Chapter 7 Experimental

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 7 Experimental Chapter 7 Experimental 7 Experimental 7.1 General Procedures All manipulations of metal complexes and air sensitive reagents were performed under an inert atmosphere of nitrogen either by the use of standard Schlenk and vacuum line techniques or in a nitrogen-filled glove box. Solutions were transferred using double ended needles (cannulae) and gas tight syringes. Glassware and double ended needles were oven dried at 160°C overnight. All reagents, including 1 5 N labelled compounds, were purchased from Sigma-Aldrich Pty. Ltd., except dimethylphenylphosphine, triallylphosphine, 1,2-bis (dimethylphosphino)ethane, and 1,2-bis (diethylphosphino)ethane, which were purchased from Strem Chemicals, Inc. and used as received. For the purposes of air sensitive manipulations and in the preparation of metal complexes, diethyl ether, tetrahydrofuran, hexane, toluene and benzene were stored over sodium wire and distilled prior to use from sodium/benzophenone ketyl under nitrogen. Methanol was dried over and distilled from magnesium turnings. Acetone was dried over and distilled from CaSO 4 . Dimethylformamide was dried over activated molecular sieves. Absolute ethanol, 2-methoxyethanol, 2,2-dimethoxypropane and anhydrous chloroform were used as received. - 221 - Chapter 7 Experimental All bulk compressed gases were obtained from British Oxygen Company (BOC Gases). Argon (>99.99%) and nitrogen (>99.5%) were passed through drying columns of potassium hydroxide before use. Methyl bromide (>95%), carbon monoxide (>98%) and dihydrogen (>99%) were used as supplied. Vinyl bromide was purchased from Sigma-Aldrich and used as supplied. Air sensitive NMR samples were either prepared in a nitrogen-filled glove-box or by transferring the solutions by double ended needles through an air tight septum seal. Deuterated solvents for NMR purposes were obtained from Merck and Cambridge Isotopes, degassed using three consecutive freeze-pump-thaw cycles and vacuum distilled from suitable drying agents. All deuterated solvents were distilled immediately prior to use. 1 H, 1 1 B, 1 3 C, 1 5 N and 3 1 P NMR spectra were recorded on Bruker Avance spectrometers (proton frequency = 300.13, 400.13 or 500.13 MHz). NMR Spectra were recorded at 300 K unless otherwise stated as determined using a variable temperature unit ( ±5 K). Chemical shifts ( δ) are quoted in ppm, the downfield direction being positive. 1 H and 1 3 C chemical shifts are referenced to internal solvent resonances. 1 5 N NMR chemical shifts were referenced to external neat aniline, taken to be 56.5 ppm at 300 K (liquid ammonia scale). 3 1 P NMR chemical shifts were referenced to external neat trimethylphosphite, taken to be at 140.85 ppm at 300 K. - 222 - Chapter 7 Experimental 1 1 B NMR chemical shifts were referenced to external 15% BF 3 .Et 2 O in CDCl 3 . Variable temperature NMR spectra are uncorrected for chemical shift drift with changing temperature. Uncertainties in chemical shifts (at 298/300 K) are typically ±0.02 ppm for 1 H, ±0.1 ppm for 1 3 C and 3 1 P, and ±0.2 ppm for 1 1 B and 1 5 N. Coupling constants ( J) are given in Hz and have an uncertainty of ±0.05 Hz. For convenience, the following abbreviations are used in reporting NMR resonances: s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; hex., hexet; sept., septet; dd, doublet of doublets, etc; m, multiplet; b., broad; app., apparent. The following two-dimensional NMR techniques were used for the assignment of some organometallic compounds: COSY ( COrrelation Spectroscop Y), HSQC ( Heteronuclear Single-Quantum Coherence), HMQC ( Heteronuclear Multiple-Quantum Coherence), EXSY ( EX change Spectroscop Y). T 1 measurements were carried out by the inversion-recovery method using standard 180°-τ-90° pulse sequences. NMR data were processed on Intel PC workstations using standard Bruker software (XWinNMR/TopSpin). Accurate chemical shift and coupling constant values of cis unsymmetrical complexes were determined via simulations carried out using the NUMARIT routines (NUMARIT algorithm as described in: J. S. Martin and A. R. Quirt, J. Magn. Reson. 