Open NLD Thesis FINAL.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
The Pennsylvania State University The Graduate School Eberly College of Science DEVELOPMENT OF PHOSPHORUS-CATALYZED REDUCTIONS VIA P(III)/P(V) CYCLING WITH STRAINED PHOSPHORUS CATALYSTS A Dissertation in Chemistry by Nicole L. Dunn 2016 Nicole L. Dunn Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2016 The dissertation of Nicole L. Dunn was reviewed and approved* by the following: Alexander T. Radosevich Assistant Professor of Chemistry Dissertation Advisor Chair of Committee Kenneth S. Feldman Professor of Chemistry Chemistry Graduate Program Chair Scott T. Phillips Associate Professor of Chemistry Martarano Career Development Professorship Joshua D. Lambert Associate Professor of Food Science *Signatures are on file in the Graduate School iii ABSTRACT Phosphorus catalysis is a growing field that is currently based upon the utility of three major catalytic cycles: 1) three coordinate phosphine to four coordinate phosphonium, 2) three coordinate phosphine to four coordinate phosphine oxide, and 3) four coordinate phosphonium to five coordinate phosphorane. In this thesis, a new mode of phosphorus catalysis will be described, wherein the catalytic cycle relies upon the transition from three-coordinate phosphorus to five- coordinate phosphorane. Specifically, we have developed two systems where geometrically constrained phosphorus(III) compounds catalyze the reduction of unsaturated substrates. In the first system, a planar, T-shaped phosphorus(III) compound is transformed into a five-coordinate hydridophosphorane with no observable intermediates; catalytic reduction of azobenzene is observed with both species in the presence of a reductant. In the second example, a cyclic phosphine catalyzes the reductive transposition of allylic halides. We believe that the demonstrated ability of phosphorus compounds to cycle between three-coordinate and five-coordinate complexes marks the development of new class of phosphorus-catalyzed reactions that could have broad applications in synthetic chemistry. iv TABLE OF CONTENTS List of Figures .......................................................................................................................... viii List of Tables ........................................................................................................................... xv Acknowledgements .................................................................................................................. xvi Chapter 1 Phosphorus Reactivity and Related Catalytic Applications .................................... 1 Abstract ............................................................................................................................ 1 1.1. P(III) Phosphines ....................................................................................................... 1 1.1.1 Nucleophilic Reactions ................................................................................... 2 1.1.2 Oxophilic Reactions ........................................................................................ 4 1.1.3 Oxidative Addition .......................................................................................... 6 1.2. Tetracoordinate P(V) Phosphonium Salts ................................................................. 7 1.2.1 Electrophilic Phosphonium Catalysis .............................................................. 8 1.3. Pentacoordinate P(V) Species ................................................................................... 9 1.3.1 Reductive Elimination from P(V) ................................................................... 9 1.4. Reversible Oxidative Addition and Reductive Elimation ......................................... 10 1.4.1 Intramolecular Examples ................................................................................. 11 1.4.2. Intermolecular Examples ................................................................................ 11 1.5. Conclusions ............................................................................................................... 12 1.6 References .................................................................................................................. 13 Chapter 2 Oxidative Addition and Reductive Elimination at a T-shaped, Planar Phosphorus Compound Provides Phosphorus Transfer Hydrogenation Catalysts .............................. 17 Abstract ............................................................................................................................ 17 2.1 Introduction ................................................................................................................ 17 2.1.1 Structural and Electronic Requirements for Two Electron Redox at Phosphorus ....................................................................................................... 18 2.1.2 Characteristics of a T-shaped P(III) Compound .............................................. 19 2.2 Synthesis of Dihydridophosphorane 2-3 .................................................................... 22 2.2.1 Synthesis of Dihydridophosphorane 2-3 from Dichlorophosphorane 2-10..... 22 2.2.2 Synthesis of Dihydridophosphorane 2-3 from Three-Coordinate Species 2- 1 ........................................................................................................................ 23 2.3 Characterization of 2-3 ............................................................................................... 26 2.3.1 NMR Spectroscopy ......................................................................................... 26 2.3.2 X-ray Crystallography ..................................................................................... 27 2.3.3 Computations of P-H Bonds ........................................................................... 28 2.3.4 Structural Equilibration ................................................................................... 29 2.3.5 Synthesis and Characterization of 2-3 Isotopologues ..................................... 31 2.4 Reactivity of 2-3 ......................................................................................................... 33 v 2.4.1 Hydrogen Release from Dihydridophosphorane 2-3 to Reform Three Coordinate Compound 2-1 ............................................................................... 33 2.4.2 Catalytic Reduction of Azobenzene with Phosphorus Catalysts ..................... 34 2.5 Conclusions ................................................................................................................ 36 2.6 Experimental .............................................................................................................. 37 2.6.1 General Materials and Methods ...................................................................... 37 2.6.2 Synthetic Procedures and Data ........................................................................ 37 2.6.3 Kinetics Data for Arrhenius Analysis of Hydrogen Transfer from 2-3 to Azobenzene. ..................................................................................................... 45 2.6.4 Computational Details. .................................................................................... 47 2.6.5 Crystallographic Details. ................................................................................. 49 2.6.6 NMR Spectra ................................................................................................... 50 2.7 References .................................................................................................................. 54 Chapter 3 Mechanistic Studies of Hydrogen Transfer to a P(III) Center from Ammonia Borane .............................................................................................................................. 58 Abstract ............................................................................................................................ 58 3.1 Introduction ................................................................................................................ 58 3.1.1 Importance of Hydrogenation ......................................................................... 58 3.1.2 Hydrogen Addition to a Metal Center ............................................................. 59 3.1.3 Hydrogen Addition at a Non-metal Center ..................................................... 60 3.1.4 Hydrogen activation at Phosphorus ................................................................. 61 3.2 Stoichiometric conversion of 2-1 to 2-3: Hydrogen Transfer from Ammonia Borane ...................................................................................................................... 62 3.2.1 Kinetics of Hydrogen Transfer from Ammonia-Borane to 2-1. ...................... 62 3.2.2 Eyring Analysis ............................................................................................... 64 3.2.3 Kinetic Isotope Effects. ................................................................................... 65 3.2.4 Isotopic Labeling at 2-3 ................................................................................... 67 3.2.5 11B NMR Monitoring. ..................................................................................... 68 3.3 Reactions of 2-1 with other Hydrogen Sources ......................................................... 70 3.3.1 Reaction of 2-1 with Substituted Amine Boranes ........................................... 70 3.3.2 Reaction of 2-1