyl)-phosphine (4) and bis-(4-tert-butylphenyl)-(3-sodium sulfonatophenyl) phosphine (5), in hydroformylation of 1-hexene, 1-octene and 1-dodecene have been studied. The steric attributes of free ligands are investigated by Tolman’s cone angle method through geometric optimizations. The results reveal that the new phosphines are surface-active as the typical surfactants and the corresponding rhodium complexes show significant enhancements in the reaction rate and higher selectivities toward the normal aldehydes in comparison with those obtained by triphenylphosphine trisulfonate (TPPTS)- and triphenylphosphine disulfonate (TPPDS) rhodium complexes under identical conditions. KEY WORDS: amphiphilic phosphine; water-soluble rhodium complex; biphasic hydroformylation; 1-hexene; 1-octene; 1-dodecene. 1. Introduction [14–26] and so on. Although less well studied than the traditional biphasic approach, recently the amphiphilic Since the commercial establishment of two-phase concept has attained some interest and a number of catalysis for propene hydroformylation in the Ruhr- amphiphilic phosphines have been synthesized and chemie–Rhone-Poulenc process in 1984, the use of metal evaluated in catalysis.
    [Show full text]
  • Hydroformylation Reaction - Cyclic Mechanism (Monometallic and Bimetallic) - Different Type of Ligands and Metals - Currently Developed Rhodium Catalysts III
    Hydroformylation Chem 462 Inorganic Chemistry Marcetta. Y. Darensbourg Sergio Sanchez and Junsang Cho 11/6 (Thursday) 1 Contents I. Introduction (concept and importance) II. Hydroformylation Reaction - Cyclic mechanism (monometallic and bimetallic) - Different type of ligands and metals - Currently developed rhodium catalysts III. Conclusion 2 Introduction • What is hydroformylation? - produces aldehyde from alkene via - addition of a CO and H2 to a alkene "Organometallic Chemistry", Spessard and Miessler 3 Introduction • Why hydroformylation is industrially important: - ready availability of 1-alkene from the petrochemical industry - the large increase in production of plastics, which require plasticizing agents (diester of phthalic acid), derived from hydroformylation - industrially useful compounds produced by hydroformylation (long carbon chain alcohols (detergents)) "Organometallic Chemistry", Spessard and Miessler 4 Introduction • Various catalysts employed in hydroformylation reaction 1) Cobalt Catalyst: HCo(CO)4 2) Cobalt Phosphine-Modified Catalyst: HCo(CO)3(PR3) 3) Rhodium Phosphine Catalyst: HRh(CO)(PPh3)3 4) Aqueous phase Rhodium Catalyst: TPPTS (Triphenylphosphinetrisulfonate) 5) New generation of Rhodium Catalyst: bidentate phosphine ligands "Organometallic Chemistry", Spessard and Miessler 5 Experimental setup with reactor system A: autoclave unit C: IR transmission cell P: micro-gear pump S: FTIR spectrometer Chem. Rev. 2012, 112, 5675- 5732 6 Cobalt Catalyst: HCo(CO)4 HCo(CO)4 - oldest homogeneous catalysis process still in use - total H2/CO (ratio= 1:1) pressures of 200- 300 bar and 110- 180 °C - ratio of linear to branched aldehyde: ca. 4 to 1 - decomposed to metallic Co at high temperature and low CO pressure Otto Roelen at Ruhrchemie in Germany in 1938 7 Hydroformylation Mechanism . Monometallic - (16 e ) (R.E) - I (18 e ) III <linear> 1,2 insertion III (18 e-) (16 e-) (O.A) (18 e- ) ß-elimination (18 e-) (16 e-) 1,1 insertion (alkyl migration) <branched> I (18 e-) (16 e-) R.
    [Show full text]
  • Platinum Metals Review
    UK ISSN 0032-1 400 PLATINUM METALS REVIEW A quarterly survey of research on the platinum metals and of developments in their application in industry VOL. 42 OCTOBER 1998 NO. 4 Contents Platinum Metals Review and the Internet 134 Biphasic Homogeneous Catalysis 135 By Paul 3. Dyson, David J. Ellis and Thomas Welton Progress in Dye-Sensitised Photovoltaics 140 By R. 3. Potter Formation and Decomposition of Palladium Hydride Particles 141 By P. D. Cobhn, B. E. Nieuwenhuys, V. V. Gorodetskii and V. N. Pamzon Carbon Monoxide Sensing Technology 144 By Gavin Troughwn Platinum Labware Catalog 144 Aqueous-Organic Biphasic Catalysis 145 By Paul 3. Dyson The Build-Up of Bimetallic Transition Metal Clusters 146 By Paul R. Raithby Construction of Miniature Organo-Rhodium Boxes 157 Conferences Report Progress in Catalysis 158 By C. F. 3. Barnard and W. Weston; K. E. Simons and A. F. Chafley Combinatorial Chemistry Identifies Fuel Cell Catalyst 163 Catalysts for Butane Reforming in Zirconia Fuel Cells 164 By K. Kendall and D. S. Williams Geoffrey Wilkinson and Platinum Metals Chemistry 168 By M. L. H. Green and W. P. GnfSlth Abstracts 174 New Patents 179 Indexes to Volume 42 183 Communications should be addressed to The Edizor, Susan V. Ashton, Platinum Metals Rev& Johnson Matthey Public Limited Company, Hatton Garden, London ECl N 8EE PLATINUM METALS REVIEW AND THE INTERNET Johnson Matthey is pleased to announce that a full text online version of "Platinum Metals Review" can now be accessed on the Internet. The electronic version of the journal is accessible without charge, as is the printed version.