5, 318 (1971), modified by Rudy Sebastian) built into SpinWORKS 2.5.4 (© 1999-2006 Kirk Marat). Phosphine labelling for unsymmetrically substituted cis complexes was kept consistent for all spectra, with a labelling scheme as shown in Figure 7.1. The phosphine position trans to - 223 - Chapter 7 Experimental the coordinated chloride was labelled position A whilst the remaining 2 phosphine positions were determined via J (PP) measurements. PC PB Cl Ru PA X PD Figure 7.1 – Phosphine labelling for unsymmetrical cis complexes prepared in this work Electrospray ionisation (ESI) and atmospheric pressure chemical ionisation (APCI) mass spectra were recorded on a Finnigan LCQ mass spectrometer. Typical experimental conditions for an ESI experiment were: ESI spray voltage 5 kV; nitrogen sheath gas pressure 60 psi; heated capillary temperature 200 °C; full scan m/z 50 to 2000. For loop injection, the typical mobile flow phase was 50% methanol/50% water with 1% acetic acid with a flow rate of 100 microliter per minute. Matrix assisted laser desorption / ionisation – time of flight (MALDI-TOF) spectra were recorded on a Micromass TOF SPEC 2E spectrometer with a 337 nm dinitrogen UV laser, using C 6 0 /C 7 0 soot as both the matrix and as an internal calibrant ( m/z = 720 and 840, two-point calibration). Ions with molecular masses greater than 720 generally required a calibration of a + higher order, and when available known [RuCl(P-P) 2 ] (P-P = dmpe, depe) ions were used along with C 6 0 /C 7 0 in a three-point calibration curve. Both - 224 - Chapter 7 Experimental positive and negative ions were detected in reflectron mode at 20kV. A typical sample was prepared by spotting a solution of the analyte of interest in a suitable solvent on a marked stainless steel plate in an N 2 -filled glove box, allowing the solvent to evaporate to dryness, then coating the sample with a saturated solution of C 6 0 /C 7 0 in toluene, which was also allowed to evaporate to dryness. Typical spotting volumes were ca. 4 µL. Care was taken to minimise air contact ( ca. <8 s) when transferring the sample plate from the glove box to the spectrometer vacuum chamber. Data is quoted in the form x(assignment, y) where x is the mass/charge ( m/z) ratio and y is the percentage abundance relative to the base peak. Only peaks of interest are quoted. Infrared spectra were obtained either on a Shimadzu 8400 series FTIR spectrometer as pressed discs (KBr – hand press), or as powder samples on a Bruker IFS 66/S FT-IR with MIR light source and DTGS detector operating in ATR reflection mode. Raman spectra were collected on a Bruker IFS 66/S-FRA 106/S at 1064 nm as neat solid discs. For convenience, the following abbreviations are used in reporting IR data: w, weak; m, medium; st, strong; b, broad; sh, sharp. Collection of Raman spectra was hampered by the decomposition of most intensely coloured complexes, even at low (< 5 mW) powers. Compounds which were white to yellow gave spectra with a good signal to noise ratio, whilst compounds which were green to blue generally “burned”, occasionally giving signal, but most frequently resulting in an extremely - 225 - Chapter 7 Experimental large and asymmetric baseline “hump” ranging from 3580–1500 cm − 1 with a maxima at 3216 cm − 1 . 7.2 Ligand synthesis 1 7.2.1 Trichlorophosphine sulfide, PSCl 3 Sulfur powder (49.1 g, 1.53 mol) and phosphorus trichloride (211 g, 1.53 mol) were added to a two-necked round-bottom flask. A reflux condenser and nitrogen line were attached and the system sparged with nitrogen. Anhydrous aluminium trichloride (2.40 g, 18.0 mmol) was added through the side-arm in small portions to the cooled solution; after each addition the solution was heated to reflux, and cooled before further addition of AlCl 3 . Upon addition of sufficient AlCl 3 ( ca. 2.5 g), a vigorous exothermic reaction occurred, producing a dark brown homogenous solution. The solution was heated at reflux for a further 30 minutes, and the resulting mixture was distilled under nitrogen (123 − 125 °C) to afford trichlorophosphine sulfide as a colourless liquid (206 g, 80%). 3 1 1 P{ H} NMR (162 MHz, diethyl ether): δ P 30.5 (1P, s) 7.2.2 Methylmagnesium iodide, MeMgI Magnesium turnings (81.7 g, 3.36 mol) was added to a 3 L wide-necked flange flask and a 5-necked flange cover was secured, to which an overhead mechanical stirrer, 1 L dropping funnel, reflux condenser and a - 226 - Chapter 7 Experimental nitrogen/vacuum line were attached. The entire flask was evacuated overnight to activate the magnesium turnings. Diethyl ether (1 L) was added along with a single crystal of iodine. Methyl iodide (452 g, 3.18 mol) in diethyl ether (200 mL) was added slowly (1 mL / min) to the Mg/ether mixture, and the mixture heated without stirring until the reaction initiated, as indicated by the fading of the iodine colour from solution. Once the reaction had commenced, the mixture was stirred, heating was ceased and the MeI addition adjusted to maintain a gentle reflux. After complete addition, the reaction mixture was a dark grey solution, with traces of excess magnesium. The mixture was allowed to stir overnight and used directly in the next step. 7.2.3 Tetramethyldiphosphine disulfide, 2 Me 2 P(=S)-P(=S)Me 2 The reaction vessel from the preparation of methylmagnesium iodide was cooled to 0 °C. Additional diethyl ether (400 mL) was added and trichlorophosphine sulfide (163 g, 0.960 mol) was added dropwise over four hours, during which a thick, white precipitate formed.
Recommended publications
  • Inventory Size (Ml Or G) 103220 Dimethyl Sulfate 77-78-1 500 Ml
    Inventory Bottle Size Number Name CAS# (mL or g) Room # Location 103220 Dimethyl sulfate 77-78-1 500 ml 3222 A-1 Benzonitrile 100-47-0 100ml 3222 A-1 Tin(IV)chloride 1.0 M in DCM 7676-78-8 100ml 3222 A-1 103713 Acetic Anhydride 108-24-7 500ml 3222 A2 103714 Sulfuric acid, fuming 9014-95-7 500g 3222 A2 103723 Phosphorus tribromide 7789-60-8 100g 3222 A2 103724 Trifluoroacetic acid 76-05-1 100g 3222 A2 101342 Succinyl chloride 543-20-4 3222 A2 100069 Chloroacetyl chloride 79-04-9 100ml 3222 A2 10002 Chloroacetyl chloride 79-04-9 100ml 3222 A2 101134 Acetyl chloride 75-36-5 500g 3222 A2 103721 Ethyl chlorooxoacetate 4755-77-5 100g 3222 A2 100423 Titanium(IV) chloride solution 7550-45-0 100ml 3222 A2 103877 Acetic Anhydride 108-24-7 1L 3222 A3 103874 Polyphosphoric acid 8017-16-1 1kg 3222 A3 103695 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103694 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103880 Methanesulfonic acid 75-75-2 500ml 3222 A3 103883 Oxalyl chloride 79-37-8 100ml 3222 A3 103889 Thiodiglycolic acid 123-93-3 500g 3222 A3 103888 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 103886 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 102969 sulfuric acid 7664-93-9 500 mL 2428 A7 102970 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102971 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102973 formic acid (88%) 64-18-6 500 mL 2428 A7 102974 hydrofloric acid (49%) 7664-39-3 500 mL 2428 A7 103320 Ammonium Hydroxide conc.