    [Show full text]
  • Dehydrogenation of Formic Acid Overa Homogeneous Ru-TPPTS
    catalysts Article Dehydrogenation of Formic Acid over a Homogeneous Ru-TPPTS Catalyst: Unwanted CO Production and Its Successful Removal by PROX Vera Henricks 1,2, Igor Yuranov 3, Nordahl Autissier 3 and Gábor Laurenczy 1,* 1 Laboratory of Organometallic and Medical Chemistry, Group of Catalysis for Energy and Environment, École Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland; [email protected] 2 Molecular Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands 3 GRT Operations SA, CH-1350 Orbe, Switzerland; [email protected] (I.Y.); [email protected] (N.A.) * Correspondence: gabor.laurenczy@epfl.ch; Tel.: +41-21-693-9858 Received: 26 October 2017; Accepted: 13 November 2017; Published: 20 November 2017 Abstract: Formic acid (FA) is considered as a potential durable energy carrier. It contains ~4.4 wt % of hydrogen (or 53 g/L) which can be catalytically released and converted to electricity using a proton exchange membrane (PEM) fuel cell. Although various catalysts have been reported to be very selective towards FA dehydrogenation (resulting in H2 and CO2), a side-production of CO and H2O (FA dehydration) should also be considered, because most PEM hydrogen fuel cells are poisoned by CO. In this research, a highly active aqueous catalytic system containing Ru(III) chloride and meta-trisulfonated triphenylphosphine (mTPPTS) as a ligand was applied for FA dehydrogenation in a continuous mode. CO concentration (8–70 ppm) in the resulting H2 + CO2 gas stream was measured using a wide range of reactor operating conditions. The CO concentration was found to be independent on the reactor temperature but increased with increasing FA feed.
    [Show full text]
  • [P(M-C6h4so3na)3]3 Complex Supported on Sio2
    ___________________________________________________________________________www.paper.edu.cn Catalysis Today 74 (2002) 5–13 Structure aspects and hydroformylation performance of water-soluble HRh(CO)[P(m-C6H4SO3Na)3]3 complex supported on SiO2 Youzhu Yuan∗, Hongbin Zhang, Yiquan Yang, Yu Zhang, Khirui Tsai State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen 361005, PR China Abstract The solution NMR (31P and 1H) and FTIR spectroscopies were employed to investigate the structure information of water-soluble complex HRh(CO)[P(m-C6H4SO3Na)3]3 (1) [P(m-C6H4SO3Na)3: trisodium salt of tri-(m-sulfophenyl)- 31 1 phosphine, TPPTS] supported on SiO2 (1/SiO2). The P( H) NMR spectra showed that a pair of new twin-peak at about 31.5, 32.1 ppm while no typical twin-peak at 44.0, 44.7 ppm for the phosphorus species ascribed to the complex 1 were ob- served at 1/SiO2. However, the typical phosphorus peaks for the complex 1 appeared in the case of using TPPTS or Na2CO3- preimpregnated SiO2 as supports. Moreover, the immobilization caused a considerable oxidation of the liberated TPPTS to OTPPTS (OTPPTS, i.e. OP(m-C6H4SO3Na)3: trisodium salt of tri-(m-sulfophenyl)-phosphine oxide) species as evidenced 31 1 by P( H) NMR spectroscopy. The phosphorus-31 peaks at 31.5, 32.1 ppm at 1/SiO2 were found to be unchanged before and −1 after the propene hydroformylation. The FTIR results revealed that the CO band appeared at about 1870 cm for the 1/SiO2 catalyst, which was lower than that for the precursor complex 1.
    [Show full text]
  • Aqueous-Biphasic Hydroformylation of 1-Hexene Catalyzed by the Complex
    J. Mex. Chem. Soc. 2017, 61(2), 128-137 Article © 2017, Sociedad Química de México ISSN 1870-249X Aqueous-biphasic hydroformylation of 1-hexene catalyzed by the complex HCo(CO)[P(o-C6H4SO3Na)]3 María Modroño-Alonso,1 William Castro,2 Francisco Lopez-Linares,3 Merlín Rosales4 and Pablo Jose Baricelli1* 1 Centro de Investigaciones Químicas, Universidad de Carabobo, Facultad de Ingeniería, Valencia, Venezuela. 2 Centro de Química, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela. 3 Chevron Energy Technology Company, 100 Chevron way, Richmond, California 94801, United States of America. 4 Laboratorio de Química Inorgánica, Departamento de Química, Facultad Experimental de Ciencia, Universidad del Zulia. Maracaibo, Venezuela. * Corresponding author. Tel.: +58 412 3413286. E-mail address: [email protected]; [email protected] Received October 18th, 2016; Accepted March 8th, 2017. Abstract. The water soluble cobalt complex HCo(CO)[P(o-C6H4SO- Resumen. El complejo soluble en agua HCo(CO)[P(o-C6H4SO3Na)]3 3Na)]3 was used as catalyst precursor for the biphasic aqueous hydro- fue usado como precursor catalítico para la hidroformilación de formylation of 1-hexene. The complex was synthesized by reductive 1-hexeno. El complejo fue sintetizado por carbonilación reductiva carbonylation of CoCl2.6H2O in the presence of o-TPPTS ([P(o-C6H- de CoCl2.6H2O en presencia de o-TFFTS,([P(o-C6H4SO3Na)]3) en at- 1 1 31 1 4SO3Na)]3) under nitrogen atmosphere and characterized by FTIR, H mosfera de nitrógeno y caracterizado por IRFT H RMN y P { H} NMR and 31P {1H} NMR, 13C NMR, DEPT – 135, COSY, HSQC, MS RMN, 13C RMN, DEPT – 135, COSY, HSQC, MS (ESI).
    [Show full text]