    [Show full text]
  • The Stereochemistry of Sulfonium Salts
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1974 THE STEREOCHEMISTRY OF SULFONIUM SALTS ROBERT L. CARET Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation CARET, ROBERT L., "THE STEREOCHEMISTRY OF SULFONIUM SALTS" (1974). Doctoral Dissertations. 1044. https://scholars.unh.edu/dissertation/1044 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds
    Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds Library Listing – 1,523 spectra Subset of Aldrich FT-IR Library related to organometallic, inorganic, boron and deueterium compounds. The Aldrich Material-Specific FT-IR Library collection represents a wide variety of the Aldrich Handbook of Fine Chemicals' most common chemicals divided by similar functional groups. These spectra were assembled from the Aldrich Collections of FT-IR Spectra Editions I or II, and the data has been carefully examined and processed by Thermo Fisher Scientific. Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds Index Compound Name Index Compound Name 1066 ((R)-(+)-2,2'- 1193 (1,2- BIS(DIPHENYLPHOSPHINO)-1,1'- BIS(DIPHENYLPHOSPHINO)ETHAN BINAPH)(1,5-CYCLOOCTADIENE) E)TUNGSTEN TETRACARBONYL, 1068 ((R)-(+)-2,2'- 97% BIS(DIPHENYLPHOSPHINO)-1,1'- 1062 (1,3- BINAPHTHYL)PALLADIUM(II) CH BIS(DIPHENYLPHOSPHINO)PROPA 1067 ((S)-(-)-2,2'- NE)DICHLORONICKEL(II) BIS(DIPHENYLPHOSPHINO)-1,1'- 598 (1,3-DIOXAN-2- BINAPH)(1,5-CYCLOOCTADIENE) YLETHYNYL)TRIMETHYLSILANE, 1140 (+)-(S)-1-((R)-2- 96% (DIPHENYLPHOSPHINO)FERROCE 1063 (1,4- NYL)ETHYL METHYL ETHER, 98 BIS(DIPHENYLPHOSPHINO)BUTAN 1146 (+)-(S)-N,N-DIMETHYL-1-((R)-1',2- E)(1,5- BIS(DI- CYCLOOCTADIENE)RHODIUM(I) PHENYLPHOSPHINO)FERROCENY TET L)E 951 (1,5-CYCLOOCTADIENE)(2,4- 1142 (+)-(S)-N,N-DIMETHYL-1-((R)-2- PENTANEDIONATO)RHODIUM(I), (DIPHENYLPHOSPHINO)FERROCE 99% NYL)ETHYLAMIN 1033 (1,5- 407 (+)-3',5'-O-(1,1,3,3- CYCLOOCTADIENE)BIS(METHYLD TETRAISOPROPYL-1,3- IPHENYLPHOSPHINE)IRIDIUM(I)
    [Show full text]
  • Synthesis of C2-Symmetric P-Chiral Bis(Phosphine Borane)
    Synthesis of C2-symmetric P-chiral bis(phosphine borane)s and their application in rhodium(I) catalyzed asymmetric transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University © Copyright by Holly Ann Heath (2001) Abstract: A new development for the synthesis C2-Synnnetric P-Chiral Bis(phosphine borane) ligands is reported, These ligands are based on the asymmetric induction of prochiral phosphine ligands with organolithium/chiral diamine complexes. These ligands have been evaluated in asymmetric rhodium(I) catalyzed hydrogenation and [4 + 2] cycloisomerization reactions. Enantiomeric excesses as high as 99% were obtained for ene-diene cycloadditions. Synthesis of C2-Symmetric P-Chiral Bis(phosphine borane)s and Their Application in Rhodium(I) Catalyzed Asymmetric Transformation by Holly Ann Heath A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University Bozeman, Montana March 2001 ii APPROVAL of a dissertation submitted by Holly Ann Heath This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. Dr. Thomas Livinghouse < Chairperson, Graduate Committee Date Approved for the Department of Chemistry Dr. Paul A. Grieco Department Head Approved for the College of Graduate Studies Dr. Bruce R. McLeod Graduate Dean Date iii STATEMENT OF PERMISSION TO USE In presenting this dissertation .in partial fulfillment of the requirements for a doctoral degree at Montana State University-Bozeman, I agree that the Library shall make it available to borrowers under rules of the Library.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,169,208 B1 Lee (45) Date of Patent: Jan
    USOO6169208B1 (12) United States Patent (10) Patent No.: US 6,169,208 B1 Lee (45) Date of Patent: Jan. 2, 2001 (54) PROCESS FOR PRODUCING A MAGNESIUM Goldberg et al., “Synthesis of Sodium Tetrakis(3,5-DI(Tri DITETRAKIS(ARYL)BORATE AND fluoromethyl)Phenyl Borate”, Zhurnal organicheskoi PRODUCTS THEREFROM Khimi, 1989, vol. 25, No. 5, pp. 1099–1102 (translation thereof), pp. 989-991. (75) Inventor: John Y. Lee, Baton Rouge, LA (US) Golden et al., “Lithium-Mediated Organofluorine Hydrogen Bonding: Structure of Lithium Tetreakis(3,5-bis(trifluorom (73) Assignee: Albemarle Corporation, Richmond, ethyl)phenyl)borate Tetrahydrate”, Inorg. Chem. vol. 33, VA (US) 1994, pp. 5374–5375. Hayashi et al., “A Novel Chiral Super-Lewis Acidic Cata (*) Notice: Under 35 U.S.C. 154(b), the term of this lyst for Enantioselective Synthesis”, J. Am. Chem. Soc., patent shall be extended for 0 days. 1996, vol. 118, No. 23, pp. 5502–5503. Hughes et al., “Synthesis and Structure of the Thallium(I) (21) Appl. No.: 09/453,606 Salt of the Tetrakis {3,5-bis(trifluoromethyl)phenylborate Anion”, Inorg. Chem. vol. 36, 1997, pp. 1726–1727. (22) Filed: Dec. 3, 1999 Jia et al., “Cationic Metallocene Polymerization Catalysts (51) Int. Cl." ........................................................ C07F 5/02 Based on Tetrakis(pentafluorophenyl)borate and Its Deriva (52) U.S. Cl. ...................................................... 568/6; 568/1 tives. Probing the Limits of Anion “Noncoordination” via a (58) Field of Search ............................................... 568/1, 6 Synthetic, Solution Dynamic, Structural, and Catalytic Ole fin Polymerization Study', Organometallics, 1997, vol. 16, (56) References Cited p. 842-857. Jia et al., “Protected (Fluoroaryl)borates as Effective Coun U.S.
    [Show full text]
  • US 2004/0237384 A1 Orr (43) Pub
    US 2004O237384A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0237384 A1 Orr (43) Pub. Date: Dec. 2, 2004 (54) FUEL COMPOSITIONS EXHIBITING (52) U.S. Cl. ................. 44/314; 44/320; 44/358; 44/359; IMPROVED FUEL STABILITY 44/360; 44/444 (76) Inventor: William C. Orr, Denver, CO (US) Correspondence Address: (57)57 ABSTRACT HOGAN & HARTSON LLP ONE TABOR CENTER, SUITE 1500 A fuel composition of the present invention exhibits mini 1200 SEVENTEENTH ST mized hydrolysis and increased fuel Stability, even after DENVER, CO 80202 (US) extended storage at 65 F. for 6–9 months. The composition, which is preferably not strongly alkaline (3.0 to 10.5), is (21) Appl. No.: 10/722,063 more preferably weakly alkaline to mildly acidic (4.5 to 8.5) (22) Filed: Nov. 24, 2003 and most preferably slightly acidic (6.3 to 6.8), includes a e ars lower dialkyl carbonate, a combustion improving amount of Related U.S. Application Data at least one high heating combustible compound containing at least one element Selected from the group consisting of (63) Continuation-in-part of application No. 08/986,891, aluminum, boron, bromine, bismuth, beryllium, calcium, filed on Dec. 8, 1997, now Pat. No. 6,652,608. cesium, chromium, cobalt, copper, francium, gallium, ger manium, iodine, iron, indium, lithium, magnesium, manga Publication Classification nese, molybdenum, nickel, niobium, nitrogen, phosphorus, potassium, palladium, rubidium, Sodium, tin, Zinc, (51) Int. Cl." ........ C10L 1/12; C1OL 1/30; C1OL 1/28; praseodymium, rhenium, Silicon, Vanadium, or mixture, and C1OL 1/18 a hydrocarbon base fuel.
    [Show full text]
  • Rhodium Complex Catalyzed Alcohol Carbonylation Reactions
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1979 Rhodium Complex Catalyzed Alcohol Carbonylation Reactions Joseph Leo Nothnagel Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Nothnagel, Joseph Leo, "Rhodium Complex Catalyzed Alcohol Carbonylation Reactions" (1979). Electronic Theses and Dissertations. 5041. https://openprairie.sdstate.edu/etd/5041 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. RHODIUM COMPLEX CATALY ZED ALCOHOL CARBONYLATION REACTIONS BY JOSEPH LEO NOTHNAGEL A thesis submitted in partical ful fillment of the requir ements for the degree Ma ster of Science , Major in Chemistry , South Dakota State Univers ity "SOUTH DAKOTA STATE UNIVERSITY LIBRARY RHODIUM COMPLEX CATALYZED ALCOHOL CARBONYLATION REACTIONS This dissertation is approved as a creditable and indep endent investigation by a.candidate for the degree , Master of Science, and is acceptable as meeting the dis­ sertation requirements for the degree, but without imply­ ing that the conclusions reached by the candidate are necessarily the conclusions of the major department . Thesis adpiser Date Head , Chemistry Department Date ACKNOWLEDGEMENTS To Dr . Ols·on who, like all great teachers, gave far more than he received; To my wi fe who , as a loving wife, put up with one too many accidents; To my parents , who have always been with me, TABLE OF CONTENTS page .
    [Show full text]
  • Zwitterionic Nickel Catalyst for Carbonylative Polymerizations
    Zwitterionic Nickel Catalyst for Carbonylative Polymerizations A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements of the Degree Master of Science Bradley M. Schmidt December, 2011 Zwitterionic Nickel Catalyst for Carbonylative Polymerizations Bradley M. Schmidt Thesis Approved: Accepted: ______________________________ ______________________________ Advisor Dean of the College Dr. Li Jia Dr. Stephen Z. D. Cheng ______________________________ ______________________________ Faculty Reader Dean of the Graduate School Dr. Colleen Pugh Dr. George R. Newkome ______________________________ ______________________________ Department Chair Date Dr. Ali Dhinojwala ii ABSTRACT The goal of this research project was to develop a catalyst for the copolymerization of carbon monoxide (CO) and epoxides and/or aldehydes. Zwitterionic palladium and nickel complexes were synthesized that contained bidentate phosphine-borate ligands. Under the assumption that a polymerization mechanism similar to the established cobalt-catalyzed copolymerization of CO and aziridines is applicable, the zwitterionic nature of the complexes were expected to posses the high activity of cationic metal-acyl bonds, while maintaining the anionic nature required for ion pairing during the polymerization. Characterization of the nickel complex was completed through NMR spectroscopy, FTIR spectroscopy, and X-ray crystallography. Upon completion of the metal complex syntheses a variety of polymerization conditions were screened, and the products were characterized by NMR and IR spectroscopy. Although the spectroscopic methods showed the system had activity, a pure polymer product was not obtained. iii ACKNOWLEDGMENTS I would like to thank Dr. Li Jia for his guidance and financial support to make this project possible. I would also like to thank my group members Nishant Kumar, Joseph Scavuzzo, Chao Wang, Sarang Bhawalkar, and Ilknur Babahan for their assistance with my research, and Jim Engle for his help with X-ray crystallography.
    [Show full text]
  • Complexes with Chelating Phosphine Ligands and Their Application in Catalytic Fluorination and Dioxygen Activation
    Research Collection Doctoral Thesis Five-coordinate ruthenium and osmium(II) complexes with chelating phosphine ligands and their application in catalytic fluorination and dioxygen activation Author(s): Bàrthàzy, Péter Tamàs Publication Date: 2000 Permanent Link: https://doi.org/10.3929/ethz-a-004044162 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Dissertation ETH Nr 13841 Five-Coordinate Ruthenium and Osmium(II) Complexes with Chelating Phosphine Ligands and their Application in Catalytic Fluorination and Dioxygen Activation A Dissertation Submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZUERICH For the degree of DOCTOR OF NATURAL SCIENCES Presented by Péter Tamàs Bàrthàzy, Dipl. Chem. born on January 21st, 1972 from Obersiggenthal (AG) Accepted on recommendation of Prof. Dr. A. Togni, Examiner Prof. Dr. A. Pfaltz, Co-examiner Dr. A. Mezzetti, Co-examiner Zürich, 2000 Danksagung Eine Doktorarbeit ist immer eine Koproduktion vieler Menschen, die ihren kleinen und gros¬ sen Beitrag zum Gelingen geleistet haben. Prof. Dr. Antonio Togni: Er hat daneben, dass er meine Arbeit betreut und beaufsichtigt hat, vor allem mir, der sich selber fuer einigermassen effizient hält, die wahre Bedeutung desselben Wortes beigebracht: Ohne grosse Instruktionen hat er doch den Gang meiner Arbeit entschei¬ dend beeinflusst. Dr. Antonio Mezzetti: Als mein eigentlicher Betreuer hat er durch konstantes Fordern ein¬ dafuer erseits, aber vor allem durch grosse chemische und menschliche Flexibilität andererseits gesorgt, dass es immer vorwärts ging und die Chemie immer stimmte. Prof. Dr. Andreas Pfaltz für die freundliche Uebernahme der Korreferates einerseits und für die Unterstützung während des Studiums andererseits.
    [Show full text]
  • \MSDS\HACH\2459100.Pdf
    The following list contains the Material Safety Data Sheets you requested. Please scoll down to view the requested MSDS(s). Product MSDS Distributor Format Language Quantity 2459100 1432198 Hach Company OSHA English 1 2459100 1432298 Hach C ompany OSHA English 1 2459100 1432399 Hach Company OSHA English 1 __________________________________________________________________________________________________________ Total Enclosures: 3 World Headquarters Hach Company P.O.Box 389 MSDS No: M0 0043 Loveland, CO USA 80539 (970) 669 -3050 MATERIAL SAFETY DATA SHEET _____________________________________________________________________________ 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION Product Name: Potassium 1 Reagent Powder Pillows Catalog Number: 1432198 Hach Company Emergency Telephone Numbers: P.O.Box 389 (Medical and Transportation) Loveland, CO USA 80539 (303) 623 -5716 24 Hour Service (970) 669 -3050 (515)232 -2533 8am - 4pm CST MSDS Number: M00043 Chemical Name: Glycine, N,N' -1,2 -ethanediylbis[N -(carboxymethyl) -, Tetrasodium Salt CAS No.: 64 -02 -8 Chemical Formula: C10 H12 N2Na 4O8 2H 2O Chemical Family: Substituted organic acid Hazard: Harmful if swallowed Causes eye burns. Date of MSDS Pre paration: Day: 04 Month: January Year: 2010 _____________________________________________________________________________ 2. COMPOSITION / INFORMATION ON INGREDIENTS EDTA Tetrasodium Salt CAS No.: 64 -02 -8 TSCA CAS Number: 64 -02 -8 Percent Range : 100.0 Percent Range Units: weight / weight LD50: Orl Rat: 1700 to 2700 mg/kg LC50: None reported
    [Show full text]
  • Synthesis of Phosphine-Alkene Ligands and 3-Hydroxy Piperidines Using Organolithium Chemistry Chehasnah Haji-Cheteh
    Synthesis of Phosphine-Alkene Ligands and 3-Hydroxy Piperidines Using Organolithium Chemistry Chehasnah Haji-Cheteh Doctor of Philosophy University of York Chemistry March 2016 Abstract Abstract This thesis describes synthetic routes to P-stereogenic phosphine-alkene ligands and 3- hydroxy piperidines containing heteroaromatics via lithiation-trapping of phosphine boranes or N-Boc pyrrolidine. Both topics are introduced in chapter 1. Chapter 2 presents a route to a new type of P-stereogenic phosphine-alkene ligand B prepared by racemic lithiation of t-butyldimethylphosphine borane or dimethylphenylphosphine borane using s-BuLi. Different allylic halides were used to trap the lithiated R1 = Ph, t-Bu intermediate to give chiral alkene-phosphine boranes A. R2 = H, Me, Br In chapter 3, 3-hydroxy piperidines were synthesised from the ring expansion of hydroxy pyrrolidines. Two novel, short and simple synthetic routes were developed (as shown below). Lithiation-trapping reaction of N-Boc pyrrolidine C using pyridine carboxaldehydes gave N-Boc pyrrolidine alcohols syn-D and anti-D. On the other hand, an alternative approach to obtain 3-hydroxy piperidines anti-H starting from N-trityl prolinal E derived from (S)-proline was investigated. Addition of lithiated heteroaromatics, generated from a Br/Li exchange reaction, to N-trityl prolinal E diastereoselectively gave N-trityl alcohols anti-F. The Boc or trityl deprotection and reductive amination then gave N-benzyl pyrrolidines syn-G and anti-G. Finally, the ring expansion via an aziridinium ion of alcohols syn-G and anti-G gave 3-hydroxy piperidines syn-H and anti-H. The stereochemistry of 3- hydroxy piperidines syn-H and anti-H was proven using J-values in the 1H NMR spectra.
    [Show full text]
  • Oligomerization to Alpha-Olefins
    Europaisches Patentamt J European Patent Office © Publication number: 0 254 277 Office europeen des brevets A2 EUROPEAN PATENT APPLICATION © Application number: 87110563.1 © C07C 2/32 C07F int. CIA , 9/50 , B01J 31/24 © Date of filing: 21.07.87 © Priority: 21.07.86 US 887183 © Applicant: UNION CARBIDE CORPORATION 39 Old Ridgebury Road (§) Date of publication of application: Danbury Connecticut 0681 7(US) 27.01.88 Bulletin 88/04 © inventor: Murray, Rex Eugene ® Designated Contracting States: 5291 Dalewood Drive AT BE OE ES FR GB GR IT NL SE Charleston, 25313 West Virginia(US) 0 Representative: Barz, Peter, Dr. et al Patentanwalte Dipl.-lng. G. Dannenberg Dr. P. Weinhold, Dr. D. Gudel Dipl.-lng. S. Schubert, Dr. P. Barz Siegfriedstrasse 8 D-8000 Munchen 40(DE) Oligomerization to aipha-olefins. © An oligomerization or cooligomerization process comprising passing ethylene or a mixture of ethylene and propylene in contact with a catalyst, in the liquid phase, said catalyst comprising the reaction product of (i) a transition metal compound wherein the transition metal is selected from the group consisting of nickel, chromium, cobalt, iron, and copper, and mixtures thereof; (ii) in the event that (a) the transition metal is not in the oxidation state of 0 or (b) the transition metal compound does not have a hydride or an alkyl, alkenyl, alkynyi, or. aryl group bonded to the transition metal, a catalyst activator consisting of a compound capable of transferring a hydride or an alkyl, alkenyl, alkynyi, or aryl group from itself to the transition
    [Show full text]